CHAPTER 5
NEXT-EVENT SIMULATION

Sections
5.1. Next-Event Simulation (program ssq3) 186
5.2. Next-Event Simulation Examples (programs sis3 and msq) 198
5.3. Event List Management (program ttr) 206

The three sections in this chapter all concern the next-event approach to discrete-event
simulation. Section 5.1 defines the fundamental terminology used in next-event simulation
such as system state, events, simulation clock, event scheduling, and event list (which is
also known as the calendar), and provides an introduction to this fundamental approach as
it applies to the simulation of a single-server service node with and without feedback. The
algorithm associated with next-event simulation initializes the simulation clock (typically
to time zero), event list (with an initial arrival, for example, in a queuing model), and
system state to begin the simulation. The simulation model continues to (1) remove the
next event from the event list, (2) update the simulation clock to the time of the next
event, (3) process the event, and (4) schedule the time of occurrence of any future events
spawned by the event, until some terminal condition is satisfied.

Section 5.2 provides further illustrations of this approach relative to the simulation of
a simple inventory system with delivery lag and a multi-server service node. The multi-
server service node provides an illustration of an event list which can have an arbitrarily
large number of elements.

As the simulations in Sections 5.1 and 5.2 illustrate, an event list is an integral feature
of the next-event approach. The data structures and algorithms that are used to manage
the event list are crucial to the efficiency of a next-event simulation. Section 5.3 provides
a sequence of examples associated with the management of an event list that begin with
a naive and inefficient data structure and algorithm and iterate toward a more efficient
scheme.

186 5.1 Next-Event Simulation

In this section we will present a general next-event approach to building discrete-event
simulation models. From this chapter on, this next-event approach will be the basis for all
the discrete-event simulation models developed in this book.

The motivation for considering the next-event approach to discrete-event simulation is
provided by considering the relative complexity of the effort required to extend the discrete-
event simulation models in Section 3.1 to accommodate the slightly more sophisticated
corresponding models in Section 3.3. That is, at the computational level compare the
simplicity of program ssq2 in Section 3.1 with the increased complexity of the extension
to ssq2 that would be required to reproduce the results in Example 3.3.2. Yet the only
increase in the complexity of the associated single-server service node model is the addition
of immediate feedback. Similarly, compare the simplicity of program sis2 in Section 3.1
with the increased complexity of the extension to sis2 that would be required to reproduce
the results in Example 3.3.4. Yet in this case the only increase in the complexity of the
associated simple inventory system model is the addition of a delivery lag.

5.1.1 DEFINITIONS AND TERMINOLOGY

While programs ssq2 and sis2 and their corresponding extensions in Section 3.3 are
valid and meaningful (albeit simple) discrete-event simulation programs, they do not adapt
easily to increased model complexity and they do not generalize well to other systems.
Based on these observations we see the need for a more general approach to discrete-
event simulation that applies to queuing systems, inventory systems and a variety of other
systems as well. This more general approach — next-event simulation — is based on some
important definitions and terminology: (1) system state, (2) events, (3) simulation clock,
(4) event scheduling, and (5) event list (calendar).

System State

Definition 5.1.1 The state of a system is a complete characterization of the system at
an instance in time — a comprehensive “snapshot” in time. To the extent that the state
of a system can be characterized by assigning values to variables, then state variables are
what is used for this purpose.

To build a discrete-event simulation model using the next-event approach, the focus
is on refining a description of the state of the system and its evolution in time. At the
conceptual model level the state of a system exists only in the abstract as a collection of
possible answers to the following questions: what are the state variables, how are they
interrelated, and how do they evolve in time? At the specification level the state of the
system exists as a collection of mathematical variables (the state variables) together with
equations and logic describing how the state variables are interrelated and an algorithm
for computing their interaction and evolution in time. At the computational level the state
of the system exists as a collection of program variables that collectively characterize the
system and are systematically updated as (simulated) time evolves.

5.1 Next-Event Simulation 187

Example 5.1.1 A natural way to describe the state of a single-server service node is
to use the number of jobs in the service node as a state variable. As demonstrated later
in this section, by refining this system state description we can construct a next-event
simulation model for a single-server service node with or without immediate feedback.

Example 5.1.2 Similarly, a natural way to describe the state of a simple inventory
system is to use the current inventory level and the amount of inventory on order (if any)
as state variables. As demonstrated in the next section, by refining this system state
description we can construct a next-event simulation model of a simple inventory system
with or without delivery lag.

Events

Definition 5.1.2 An event is an occurrence that may change the state of the system.
By definition, the state of the system can only change at an event time. Each event has
an associated event type.

Example 5.1.3 For a single-server service node model with or without immediate feed-
back, there are two types of events: the arrival of a job and the completion of service for a
job. These two types of occurrences are events because they have the potential to change
the state of the system. An arrival will always increase the number in the service node by
one; if there is no feedback, a completion of service will always decrease the number in the
service node by one. When there is feedback, a completion may decrease the number in
the service node by one. In this case there are two event types because the “arrival” event
type and the “completion of service” event type are not the same.

Example 5.1.4 For a simple inventory system with delivery lag there are three event
types: the occurrence of a demand instance, an inventory review, and the arrival of an
inventory replenishment order. These are events because they have the potential to change
the state of the system: a demand will decrease the inventory level by one, an inventory
review may increase the amount of inventory on order, and the arrival of an inventory
replenishment order will increase the inventory level and decrease the amount of inventory
on order.

The may in Definition 5.1.2 is important; it is not necessary for an event to cause a
change in the state of the system, as illustrated in the following four examples: (1) events
can be scheduled that statistically sample, but do not change, the state of a system, (2) for
a single-server service node with immediate feedback, a job’s completion of service will
only change the state of the system if the job is not fed back, (3) for a single-server service
node, an event may be scheduled at a prescribed time (e.g., 5 PM) to cut off the stream
of arriving jobs to the node, which will not change the state of the system, and (4) for a
simple inventory system with delivery lag, an inventory review will only change the state
of the system if an order is placed.

188 5. Next-Event Simulation

Simulation Clock

Because a discrete-event simulation model is dynamic, as the simulated system evolves
it is necessary to keep track of the current value of simulated time. In the implementation
phase of a next-event simulation, the natural way keep track of simulated time is with a
floating point variable, which is typically named t, time, tnow, or clock in discrete-event
simulation packages. The two examples that follow the definition of the simulation clock
highlight the inability of the discrete-event simulation approach to easily generalize or
embellish models. The next-event framework overcomes this limitation.

Definition 5.1.3 The variable that represents the current value of simulated time in a
next-event simulation model is called the simulation clock.

Example 5.1.5 The discrete-event simulation model that program ssq2 represents is
heavily dependent on the job processing order imposed by the FIFO queue discipline.
Therefore, it is difficult to extend the model to account for immediate feedback, or a
finite service node capacity, or a priority queue discipline. In part, the reason for this
difficulty is that there are effectively two simulation clocks with one coupled to the arrival
events and the other coupled to the completion of service events. These two clocks are not
synchronized and so it is difficult to reason about the temporal order of events if arrivals
and completions of service are merged by feedback.

Example 5.1.6 The discrete-event simulation model that program sis2 represents has
only one type of event, inventory review, and events of this type occur deterministically at
the beginning of each time interval. There is a simulation clock, but it is integer-valued and
so is primitive at best. Because the simulation clock is integer-valued we are essentially
forced to ignore the individual demand instances that occur within each time interval.
Instead, all the demands per time interval are aggregated into one random variable. This
aggregation makes for a computationally efficient discrete-event simulation program, but
forces us in return to do some calculus to derive equations for the time-averaged holding
and shortage levels. As outlined in Section 3.3, when there is a delivery lag the derivation
of those equations is a significant task.

Event Scheduling

In a discrete-event simulation model it is necessary to use a time-advance mechanism
to guarantee that events occur in the correct order — that is, to guarantee that the
simulation clock never runs backward. The primary time-advance mechanism used in
discrete-event simulation is known as next-event time advance; this mechanism is typically
used in conjunction with event scheduling.

Definition 5.1.4 If event scheduling is used with a next-event time-advance mechanism
as the basis for developing a discrete-event simulation model, the result is called a next-
event simulation model.

5.1 Next-Event Simulation 189

To construct a next-event simulation model, three things must be done:
e construct a set of state variables that together provide a complete system description;
e identify the system event types;

e construct a collection of algorithms that define the state changes that will take place
when each type of event occurs.

The model is constructed so as to cause the (simulated) system to evolve in (simulated)
time by executing the events in increasing order of their scheduled time of occurrence. Time
does not flow continuously; instead, the simulation clock is advanced discontinuously from
event time to event time. At the computational level, the simulation clock is frozen during
the execution of each state-change algorithm so that each change of state, no matter how
computationally complex, occurs instantaneously relative to the simulation clock.

Event List

Definition 5.1.5 The data structure that represents the scheduled time of occurrence
for the next possible event of each type is called the event list or calendar.

The event list is often, but not necessarily, represented as a priority queue sorted by
the next scheduled time of occurrence for each event type.

5.1.2 NEXT-EVENT SIMULATION

Algorithm 5.1.1 A next-event simulation model consists of the following four steps:

e Initialize. The simulation clock is initialized (usually to zero) and, by looking ahead,
the first time of occurrence of each possible event type is determined and scheduled,
thereby initializing the event list.

e Process current event. The event list is scanned to determine the most imminent
possible event, the simulation clock is then advanced to this event’s scheduled time of
occurrence, and the state of the system is updated to account for the occurrence of
this event. This event is known as the “current” event.

e Schedule new events. New events (if any) that may be spawned by the current
event are placed on the event list (typically in chronological order).

e Terminate. The process of advancing the simulation clock from one event time to
the next continues until some terminal condition is satisfied. This terminal condition
may be specified as a pseudo-event that only occurs once, at the end of the simulation,
with the specification based on processing a fixed number of events, exceeding a fixed
simulation clock time, or estimating an output measure to a prescribed precision.

