
3.1 Discrete-Event Simulation 101

As discussed in Chapter 1, ssq1 and sis1 are examples of trace-driven discrete-
event simulation programs. By definition, a trace-driven simulation relies on input data
from an external source to supply recorded realizations of naturally occurring stochastic
processes. Total reliance on such external data limits the applicability of a discrete-event
simulation program, naturally inhibiting the user’s ability to do “what if” studies. Given
this limitation, a general discrete-event simulation objective is to develop methods for using
a random number generator to convert a trace-driven discrete-event simulation program to
a discrete-event simulation program that is not dependent on external data. This chapter
provides several examples.

3.1.1 SINGLE-SERVER SERVICE NODE

Relative to the single-server service node model from Chapter 1, two stochastic as-
sumptions are needed to free program ssq1 from its reliance on external data. One as-
sumption relates to the arrival times, the other assumption relates to the service times.
We consider the service times first, using a Uniform(a, b) random variate model.

Example 3.1.1 Suppose that time is measured in minutes in a single-server service
node model and all that is known about the service time is that it is random with possible
values between 1.0 and 2.0. That is, although we know the range of possible values, we
are otherwise in such a state of ignorance about the stochastic behavior of this server that
we are unwilling to say some service times (between 1.0 and 2.0) are more likely than
others. In this case we have modeled service time as a Uniform(1.0, 2.0) random variable.
Accordingly, random variate service times, say s, can be generated via the assignment

s = Uniform(1.0, 2.0);

Exponential Random Variates

A Uniform(a, b) random variable has the property that all values between a and b
are equally likely. In most applications this is an unrealistic assumption; instead, some
values will be more likely than others. Specifically, there are many discrete-event simulation
applications that require a continuous random variate, say x, that can take on any positive
value but in such a way that small values of x are more likely than large values.

To generate such a random variate we need a nonlinear transformation that maps
values of the random number u between 0.0 and 1.0 to values of x between 0.0 and ∞
and does so by “stretching” large values of u much more so than small values. Although a
variety of such nonlinear transformation are possible, for example x = u/(1 − u), perhaps
the most common is x = −µ ln(1 − u) where µ > 0 is a parameter that controls the rate
of stretching and ln(·) is the natural logarithm (base e).* As explained in Chapter 7, this
transformation generates what is known as an