The next-event simulation model initializes once at the beginning of a simulation replica-
tion, then alternates between the second step (processing the current event) and third step
(scheduling subsequent events) until some terminate criteria is encountered.

190 5. Next-Event Simulation

Because event times are typically random, the simulation clock runs asynchronously.
Moreover, because state changes only occur at event times, periods of system inactivity
are ignored by advancing the simulation clock from event time to event time. Compared
to the alternate, which is a fized-increment time-advance mechanism, there is a clear
computational efficiency advantage to this type of asynchronous next-event processing.*

In the remainder of this section, next-event simulation will be illustrated by con-
structing a next-event model of a single-server service node. Additional illustrations are
provided in the next section by constructing next-event simulation models of a simple
inventory system with delivery lag and a multi-server service node.

5.1.3 SINGLE-SERVER SERVICE NODE

The state variable [(t) provides a complete characterization of the state of a single-
server service node in the sense that

I(t)=0 <= ¢q(t)=0 and z(t) =0
I(t) >0 < q(t) =1(t)—1 and xz(t) =1

where [(t), q(t), and z(t) represent the number in the node, in the queue, and in service
respectively at time ¢ > 0. In words, if the number in the service node is known, then
the number in the queue and the status (idle or busy) of the server is also known. Given
that the state of the system is characterized by [(t), we then ask what events can cause
[(t) to change? The answer is that there are two such events: (1) an arrival in which case
[(t) is increased by 1; and (2) a completion of service in which case [(t) is decreased by
1. Therefore, our conceptual model of a single-server service node consists of the state
variable [(t) and two associated event types, arrival and completion of service.

To turn this next-event conceptual model into a specification model, three additional
assumptions must be made.

e The initial state [(0) can have any non-negative integer value. It is common, however,
to assume that [(0) = 0, often referred to as “empty and idle” in reference to the
initial queue condition and server status, respectively. Therefore, the first event must
be an arrival.

* Note that asynchronous next-event processing cannot be used if there is a need at
the computational level for the simulation program to interact synchronously with some
other process. For example, because of the need to interact with a person, so called
“real time” or “person-in-the-loop” simulation programs must use a fixed-increment time-
advance mechanism. In this case the underlying system model is usually based on a system
of ordinary differential equations. In any case, fixed-increment time-advance simulation
models are outside the scope of this book, but are included in some of the languages
surveyed in Appendix A.

5.1 Next-Event Simulation 191

e Although the terminal state can also have any non-negative integer value, it is common
to assume, as we will do, that the terminal state is also idle. Rather than specifying
the number of jobs processed, our stopping criteria will be specified in terms of a
time 7 beyond which no new jobs can arrive. This assumption effectively “closes the
door” at time 7 but allows the system to continue operation until all jobs have been
completely served. This would be the case, for instance, at an ice cream shop that
closes at a particular hour, but allows remaining customers to be served. Therefore,
the last event must be a completion of service.*

e Some mechanism must be used to denote an event as impossible. One way to do this is
to structure the event list so that it contains possible events only. This is particularly
desirable if the number of event types is large. As an alternate, if the number of event
types is not large then the event list can be structured so that it contains both possible
and impossible events — but with a numeric constant “oo” used for an event time to
denote the impossibility of an event. For simplicity, this alternate event list structure
is used in Algorithm 5.1.2.

To complete the development of a specification model, the following notation is used.
The next-event specification model is then sufficiently simple that we can write Algo-
rithm 5.1.2 directly.

e The simulation clock (current time) is ¢.

e The terminal (“close the door”) time is 7.

e The next scheduled arrival time is ¢,.

e The next scheduled service completion time is %..
e The number in the node (state variable) is .

The genius and allure of both discrete-event and next-event simulation is apparent,
for example, in the generation of arrival times in Algorithm 5.1.2. The naive approach of
generating and storing all arrivals prior to the execution of the simulation is not necessary.
Even if this naive approach were taken, the modeler would be beset by the dual problems
of memory consumption and not knowing how many arrivals to schedule. Next-event
simulation simply primes the pump by scheduling the first arrival in the initialization phase,
then schedules each subsequent arrival while processing the current arrival. Meanwhile,
service completions weave their way into the event list at the appropriate moments in order
to provide the appropriate sequencing of arrivals and service completions.

At the end of this section we will discuss how to extend Algorithm 5.1.2 to account for
several model extensions: immediate feedback, alternative queue disciplines, finite capacity,
and random sampling.

* The simulation will terminate at ¢ = 7 only if I[(7) = 0. If instead [(7) > 0 then the
simulation will terminate at ¢ > 7 because additional time will be required to complete
service on the jobs in the service node.

192 5. Next-Event Simulation

Algorithm 5.1.2 This algorithm is a next-event simulation of a FIFO single-server
service node with infinite capacity. The service node begins and ends in an empty and idle
state. The algorithm presumes the existence of two functions GetArrival and GetService
that return a random value of arrival time and service time respectively.

[=0; /* initialize the system state */
t =0.0; /* initialize the system clock */
to = GetArrival(); /* initialize the event list */
te = 00; /* initialize the event list */
while ((t, < 7) or (I > 0)) { /* check for terminal condition */
t = min(t,, t.); /* scan the event list */
if (¢ == t,) { /* process an arrival */
[++;
to = GetArrival();
if (tg > 7)
ta = 00;
if (I == 1)

t. =t + GetService();

}

else { /* process a completion of service */
l--;
if (I > 0)
t. = t + GetService();
else
t. = 00;

}
}

If the service node is to be an M/M/1 queue (exponential interarrival and service times
with a single server) with arrival rate 1.0 and service rate 1.25, for example, the two ¢, =
GetArrival () statements can be replaced with ¢, = ¢ + Exponential(1.0) and the two
t, = GetService() statements can be replaced with ¢t. = ¢t + Exponential(0.8). The
GetArrival and GetService functions can draw their values from a file (a “trace-driven”
approach) or generate variates to model these stochastic elements of the service node.

Because there are just two event types, arrival and completion of service, the event
list in Algorithm 5.1.2 contains at most two elements, ¢, and t.. Given that the event list
is small and its size is bounded (by 2), there is no need for any special data structure to
represent it. If the event list were larger, an array or structure would be a natural choice.
The only drawback to storing the event list as ¢, and ¢. is the need to specify the arbitrary
numeric constant “oo” to denote the impossibility of an event. In practice, oo can be any
number that is much larger than the terminal time 7 (1007 is used in program ssq3).

5.1 Next-Event Simulation 193

If the event list is large and its size is dynamic then a dynamic data structure is
required with careful attention paid to its organization. This is necessary because the
event list is scanned and updated each time an event occurs. Efficient algorithms for
the insertion and deletion of events on the event list can impact the computational time
required to execute the next-event simulation model. Henriksen (1983) indicates that for
telecommunications system models, the choice between an efficient and inefficient event list
processing algorithm can produce a five-fold difference in total processing time. Further
discussion of data structures and algorithms associated with event lists is postponed to
Section 5.3.

Program ssq3

Program ssq3 is based on Algorithm 5.1.2. Note, in particular, the state variable
number which represents [(¢), the number in the service node at time ¢, and the important
time management structure t that contains:

e the event list t.arrival and t.completion (¢, and t. from Algorithm 5.1.2);
e the simulation clock t.current (¢ from Algorithm 5.1.2);

e the next event time t.next (min(¢,,t.) from Algorithm 5.1.2);

e the last arrival time t.last.

Event list management is trivial. The event type (arrival or a completion of service) of the
next event is determined by the statement t.next = Min(t.arrival, t.completion).

Note also that a statistics gathering structure area is used to calculate the time-
averaged number in the node, queue, and service. These statistics are calculated exactly
by accumulating time integrals via summation, which is valid because [(-), ¢(-), and x(-)
are piecewise constant functions and only change value at an event time (see Section 4.1).
The structure area contains:

t
o / l(s)ds evaluated as area.node;
0
t
o / q(s)ds evaluated as area.queue;
0

t
o / x(s)ds evaluated as area.service.
0

Program ssq3 does not accumulate job-averaged statistics. Instead, the job-averaged
statistics w, d, and 5 are computed from the time-averaged statistics [, ¢, and Z by using
the equations in Theorem 1.2.1. The average interarrival time 7 is computed from the
equation in Definition 1.2.4 by using the variable t.last. If it were not for the use of the
assignment t.arrival = INFINITY to “close the door”, 7 could be computed from the
terminal value of t.arrival, thereby eliminating the need for t.last.

194 5. Next-Event Simulation

World Views and Synchronization

Programs ssq2 and ssq3 simulate exactly the same system. The programs work in
different ways, however, with one clear consequence being that ssq2 naturally produces job-
averaged statistics and ssq3 naturally produces time-averaged statistics. In the jargon of
discrete-event simulation the two programs are said to be based upon different world views.*
In particular, program ssq2 is based upon a process-interaction world view and program
ssq3 is based upon an event-scheduling world view. Although other world views are
sometimes advocated, process interaction and event-scheduling are the two most common.
Of these two, event-scheduling is the discrete-event simulation world view of choice in this
and all the remaining chapters.

Because programs ssq2 and ssq3 simulate exactly the same system, these programs
should be able to produce exactly the same output statistics. Getting them to do so,
however, requires that both programs process exactly the same stochastic source of arriving
jobs and associated service requirements. Because the arrival times a; and service times
s; are ultimately produced by calls to Random, some thought is required to provide this
synchronization. That is, the random variates in program ssq2 are always generated in
the alternating order aq, s1, ag, So, ... while the order in which these random variates are
generated in ssq3 cannot be known a priori. The best way to produce this synchronization
is to use the library rngs, as is done is program ssq3. In Exercise 5.1.3, you are asked
to modify program ssq2 to use the library rngs and, in that way, verify that the two
programs can produce exactly the same output.

5.1.4 MODEL EXTENSIONS

We close this section by discussing how to modify program ssq3 to accommodate
several important model extensions. For each of the four extensions you are encouraged
to consider what would be required to extend program ssq2 correspondingly.

Immediate Feedback

Given the function GetFeedback from Section 3.3, we can modify program ssq3 to
account for immediate feedback by just adding an if statement so that index and number
are not changed if a feedback occurs following a completion of service, as illustrated.

else { /* process a completion of service */

if (GetFeedback() == 0) { /* this statement is new */
index++;
number--;

}

* A world view is the collection of concepts and views that guide the development of
a simulation model. World views are also known as conceptual frameworks, simulation
strategies, and formalisms.

5.1 Next-Event Simulation 195

For a job that is not fed back, the counter for the number of departed jobs (index) is
incremented and the counter for the current number of jobs in the service node (number)
is decremented. The simplicity of the immediate feedback modification is a compelling
example of how well next-event simulation models accommodate model extensions.

Alternate Queue Disciplines

Program ssq3 can be modified to simulate any queue discipline. To do so, it is
necessary to add a dynamic queue data structure such as, for example a singly-linked list
where each list node contains the arrival time and service time for a job in the queue, as
illustrated.*

arrival arrival arrival Figure 5.1.1.

service service service Queue

data

head next next next tail structure.
. ° . ° e ——

Two supporting queue functions, Enqueue and Dequeue, are also needed to insert and
delete jobs from the queue, respectively. Then ssq3 can be modified as follows:

e use Enqueue each time an arrival event occurs and the server is busy;

e use Dequeue each time a completion of service event occurs and the queue is not
empty.

The details of this important modification are left as an exercise. This modification will
result in a program that can be tested for correctness by using a FIFO queue discipline
and reproducing results from program ssq3.

Note in particular that this modification can be combined with the immediate feedback
modification illustrated previously. In this case, the arrival field in the linked list would
hold the time of feedback for those jobs that are fed back. The resulting program would
allow a priority queue discipline to be used for fed back jobs if (as is common) a priority
assumption is appropriate.

Finite Service Node Capacity

Program ssq3 can be modified to account for a finite capacity by defining a constant
CAPACITY which represents the service node capacity (one more than the queue capacity)
and declaring an integer variable reject which counts rejected jobs. Then all that is
required is a modification to the “process an arrival” portion of the program, as illustrated.

* If this queue data structure is used, then service times are computed and stored at the
time of arrival. In this way, each job’s delay in the queue and wait in the service node can
be computed at the time of entry into service, thereby eliminating the need to compute
job-averaged statistics from time-averaged statistics.

196 5. Next-Event Simulation

if (t.current == t.arrival) { /* process an arrival */
if (number < CAPACITY) {
number++;
if (number == 1)

t.completion = t.current + GetService();

}

else
reject++;

t.arrival = GetArrival();

if (t.arrival > STOP) {
t.last = t.current;
t.arrival = INFINITY;

}
}

This code replaces the code in program ssq3 for processing an arrival. As with the imme-
diate feedback modification, again we see the simplicity of this modification is a compelling
example of how well next-event simulation models accommodate model extensions.

Random Sampling

An important feature of program ssq3 is that its structure facilitates direct sampling
of the current number in the service node or queue. This is easily accomplished by adding
a sampling time element, say t.sample, to the event list and constructing an associated
algorithm to process the samples as they are acquired. Sampling times can then be sched-
uled deterministically, every § time units, or at random by generating sampling times with
an Erponential(§) random variate inter-sample time. In either case, the details of this
modification are left as an exercise.

5.1.5 EXERCISES

Exercise 5.1.1 Consider a next-event simulation model of a three-server service node
with a single queue and three servers. (a) What variable(s) are appropriate to describe the
system state? (b) Define appropriate events for the simulation. (¢) What is the maximum
length of the event list for the simulation? (Answer with and without considering the
pseudo-event for termination of the replication.)

Exercise 5.1.2 Consider a next-event simulation model of three single-server service
nodes in series. (a) What variable(s) are appropriate to describe the system state? (b) De-
fine appropriate events for the simulation. (¢) What is the maximum length of the event
list for the simulation? (Answer with and without considering the pseudo-event for termi-
nation of the replication.)

5.1 Next-Event Simulation 197

Exercise 5.1.3 (a) Use the library rngs to verify that programs ssq2 and ssq3 can
produce ezactly the same results. (b) Comment on the value of this as a consistency check
for both programs.

Exercise 5.1.4 Add a sampling capability to program ssq3. (a) With deterministic
inter-sample time § = 1.0, sample the number in the service node and compare the average
of these samples with the value of [computed by the program. (b) With average inter-
sample time 6 = 1.0, sample at random the number in the service node and compare the
average of these samples with the value of I computed by the program. (c¢) Comment.

Exercise 5.1.5 Modify program ssq3 by adding a FIFO queue data structure. Verify
that this modified program and ssq3 produce ezactly the same results.

Exercise 5.1.6* As a continuation of Exercise 5.1.5, simulate a single-server service
node for which the server uses a shortest-job-first priority queue discipline based upon a
knowledge of the service time for each job in the queue. (a) Generate a histogram of the
wait in the node for the first 10000 jobs if interarrival times are Ezponential(1.0) and service
times are Exponential(0.8). (b) How does this histogram compare with the corresponding
histogram generated when the queue discipline is FIFO? (¢) Comment.

Exercise 5.1.7 Modify program ssq3 to reproduce the feedback results obtained in
Section 3.3.

Exercise 5.1.8 Modify program ssq3 to account for a finite service node capacity.
(a) Determine the proportion of rejected jobs for capacities of 1, 2, 3, 4, 5, and 6. (b) Repeat
this experiment if the service time distribution is Uniform(1.0, 3.0). (¢) Comment. (Use
a large value of STOP.)

Exercise 5.1.9 (a) Construct a next-event simulation model of a single-server machine
shop. (b) Compare your program with the program ssms and verify that, with a proper use
of the library rngs, the two programs can produce ezactly the same output. (¢) Comment
on the value of this as a consistency check for both programs.

Exercise 5.1.10*° An M/M/1 queue can be characterized by the following system state
change mechanism, where the system state is [(¢), the number of jobs in the node:

e The transition from state j to state j + 1 is exponential with rate A\; > 0 (the arrival
rate) for j = 0,1,

e The transition from state j to state j — 1 is exponential with rate Ao > 0 (the service
rate) for j = 1,2,

If the current state of the system is some positive integer j, what is the probability that
the next transition will be to state j + 17

198 5.2 Next-Event Simulation Examples

As a continuation of the discussion in the previous section, in this section two next-
event simulation models will be developed. The first is a next-event simulation model of a
simple inventory system with delivery lag, the second is a next-event simulation model of
a multi-server service node.

5.2.1 A SIMPLE INVENTORY SYSTEM WITH DELIVERY LAG

To develop a next-event simulation model of a simple inventory system with delivery
lag, we make two changes relative to the model on which program sis2 is based. The first
change is consistent with the discussion of delivery lag in Section 3.3. The second change
is new and provides a more realistic demand model.

e There is a lag between the time of inventory review and the delivery of any inventory
replenishment order that is placed at the time of review. This delivery lag is assumed
to be a Uniform(0,1) random variable, independent of the size of the order. Consistent
with this assumption, the delivery lag cannot be longer than a unit time interval;
consequently, any order placed at the beginning of a time interval will arrive by the
end of the time interval, before the next inventory review.

e The demands per time interval are no longer aggregated into one random variable
and assumed to occur at a constant rate during the time interval. Instead, individual
demand instances are assumed to occur at random throughout the simulated period
of operation with an average rate of A demand instances per time interval. That is,
each demand instance produces a demand for exactly one unit of inventory and the
inter-demand time is an Exponential(1/\) random variable.

Figure 5.2.1 shows the first six time intervals of a typical inventory level time history ().

S —
Figure 5.2.1.
Inventory
level
history.
i
O -

Each demand instance causes the inventory level to decrease by one. Inventory review for
the i*" time interval occurs at t =i —1=0,1,2,... with an inventory replenishment order
in the amount 0,1 = S — (i — 1) placed only if I(i — 1) < s. Following a delivery lag d;,
the subsequent arrival of this order causes the inventory to experience an increase of 0;_1
at time t =17 — 1 4 9;, as illustrated for + = 3 and ¢« = 6 in Figure 5.2.1.

5.2 Next-Event Simulation Examples 199

Recall that in program sis?2 the aggregate demand in each time interval is generated
as an Fquilikely(10, 50) random variate. Although the aggregate demand in each time
interval can be any value between 10 and 50, within each interval there is nothing random
about the occurrence of the individual demands — the inter-demand time is constant.
Thus, for example, if the random variate aggregate demand in a particular interval is 25
then the inter-demand time throughout that interval is 0.04.

In contrast to the demand model in program sis2, it is more realistic to generate
the inter-demand time as an Ezponential(1/\) random variate. In this way the demand is
modeled as an arrival process (e.g., customers arriving at random to buy a car) with A\ as
the arrival rate per time interval. Thus, for example, if we want to generate demands with
an average of 30 per time interval then we would use A\ = 30.

States

To develop a next-event simulation model of this system at the specification level, the
following notation is used.

e The simulation clock (current time) is ¢ and the terminal time is 7.
e At any time ¢t > 0 the current inventory level is [(t).
e At any time ¢ > 0 the amount of inventory on order (if any) is o(t).

In addition to I(t), the new state variable o(t) is necessary to keep track of an inventory
replenishment order that, because of a delivery lag, has not yet arrived. Together, I(t) and
o(t) provide a complete state description of a simple inventory system with delivery lag.
Both [(t) and o(t) are integer-valued. Although ¢ is real-valued, inventory reviews occur
at integer values of ¢ only. The terminal time 7 corresponds to an inventory review time
and so it is integer-valued.

We assume the initial state of the inventory system is [(0) = S, o(0) = 0. That is,
the initial inventory level is S and the inventory replenishment order level is 0. Similarly,
the terminal state is assumed to be I(7) = S, o(7) = 0 with the understanding that the
ordering cost associated with increasing I(t) to S at the end of the simulation (at t = 7,
with no delivery lag) should be included in the accumulated system statistics.

Events

Given that the state of the system is defined by [(¢) and o(t), there are three types of
events that can change the state of the system:

e a demand for an item at time ¢, in which case [(t) will decrease by 1;

e an inventory review at (integer-valued) time ¢, in which case o(t) will increase from 0
to S — [(t) provided [(t) < s, else o(t) will remain 0;

e an arrival of an inventory replenishment order at time ¢, in which case [(¢) will increase
from its current level by o(¢) and then o(t) will decrease to 0.

200 5. Next-Event Simulation

To complete the development of a specification model, the time variables ¢4, t,, and
t, are used to denote the next scheduled time for the three events inventory demand,
inventory review, and inventory arrival, respectively. As in the previous section, oo is used
to denote (schedule) an event that is not possible.

Algorithm 5.2.1 This algorithm is a next-event simulation of a simple inventory sys-
tem with delivery lag. The algorithm presumes the existence of two functions GetLag
and GetDemand that return a random value of delivery lag and the next demand time
respectively.

[=5; /* initialize inventory level */
o = 0; /* initialize amount on order */
t =0.0; /* initialize simulation clock */
tqy = GetDemand(); /* initialize the event list */
t, =t + 1.0; /* initialize the event list */
ta = 00; /* initialize the event list */
while (¢t < 7) {

t = min(ty, t,, tq); /* scan the event list */

if (¢ == tg) { /* process an inventory demand */

l==;
tqy = GetDemand();

}

else if (¢t == t,) { /* process an inventory review */
if (1<) {
o=5-1;
= GetLagQ);
te, =t + 0;
}
t, += 1.0;
}
else { /* process an inventory arrival */
[+= o;
o = 0;
ta = 00;

Program sis3

Program sis3 is an implementation of Algorithm 5.2.1. The event list consists of three
elements t.demand, t.review, and t.arrive corresponding to tg4, t,., and t, respectively.
These are elements of the structure t. Similarly, the two state variables inventory and
order correspond to [(t) and o(t). Also, the time-integrated holding and shortage integrals
are sum.hold and sum.short.

5.2 Next-Event Simulation Examples 201

5.2.2 A MULTI-SERVER SERVICE NODE

As another example of next-event simulation we will now consider a multi-server
service node. The extension of this next-event simulation model to account for immediate
feedback, or finite service node capacity, or a priority queue discipline is left as an exercise.
This example serves three objectives.

e A multi-server service node is one natural generalization of the single-server service
node.

e A multi-server service node has considerable practical and theoretical importance.

e In a next-event simulation model of a multi-server service node, the size of the event
list is dictated by the number of servers and, if this number is large, the data structure
used to represent the event list is important.

Definition 5.2.1 A multi-server service node consists of a single queue, if any, and two
or more servers operating in parallel. At any instant in time, the state of each server will

be either busy or idle and the state of the queue will be either empty or not empty. If at
least one server is idle, the queue must be empty. If the queue is not empty then all the

servers must be busy.
Figure 5.2.2.
G Multi-server

service node

e system diagram.

arrivals —=— departures

SEervers

queue

Jobs arrive at the node, generally at random, seeking service. When service is provided,
generally the time involved is also random. At the completion of service, jobs depart.
The service node operates as follows. As each job arrives, if all servers are busy then the
job enters the queue, else an available server is selected and the job enters service. As
each job departs a server, if the queue is empty then the server becomes idle, else a job is
selected from the queue to enter service at this server. Servers process jobs independently
— they do not “team up” to process jobs more efficiently during periods of light traffic.
This system configuration is popular, for example, at airport baggage check-in, banks, and
roller coasters. Felt ropes or permanent dividers are often used to herd customers into
queues. One advantage to this configuration is that it is impossible to get stuck behind a
customer with an unusually long service time.

202 5. Next-Event Simulation

As in the single-server service node model, control of the queue is determined by the
queue discipline — the algorithm used when a job is selected from the queue to enter
service (see Section 1.2). The queue discipline is typically FIFO.

Server Selection Rule

Definition 5.2.2 A job may arrive to find two or more servers idle. In this case, the
algorithm used to select an idle server is called the server selection rule.

There are several possible server selection rules. Of those listed below, the random,
cyclic, and equity server selection rules are designed to achieve an equal utilization of all
servers. With the other two server selection rules, typically some servers will be more
heavily utilized than others.

e Random selection — select at random from the idle servers.
e Selection in order — select server 1 if idle, else select server 2 if idle, etc.

e Cyclic selection — select the first available server beginning with the successor (a
circular search, if needed) of the last server engaged.

e Equity selection — select the server that has been idle longest or the idle server whose
utilization is lowest.*

e Priority selection — choose the “best” idle server. This will require a specification
from the modeler as how “best” is determined.

For the purposes of mathematical analysis, multi-server service nodes are frequently
assumed to have statistically identical, independent servers. In this case, the server selec-
tion rule has no effect on the average performance of the service node. That is, although
the utilization of the individual servers can be affected by the server selection rule, if the
servers are statistically identical and independent, then the net utilization of the node is
not affected by the server selection rule. Statistically identical servers are a convenient
mathematical fiction; in a discrete-event simulation environment, if it is not appropriate
then there is no need to assume that the service times are statistically identical.

States

In the queuing theory literature, the parallel servers in a multi-server service node are
commonly called service channels. In the discussion that follows,

e the positive integer ¢ will denote the number of servers (channels);

e the server index will be s =1,2,...,c.

* There is an ambiguity in this server selection rule in that idle time can be measured
from the most recent departure or from the beginning of the simulation. The modeler
must specify which metric is appropriate.

5.2 Next-Event Simulation Examples 203

As for a single-server node, the state variable [(¢) denotes the number of jobs in the service
node at time ¢. For a multi-server node with distinct servers this single state variable
does not provide a complete state description. If [(¢) > ¢, then all servers are busy and
q(t) = I(t) — c jobs are in the queue. If [(t) < ¢, however, then for a complete state
description we need to know which servers are busy and which are idle. Therefore, for
s=1,2,...,c define

zs(t) : the number of jobs in service (0 or 1) by server s at time t,

or, equivalently, x4(t) is the state of server s at time ¢ (with 0 denoting idle and 1 denoting
busy). Finally, observe that

q(t) = 1(t) = Y xs(t),

that is, the number of jobs in the queue at time ¢ is the number of jobs in the service at
time ¢ minus the number of busy servers at time ¢.

Events

The c+1 state variables [(t), z1(t), x2(t), . . ., z.(t) provide a complete state description
of a multi-server service node. With a complete state description in hand we then ask what
types of events can cause the state variables to change. The answer is that if the servers
are distinct then there are ¢ 4+ 1 event types — either an arrival to the service node or
completion of service by one of the ¢ servers. If an arrival occurs at time ¢, then [(¢) is
incremented by 1. Then, if [(#) < c an idle server s is selected and the job enters service at
server s (and the appropriate completion of service is scheduled), else all servers are busy
and the job enters the queue. If a completion of service by server s occurs at time ¢t then
[(t) is decremented by 1. Then, if I(t) > ¢ a job is selected from the queue to enter service
at server s, else server s becomes idle.

The additional assumptions needed to complete the development of the next-event
simulation model at the specification level are consistent with those made for the single-
server model in the previous section.

e The initial state of the multi-server service node is empty and idle. Therefore, the
first event must be an arrival.

e There is a terminal “close the door” time 7 at which point the arrival process is turned
off but the system continues operation until all jobs have been completed. Therefore,
the terminal state of the multi-server node is empty and idle and the last event must
be a completion of service.

e For simplicity, all servers are assumed to be independent and statistically identical.
Moreover, equity selection is assumed to be the server selection rule.

All of these assumptions can be relaxed.

204

Event List

5. Next-Event Simulation

The event list for this next-event simulation model can be organized as an array of
¢+ 1 event types indexed from 0 to c as illustrated below for the case ¢ = 4.

0 arrival
Figure 5.2.3.) .
Event list completion of service by server 1
data structure 2 completion of service by server 2

for multi-server
service node.

completion of service by server 3

ct [t | ct | |t

X completion of service by server 4

The t field in each event structure is the scheduled time of next occurrence for that event;
the x field is the current activity status of the event. The status field is used in this data
structure as a superior alternative to the co “impossibility flag” used in the model on which
programs ssq3 and sis3 are based. For the 0" event type, x denotes whether the arrival
process is on (1) or off (0). For the other event types, x denotes whether the corresponding
server is busy (1) or idle (0).

An array data structure is appropriate for the event list because the size of the event
list cannot exceed ¢ + 1. If ¢ is large, however, it is preferable to use a variable-length
data structure like, for example, a linked-list containing events sorted by time so that the
next (most imminent) event is always at the head of the list. Moreover, in this case the
event list should be partitioned into busy (event[e].x = 1) and idle (event[e].x = 0)
sublists. This idea is discussed in more detail in the next section.

Program msq

Program msq is an implementation of the next-event multi-server service node simu-
lation model we have just developed.

e The state variable [(¢) is number.

e The state variables x1(t), z2(t),...,z.(t) are incorporated into the event list.

e The time-integrated statistic fot 1(0) df is area.

e The array named sum contains structures that are used to record, for each server, the
sum of service times and the number served.

e The function NextEvent is used to search the event list to determine the index e of
the next event.

e The function FindOne is used to search the event list to determine the index s of the
available server that has been idle longest (because an equity selection server selection
rule is used).

5.2 Next-Event Simulation Examples 205
5.2.3 EXERCISES

Exercise 5.2.1 Use program ddh in conjunction with program sis3 to construct a
discrete-data histogram of the total demand per time interval. (Use 10000 time intervals.)
(a) Compare the result with the corresponding histogram for program sis2. (b) Comment
on the difference.

Exercise 5.2.2% (a) Modify program sis3 to account for a Uniform(0.5, 2.0) delivery
lag. Assume that if an order is placed at time ¢ and if o(f) > 0 then the amount ordered
will be S —I(t) — o(t). (b) Discuss why you think your program is correct.

Exercise 5.2.3 Modify program sis3 so that the inventory review is no longer periodic
but, instead, occurs after each demand instance. (This is transaction reporting — see
Section 1.3.) Assume that when an order is placed, further review is stopped until the
order arrives. This avoids the sequence of orders that otherwise would occur during the
delivery lag. What impact does this modification have on the system statistics? Conjecture
first, then simulate using STOP equal to 10000.0 to estimate steady-state statistics.

Exercise 5.2.4 (a) Relative to program msq, provide a mathematical justification for
the technique used to compute the average delay and the average number in the queue.
(b) Does this technique require that the service node be idle at the beginning and end of
the simulation for the computation of these statistics to be exact?

Exercise 5.2.5 (a) Implement a “selection in order” server selection rule for program
msq and compute the statistics. (b) What impact does this have on the system performance
statistics?

Exercise 5.2.6 Modify program msq so that the stopping criteria is based on “closing
the door” after a fixed number of jobs have entered the service node.

Exercise 5.2.7 Modify program msq to allow for feedback with probability 5. What
statistics are produced if # = 0.17 (a) At what value of 5 does the multi-server service
node saturate? (b) Provide a mathematical justification for why saturation occurs at this
value of 3.

Exercise 5.2.9 Modify program msq to allow for a finite capacity of r jobs in the node
at one time. (a) Draw a histogram of the time between lost jobs at the node. (b) Comment
on the shape of this histogram.

Exercise 5.2.10 Write a next-event simulation program that estimates the average time
to complete the stochastic activity network given in Section 2.4. Compute the mean and
variance of the time to complete the network.

206 5.3 Event List Management

The next-event simulation models for the single-server service node and the simple
inventory system from the previous two sections have such short event lists (two events
for the single-server service node and three events for the simple inventory system) that
their management does not require any special consideration. There are next-event simu-
lations, however, that may have hundreds or even thousands of events on their event list
simultaneously, and the efficient management of this list is crucial. The material in this
section is based on a tutorial by Henriksen (1983) and Chapter 5 of Fishman (2001).

Although the discussion in this section is limited to managing event lists, practically
all of the discussion applies equally well, for example, to the management of jobs in a single-
server service node. A FIFO or LIFO queue discipline results in a trivial management of
the jobs in the queue: jobs arriving when the server is busy are simply added to the tail
(FIFO) or head (LIFO) of the queue. A “shortest processing time first” queue discipline
(which is commonly advocated for minimizing the wait time in job shops), on the other
hand, requires special data structures and algorithms to efficiently insert jobs into the
queue and delete jobs from the queue.

5.3.1 INTRODUCTION

An event list is the data structure that contains a list of the events that are scheduled
to occur in the future, along with any ancillary information associated with these events.
The list is traditionally sorted by the scheduled time of occurrence, but, as indicated in
the first example in this section, this is not a requirement. The event list is also known
as the calendar, future events chain, sequencing set, future event set, etc. The elements
that comprise an event list are known as future events, events, event notices, transactions,
records, etc. We will use the term event notice to describe these elements.

Why is efficient management of the event notices on the event list so important that
it warrants an entire section? Many next-event simulation models expend more CPU time
on managing the event list than on any other aspect (e.g., random number generation, ran-
dom variate generation, processing events, miscellaneous arithmetic operations, printing
reports) of the simulation.

Next-event simulations that require event list management can be broken into four
categories according to these two boolean classifications:

e There is a either a fired maximum or a variable maximum number of event notices on
the event list. There are clear advantages to having the maximum number of events
fixed in terms of memory allocation. All of the simulations seen thus far have had a
fixed maximum number of event notices.

e The event list management technique is either being devised for one specific model
or is being developed for a general-purpose simulation language. If the focus is on a
single model, then the scheduling aspects of that model can be exploited for efficiency.
An event list management technique designed for a general-purpose language must be
robust in the sense that it performs reasonably well for a variety of simulation models.

5.3 Event List Management 207

There are two critical operations in the management of the event notices that comprise
the event list. The first is the insertion, or enqueue operation, where an event notice is
placed on the event list. This operation is also referred to as “scheduling” the event. The
second is the deletion, or dequeue operation, where an event notice is removed from the
event list. A deletion operation is performed to process the event (the more common case)
or because a previously scheduled event needs to be canceled for some reason (the rare
case). Insertion and deletion may occur at a prescribed position in the event list, or a
search based on some criteria may need to be initiated first in order to determine the
appropriate position. We will use the term event list management scheme to refer to the
data structures and associated algorithms corresponding to one particular technique of
handling event list insertions and deletions.

Of minor importance is a change operation, where a search for an existing event notice
is followed by a change in some aspect of the event notice, such as changing its scheduled
time of occurrence. Similarly, an examine operation searches for an existing event notice in
order to examine its contents. A count operation is used to determine the number of event
notices in the list. Due to their relative rarity in discrete-event simulation modeling and
their similarity to insertion and deletion in principle, we will henceforth ignore the change,
examine, and count operations and focus solely on the insertion and deletion operations.

5.3.2 EVENT LIST MANAGEMENT CRITERIA

Three criteria that can be used to assess the effectiveness of the data structures and
algorithms for an event list management scheme are:

e Speed. The data structure and associated algorithms for inserting and deleting event
notices should execute in minimal CPU time. Critical to achieving fast execution
times is the efficient searching of the event list. The balance between sophisticated
data structures and algorithms for searching must be weighed against the associated
extraneous overhead calculations (e.g., maintaining pointers for a list or heap opera-
tions) that they require. An effective general-purpose algorithm typically bounds the
number of event notices searched for inserting or deleting.

e Robustness. Efficient event list management should perform well for a wide range
of scheduling scenarios. This is a much easier criteria to achieve if the characteristics
of one particular model can be exploited by the analyst. The designer of an event list
management scheme for a general-purpose language does not have this advantage.

e Adaptability. An effective event list management scheme should be able to adapt
its searching time to account for both the length of the event list and the distribution
of new events that are being scheduled. It is also advantageous for an event list
management scheme to be “parameter-free” in the sense that the user should not be
required to specify parameters that optimize the performance of the scheme. A “black
box” approach to managing an event list is particularly appropriate for a general-
purpose simulation language since users have a variety of sophistication levels.

208 5. Next-Event Simulation

Given these criteria, how do we know whether our event list management scheme is
effective? If this is for a single model, the only way to answer this question is by running
several different schemes on the same model to see which executes the fastest. It is typically
not possible to prove that one particular scheme is superior to all other possible schemes,
since a more clever analyst may exploit more of the structure associated with a specific
model. It is, however, possible to show that one scheme dominates another in terms of
execution time by making several runs with different seeds and comparing execution times.

Testing event list management schemes for a general-purpose language is much more
difficult. In order to compare event list management schemes, one must consider a represen-
tative test-bed of diverse simulation models on which to test various event-list management
schemes. Average and worst-case performance in terms of the CPU time tests the speed,
robustness, and adaptability of various event list management schemes.

5.3.3 EXAMPLE

We consider the computer timesharing model presented in Henriksen (1983) to discuss
event list management schemes. In our usual manner, we start with the conceptual model
before moving to the specification and computational models.

Conceptual Model

Consider a user at a computer timesharing system who endlessly cycles from (1) think-
ing, to (2) typing in a command, to (3) receiving the output from the command. The user
does not take any breaks, never tires, and the workstation never fails. A system diagram
that depicts this behavior is given in Figure 5.3.1.

Figure 5.3.1.
Timeshare
system
diagram.

Think

Type

Receive

This is the first time we have encountered what is known as a “closed” system. The
“open” systems considered previously are the queuing models (jobs arrive, are processed,
then depart) and inventory models (inventory arrives, is purchased, then departs). In the
timesharing model, there is no arrival or departure. The three-step activity loops endlessly.

The times to perform the three operations, measured in seconds, are:
e The time to think requires Uniform(0,10) seconds.

e There are an Fquilikely(5,15) number of keystrokes involved in typing in a command,
and each keystroke requires Uniform(0.15,0.35) seconds.

e The output from the command contains an Equilikely(50,300) number of characters,
each requiring (the ancient rate of) 1/120 second to display at the workstation.

5.3 Event List Management 209

If we were to simulate just one user, this would be a rather trivial model since there
is only one event on the event list: the completion of the next activity (thinking, typing
a keystroke, receiving an output character). To make event list management an issue,
assume that the computer timesharing system consists of n users at n terminals, each
asynchronously cycling through the three-step process of thinking, typing, and receiving.

Many critiques of this model would be valid. Do all of the users really all think
and type at the same rate? Does the distribution of thinking time really “cut-off” at ten
seconds as the Uniform(0, 10) thinking time implies? Are all of the Uniform and Equilikely
distributions appropriate? Why doesn’t the receive rate degrade when several users receive
output simultaneously? Why doesn’t the receiving portion of the system bog down as n
increases? Because the purpose of this model is to illustrate the management of the event
list, we will forgo discussion about the reasonableness and accuracy of the model. The
important topic of developing “input” models that accurately mimic the system of interest
is addressed in Chapter 9.

Back-of-an-Envelope Calculations

Since all of the distributions in this model are either Uniform or FEquilikely, it is
worthwhile to do some preliminary calculations which may provide insight into model
behavior prior to the simulation. The mean of a Uniform or Equilikely random variable
is, not surprisingly, the average of their two parameters. Thus the expected length of each
cycle for each user is:

0410 5415\ (0.15+ 0.35 50 + 300 1 1
) (=) =5410-025+ 175 —
(')+(')(!)+(')(120) 5410-0.25 4+ 175 -

=5+ 2.5+ 1.4583
= 8.9583

seconds. Thus if one were to observe a user at a random instant in time of a system in
steady state, the probabilities that the user will be thinking, typing, and receiving are

5 2.5 1.4583
_ 9% a6 22 ~02 q =2
50583 P00 ggggy T U028 and reees

These fractions apply to individual users, as well as the population of n users. At any
particular point in simulated time, we could expect to see about 56% of the users thinking,
28% typing, and 16% receiving output.

= 0.16.

Although it is clear from this analysis that the largest portion of a user’s simulated
time is spent thinking and the smallest portion of a user’s simulated time is spent receiving,
the opposite is true of the number of scheduled events. Each cycle has exactly one thinking
event, an average of ten keystrokes, and an average of 175 characters received. Thus each
cycle averages 14 10+ 175 = 186 events. The expected fractions of events associated with
thinking, typing a keystroke, and receiving an output character during a cycle are

1 10 175

210 5. Next-Event Simulation

The vast majority of the events scheduled during the simulation will be receiving a char-
acter. This observation will influence the probability distribution of the event times as-
sociated with event notices on the event list. This distribution can be exploited when
designing an event list management scheme.

Specification Model
There are three events that comprise the activity of a user on the timesharing system:
(1) complete thinking time;
(2) complete a keystroke;
(3) complete the display of a character.

For the second two events, some ancillary information must be stored as well: the number
of keystrokes in the command and the number of characters returned from the command.
For all three events, an integer (1 for thinking, 2 for typing and 3 for receiving) is stored
to denote the event type. Ancillary information of this type is often called an “attribute”
in general-purpose simulation languages.

As with most next-event simulation models, the processing of each event triggers the
scheduling of future events. For this particular model, we are fortunate that each event
triggers just one future event to schedule: the next activity for the user whose event is
presently being processed.

Several data structures are capable of storing the event notices for this model. Two
likely candidates are an array and a linked list. For simplicity, an array will be used to
store the event notices. We can use an array here because we know in advance that there
will always be n events on the event list, one event notice for the next activity for each
user. We begin with this very simplistic (and grossly inefficient) data structure for the
event list. We will subsequently refine this data structure, and eventually outline more
sophisticated schemes. We will store the times of the events in an array of length n in an
order associated with the n users, and make a linear search of all elements of the array
whenever the next event to be processed needs to be found. Thus the deletion operation
requires searching all n elements of the event list to find the event with the smallest event
time, while the insertion operation requires no searching since the next event notice for a
particular user simply overwrites the current event notice.

However, there is ancillary information that must be carried with each event notice.
Instead of an array of n times, the event list for this model should be organized as an
array of n event structures. Each event structure consists of three fields: time, type, and
info. The time field in the ith event structure stores the time of the event for the ith
user (i = 0,1, ..., n—1). The type field stores the event type (1, 2, or 3). The info
field stores the ancillary information associated with a keystroke or display of a character
event: the number of keystrokes remaining (for a Type 2 event) or the number of characters
remaining in the output (for a Type 3 event). The info field is not used for a thinking
(Type 1) event since no ancillary information is needed for thinking.

5.3 Event List Management 211

The initialization phase of the next-event simulation model schedules a complete think-
ing time event (Type 1 event) for each of the n users on the system. The choice of beginning
with this event and applying the choice to all users is arbitrary*. After the initialization,
the event list for a system with n = 5 users might look like the one presented in Fig-
ure 5.3.2. Each of the five Uniform(0, 10) completion of thinking event times is placed in
the time field of the corresponding event structure. The value in the time field of the third
structure is the smallest, indicating that the third user will be the first to stop thinking
and begin typing at time 1.305. All five of these events are completion of thinking events,
as indicated by the type field in each event structure.

Figure 5.3.2.
Initial
event list.

time 9.803 3.507 1.305 2.155 8.243
type 1 1 1 1 1
info

0 1 2 3 4

The remainder of the algorithm follows the standard next-event protocol — while the
terminal condition has not been met: (1) scan the event list for the most imminent event,
(2) update the simulation clock accordingly, (3) process the current event, and (4) schedule
the subsequent event by placing the appropriate event notice on the event list.

As the initial event (end of thinking for the third user at time 1.305) is deleted from
the event list and processed, a number of keystrokes [an Equilikely(5,15) random variate
which takes the value of 7 in this case — a slightly shorter than average command| and
a time for the first keystroke [a Uniform(0.15,0.35) random variate which takes the value
of 0.301 in this case — a slightly longer than average keystroke time] are generated. The
time field in the third event structure is incremented by 0.301 to 1.305 + 0.301 = 1.606,
and the number of keystrokes in this command is stored in the corresponding info field.
Subsequent keystrokes for the third user decrement the integer in the corresponding info
field. The condition of the event list after the processing of the first event is shown in
Figure 5.3.3.

time 9.803 3.507 1.606 2.155 8.243 Figure 5.3.3.
type 1 1 2 1 1 Updated
. event list.
info 7

0 1 2 3 4

To complete the development of the specification model, we use the following notation:

e The simulation clock is ¢, which is measured in seconds.

e The simulation terminates when the next scheduled event is 7 seconds or more.

The algorithm is straightforward, as presented in Algorithm 5.3.1.

* All users begin thinking simultaneously at time 0, but will behave more independently
after a few cycles as the timesharing system “warms up.”

212 5. Next-Event Simulation

Algorithm 5.3.1 This algorithm is a next-event simulation of a think-type-receive time-
sharing system with n concurrent users. The algorithm presumes the existence of four
functions GetThinkTime, GetKeystrokeTime, GetNumKeystrokes, and GetNumCharacters
that return the random time to think, time to enter a keystroke, number of keystrokes per
command, and number of characters returned from a command respectively. The function
MinIndex returns the index of the most imminent event notice.

t =0.0; /* initialize system clock */
for (1 = 0; i < n; i++) { /* initialize event list */
event [7] .time = GetThinkTime();
event [7] .type = 1;
¥
while (¢t < 7) { /* check for terminal condition */
j = MinIndex(event.time) ; /* find index of imminent event */
t = event[j].time; /* update system clock */
if (event[j].type == 1) { /* process completion of thinking */
event[j].time = ¢t + GetKeystrokeTime();
event [j] .type = 2;
event[7] .info = GetNumKeystrokes();

}

else if (event[j].type == 2) { /* process completion of keystroke */

event [j] .info--; /* decrement number of keystrokes remaining */

if (event[j].info > 0) /* if more keystrokes remain */
event[j].time = t + GetKeystrokeTime();

else { /* else last keystroke */

t+ 1.0/ 120.0;
event[j].type = 3;

event [j].time

event[j].info = GetNumCharacters();
}
}
else if (event[j].type == 3) { /* process complete character rcvd */
event [j] .info--; /* decrement number of characters remaining */
if (event[j].info > 0) /* if more characters remain */
event[j].time = ¢t + 1.0 / 120.0;
else { /* else last character */

t + GetThinkTime();
event [j].type = 1;

event [j].time

1
}
}

5.3 Event List Management 213

Program ttr

The think-type-receive specification model has been implemented in program ttr,
which prints the total number of events scheduled and the average number of event notices
searched for each deletion. For each value of n in the table below, the simulation was run
three times with seeds 123456789, 987654321, and 555555555 for 7 = 100 seconds, and the
averages of the three runs are reported.

number of expected number of average number of average number of

users n events scheduled events scheduled event notices searched
5 10381 9902 5
10 20763 20678 10
50 103814 101 669 50
100 207628 201949 100

The column headed “expected number of events scheduled” is determined as follows. Since
the average length of each cycle is 8.9583 seconds, each user will go through an average of
10~ 4996

8.9583
cycles in 7 = 100 seconds. Since the average number of events per cycle is 186, we expect
to see
(11.16) - (186) - n = 2076.3n

total events scheduled during the simulation. These values are reported in the second
column of the table. The averages in the table from the three simulations are slightly
lower than the expected values due to our arbitrary decision to begin each cycle thinking,
the longest event. In terms of event list management, each deletion event (required to
find the next event notice) requires an exhaustive search of the time field in all n event
structures, so the average number of event notices searched for each deletion is simply n.
The simplistic event list management scheme used here sets the stage for more sophisticated
schemes.

5.3.4 AN IMPROVED EVENT LIST MANAGEMENT SCHEME

Our decision in the previous example to store event times unordered is a departure
from the traditional convention in simulation languages, which is to order the event notices
on the event list in ascending order of event times, i.e., the event list is maintained in
chronological order. If we now switch to an ordered event list, a deletion requires no
searching and an insertion requires a search — just the opposite situation from the previous
event list management scheme. This will be a wash time-wise for the think-type-receive
model, since there is deletion for every insertion during the simulation. Every deletion
associated with the scheduling of an event pulls the first event notice from the head of the
list. This section is focused, therefore, on efficient algorithms for inserting event notices
into the event list.

214 5. Next-Event Simulation

There is good and bad news associated with the move to an event list that is ordered
by ascending event time. The good news is that the entire event list need not necessarily
be searched exhaustively every time an insertion operation is conducted. The bad news,
however, is that arrays are no longer a natural choice for the data structure due to the
overhead associated with shuffling event notices down the array when an event notice is
placed at the beginning or middle of the list. A singly- or doubly-linked list is a preferred
data structure due to its ability to easily insert items in the middle of the list. The
overhead of maintaining pointers, however, dilutes the benefit of moving to an event list
that is ordered by ascending event time. Also, direct access to the array is lost and time-
consuming element-by-element searches through the linked list are required.

A secondary benefit associated with switching to linked lists is that the maximum
size of the list need not be specified in advance. This is of no consequence in our think-
type-receive model since there are always n events in the event list. In a general-purpose
discrete-event simulation language, however, linked lists expand until memory is exhausted.

Example 5.3.1 For the think-type-receive model with n = 5, for example, a singly-
linked list, linked from head (top) to tail (bottom), to store the elements of the event list
corresponding to Figure 5.3.3 is shown in Figure 5.3.4. The three values stored on each
event notice are the event time, event type, and ancillary information (seven keystrokes
remaining in a command for the first element in the list). The event notices are ordered by
event time. A deletion now involves no search, but a search is required for each insertion.

Figure 5.3.4. 1.606 2.155 3.507 8.243 9.803
Event list as 2 1 1 1 1
a linked list. 7
head next next next next next tail
[[[[[2 [] Tl

One question remains before implementing the new data structure and algorithm for
the search. Should the list be searched from head to tail (top to bottom for a list with
forward pointers) or tail to head (bottom to top for a list with backward pointers)? We
begin by searching from tail to head and check our efficiency gains over the naive event
management scheme presented in the previous subsection. The table below shows that the
average number of events scheduled is identical to the previous event management scheme
(as expected due to the use of identical seeds), and improvements in the average number
of searches per insertion improvements range from 18.8% (n = 100) to 23.4% (n = 5).

number of average number of average number of
users n events scheduled event notices searched
5 9902 3.83
10 20678 8.11
50 101 669 40.55

100 201949 81.19

5.3 Event List Management 215

These results are certainly not stunning. The improvement in search time is slight.
What went wrong? The problem here is that we ignored our earlier back-of-an envelope
calculations. These calculations indicated that 94.1% of the events in the simulation would
be the receipt of a character, which has a very short inter-event time. Thus we should have
searched the event list from head to tail since these short events are much more likely to
be inserted at or near the top of the list. We re-programmed the search to go from head
to tail, and the results are given in the table below.

number of average number of average number of
users n events scheduled event notices searched
5 9902 1.72
10 20678 2.73
50 101669 10.45
100 201949 19.81

Confirming our calculations, the forward search performs far better than the backward
search.® In this case the savings in terms of the number of searches required over the
exhaustive search ranges from 66% (for n = 5) to 80% (for n = 100).

The think-type-receive model with n = 100 highlights our emphasis on efficient event
list management techniques. Even with the best of the three event list management
schemes employed so far (forward linear search of a singly-linked list, averaging 19.81
searches per insertion), more time is spent on event list management than the rest of
the simulation operations (e.g., random number generation, random variate generation,
processing events) combined!

5.3.5 MORE ADVANCED EVENT LIST MANAGEMENT SCHEMES

The think-type-receive model represents the simplest possible case for event list man-
agement. First, the number of event notices on the event list remains constant throughout
the simulation. Second, the fact that there are frequent short events (e.g., receiving a
character) can be exploited in order to minimize the search time for an insertion using a
forward search.

* An interesting verification of the forward and backward searches can be made in this
case since separate streams of random numbers assures an identical sequencing of events.
For an identical event list of size n, the sum of the number of forward searches and the
number of backward searches equals n for an insertion at the top or bottom of the list. For
an insertion in the middle, however, the sum equals n + 1 for identical lists. Therefore, the
sum of the rightmost columns of the last two tables will always lie between n and n + 1,
which it does in this case. The sums are 5.55, 10.84, 51.00, and 101.00 for n = 5, 10, 50, and
100. The sum tends to n + 1 for large n since it is more likely to have an insertion in the
middle of the list as n grows. Stated another way, when n is large it is a near certainty that
several users will be simultaneously receiving characters when an event notice is placed on
the event list, meaning that the event is unlikely to be placed at the front of the list.

216 5. Next-Event Simulation

We now proceed to a discussion of the general case where (1) the number of event
notices in the event list varies throughout the simulation, (2) the maximum length of
the event list is not known in advance, and (3) the structure of the simulation model is
unknown so it cannot be exploited for optimizing an event list management scheme.

In order to reduce the scope of the discussion, assume that a memory allocation
mechanism exists so that a memory location occupied by a deleted event notice may
be immediately occupied by an event notice that is subsequently inserted into the event
list. When memory space is released as soon as it becomes available in this fashion, the
simulation will fail due to lack of memory only when an insertion is made to an event
list that exhausts the space allocated to the event list. Many general-purpose languages
effectively place all entities (e.g., event notices in the event list, jobs waiting in a queue)
in the simulation in a single partitioned list in order to use memory in the most efficient
manner. Data structures and algorithms associated with the allocation and de-allocation
of memory are detailed in Chapter 5 of Fishman (2001).

The next four subsections briefly outline event list management schemes commonly
used to efficiently insert event notices into an event list and delete event notices from an
event list in a general setting: multiple linked lists, binary search trees, heaps, and hybrid
schemes.

Multiple Linked Lists

One approach to reducing search time associated with insertions and deletions is to
maintain multiple linear lists, each sorted by event time. Let k£ denote the number of
such lists and n denote the number of event notices in all lists at one particular point in
simulated time. Figure 5.3.5 shows k = 2 equal-length, singly-linked lists for n = 10 initial
think times in the think-type-receive model. An insertion can be made into either list.
If the list sizes were not equal, choosing the shortest list minimizes the search time. The
time savings associated with the insertion operation is offset by (1) the overhead associated
with maintaining the multiple lists, and (2) a less efficient deletion operation. A deletion
now requires a search of the top (head) event notices of the k lists, and the event notice
with the smallest event time is deleted.

Figure 5.3.5. 1.305 2.155 3.507 8.243 9.803
Multiple 1 1 1 1 1
linked lists.
head next next next next next tail
[[[[[2 [) —_—0
2.211 2.220 3.020 4.513 9.591
1 1 1 1 1
head next next next next next tail
° ° ° ° ° ° e)

5.3 Event List Management 217

We close the discussion of multiple event lists with three issues that are important for
minimizing CPU time for insertions and deletions:

e The decision of whether to fix the number of lists k£ throughout the simulation or
allow it to vary depends on many factors, including the largest value of n throughout
the simulation, the distribution of the position of insertions in the event list, and how
widely n varies throughout the simulation.

e If the number of lists k is allowed to vary throughout the simulation, the modeler
must determine appropriate thresholds for n where lists are split (as n increases) and
combined (as n decreases).

e The CPU time associated with inserting an event notice, deleting an event notice,
combining lists, and splitting lists as functions of n and k should drive the optimization
of this event list management scheme.

The next two data structures, binary trees and heaps, are well-known data structures.
Rather than developing the data structures and associated operations from scratch, we refer
the reader to Carrano and Prichard (2002) for basic definitions, examples, and applications.
Our discussion of these two data structures here will be rather general in nature.

Binary Trees

We limit our discussion of trees to binary trees. A binary tree consists of n nodes
connected by edges in a hierarchical fashion such that a parent node lies above and is
linked to at most two child nodes. The parent-child relationship generalizes to the ancestor-
descendant relationship in an analogous fashion to a family tree. A subtree in a binary
tree consists of a node, along with all of the associated descendants. The top node in a
binary tree is the only node in the tree without a parent, and is called the root. A node
with no children is called a leaf. The height of a binary tree is the number of nodes on the
longest path from root to leaf. The level of a node is 1 if it is the root or 1 greater than
the level of its parent if it is not the root. A binary tree of height A is full if all nodes at a
level less than h have two children each. Full trees have n = 2" — 1 nodes. A binary tree
of height h is complete if it is full down to level h — 1 and level h is filled from left to right.
A full binary tree of height h = 3 with n = 7 nodes and a complete binary tree of height
h = 4 with n = 12 nodes are displayed in Figure 5.3.6.

Figure 5.3.6.
Full and
complete
binary

trees.

218 5. Next-Event Simulation

Nodes are often associated with a numeric value. In our setting, a node corresponds
to an event notice and the numeric value associated with the node is the event time. A
binary search tree is a binary tree where the value associated with any node is greater
than or equal to every value in its left subtree and less than or equal to every value in its
right subtree. The “or equal to” portions of the previous sentence have been added to the
standard definition of a binary search tree to allow for the possibility of equal event times.

Example 5.3.2 There are many ways to implement a binary tree. Figure 5.3.7 shows
a pointer-based complete binary tree representation of the ten initial events (from Fig-
ure 5.3.5) for a think-type-receive model with n = 10 users, where each user begins with
a Uniform(0,10) thinking activity. Each event notice has three fields (event time, event
type, and event information) and each parent points to its child or children, if any. Every
event time is greater than or equal to every event time in its left subtree and less than
or equal to every event time in its right subtree. Although there are many binary search
tree configurations that could contain these particular event notices, the placement of the
event notices in the complete binary search tree in Figure 5.3.7 is unique.

4.513
1

Figure 5.3.7.
Binary search
tree with pointers

Lo | o]

/

T~

for the ten initial 2.990 9.591
events in the 1 1
think-type-receive

model. RN BHER

2.155 3.507 8.243 9.803
1 1 1
/ K 3K T T
1.305 | | 2.211 3.020
1 1 1
[] ‘ [J [J ‘ [] [J ‘ [J

One advantage to binary search trees for storing event notices is that the “leftmost”
leaf in the tree will always be the most imminent event. This makes a deletion operation
fast, although it may require reconfiguring the tree after the deletion.

5.3 Event List Management 219

Insertions are faster than a linear search of a list due to the decreased number of
comparisons necessary to find the appropriate insertion position. The key decision that
remains for the scheme is whether the binary tree will be maintained as a complete tree
(involving extra overhead associated with insertions and deletions) or allowed to evolve
without the requirement that the tree is complete (which may result in an “imbalanced”
tree whose height increases over time, requiring more comparisons for insertions). Splay
trees, which require frequent rotations to maintain balance, have also performed well.

Heaps

A heap is another data structure for storing event notices in order to minimize inser-
tion and deletion times. In our setting, a heap is a complete binary tree with the following
properties: (1) the event time associated with the root is less than or equal to the event
time associated with each of its children, and (2) the root has heaps as subtrees. Fig-
ure 5.3.8 shows a heap associated with the first ten events in the think-type-receive model.
This heap is not unique.* An obvious advantage to the heap data structure is that the
most imminent event is at the root, making deletions fast. The heap property must be
maintained, however, whenever an insertion or deletion operation is performed.

1.305
1
Figure 5.3.8.
Lo | o] Heap with
pointers for
the ten initial
2.220 2.155 events in the
1 1 think-type-receive
model.
// | \\ / | \\
3.020 4.513 9.803 2.211
1 1 1 1
3K 3K T oTs
8.243 | | 3.507 9.591
1 1 1
[I [} [} ‘ [] [} I []

* If the event notices associated with times 2.220 and 2.211 in Figure 5.3.8, for example,
were interchanged, the heap property would be retained.

220 5. Next-Event Simulation

Hybrid Schemes

The ideal event list management scheme performs well regardless of the size of the
event list. Jones (1986) concludes that when there are fewer than ten event notices on
an event list, a singly-linked list is optimal due to the overhead associated with more
sophisticated schemes. Thus to fully optimize an event list management scheme, it may
be necessary to have thresholds, similar to those that switch a thermostat on and off, that
switch from one set of data structures and algorithms to another based on the number of
events on the list. It is important to avoid switching back and forth too often, however,
since the switch typically requires overhead processing time as well.

If a heap, for example, is used when the event list is long and a singly-linked list is used
when the event list is short, then appropriate thresholds should be determined that will
switch from one scheme to the other. As an illustration, when the number of event notices
shrinks to n = 5 (e.g., n decreases from 6 to 5), the heap is converted to a singly-linked
list. Similarly, when the number of event notices grows to n = 15 (e.g., n increases from
14 to 15), the singly-linked list is converted to a heap.

Henriksen’s algorithm (Henriksen, 1983) provides adaptability to short and long event
lists without alternating data structures based on thresholds. Henriksen’s algorithm uses
a binary search tree and a doubly-linked list simultaneously. This algorithm has been
implemented in several simulation languages, including GPSS, SLX, and SLAM. At the
conceptual level, Henriksen’s algorithm employs two data structures:

e The event list is maintained as a single, linear, doubly-linked list ordered by event
times. The list is augmented by a dummy event notice on the left with a simulated
time of —oo and a dummy event notice on the right with a simulated time of 400 to
allow symmetry of treatment for all real event notices.

e A binary search tree with nodes associated with a subset of the event notices in the
event list, has nodes with the format shown in Figure 5.3.9. Leaf nodes have zeros for
left and right child pointers. The leftmost node in the tree has a zero for a pointer to
the next lower time tree node. This binary search tree is degenerate at the beginning
of the simulation (prior to scheduling initial events).

Figure 5.3.9. Pointer to next lower time tree node

Binary search
tree node
format.

Pointer to left child tree node

Pointer to right child tree node

Event time

Pointer to the event notice

A three-node binary search tree associated with the ten initial events in the think-
type-receive model is given in Figure 5.3.10. The binary search tree is given at the top of
the figure, and the linear doubly-linked list containing the ten initial event notices (plus
the dummy event notices at both ends of the list) is shown at the bottom of the figure.

5.3 Event List Management 221

/.
/.
.\
3.507 Figure 5.3.10.
A Binary search
tree and
. " doubly-linked
0 0 list for
0 0 Henriksen’s
1.305 +00 algorithm.
‘\ '\\
prev prev prev prev tail
° ° =@ = -t =@ |=—08
—00 1.305 four 3.507 four +00
1 other 1 other
event event
head next next notices next notices next
*— = [—f= .. — = —1 = ... — =1 °
dummy real real real real dummy

A deletion is an O(1) operation since the first real event notice in the event list is
the most imminent event. To insert an event notice into the event list, the binary search
tree is traversed in order to find the position of the event in the tree with the smallest
event time greater than the event notice being inserted. A backward linear search of the
doubly-linked event list is initiated at the event notice to the left of the one found in the
binary search tree. This backward linear search continues until either:

e the appropriate insertion position is found in [or fewer searches (Henriksen recom-

mends [= 4), in which case the new event notice is linked into the event list at the
appropriate position, or

the appropriate insertion position is not found in [or fewer searches, in which case a
“pull” operation is attempted. The pull operation begins by examining the pointer to
the event in the binary search tree with the next lower time relative to the one found
previously. If this pointer is non-zero, its pointer is changed to the most recently
examined event notice in the doubly-linked list, i.e., the {th event encountered during
the search, and the search continues for another [event notices as before. If the pointer
is zero, there are no earlier binary tree nodes that can be updated, so the algorithm
adds a new level to the tree. The new level is initialized by setting its leftmost leaf
to point to the dummy notice on the right (event time 400) and setting all other new
leaves to point to the dummy notice on the left (event time —oo). The binary search
tree is again searched as before.

222 5. Next-Event Simulation

Henriksen’s algorithm works quite well at reducing the average search time for an
insertion. Its only drawback seems to be that the maximum search time can be quite long.
Other hybrid event list management schemes may also have promise for reducing CPU
times associated with insertions and deletions (e.g., Brown, 1988).

5.3.6 EXERCISES

Exercise 5.3.1 Modify program ttr so that the initial event for each user is the comple-
tion of the first character received as output, rather than the completion of thinking. Run
the modified programs for n = 5,10, 50, 100, and for initial seeds 123456789, 987654321,
and 555555555. Compare the average number of events for the three simulation runs rel-
ative to the results in Section 5.3.3. Offer an explanation of why the observed average
number of events goes up or down.

Exercise 5.3.2 Modify program ttr to include an event list that is sorted by event time
and is stored in a linked list. Verify the results for a forward search given in Example 5.3.1.

Exercise 5.3.3 Assume that all events (thinking, typing a character, and receiving a
character) in the think-type-receive model have deterministic durations of exactly 1/10
second. Write a paragraph describing an event list management scheme that requires no
searching. Include the reason(s) that no searching is required.

Exercise 5.3.4 Assume that all events (thinking, typing a character, and receiving a
character) in the think-type-receive model have Uniform(0.4,0.6) second durations. If
you use a doubly-linked list data structure to store the event list with events stored in
chronological order, would it be wiser to begin an insertion operation with a search starting
at the top (head) of the list or the bottom (tail) of the list? Justify your answer.

Exercise 5.3.5% Assume that all events (thinking, typing a character, and receiving
a character) in the think-type-receive model have Ezponential(0.5) second durations. If
you use a doubly-linked list data structure to store the event list with events stored in
chronological order, would it be wiser to begin an insertion operation with a search starting
at the top (head) of the list or the bottom (tail) of the list? Justify your answer.

Exercise 5.3.6 The verification process from Algorithm 1.1.1 involves checking whether
a simulation model is working as expected. Program ttr prints the contents of the event
list when the simulation reaches its terminal condition. What verification technique could
be applied to this output to see if the program is executing as intended.

Exercise 5.3.7 The verification process from Algorithm 1.1.1 involves checking whether
a simulation model is working as expected. Give a verification technique for comparing
the think-type-receive model with (a) an unsorted event list with an exhaustive search for
a deletion, and (b) an event list which is sorted by event time with a backward search for
an insertion.

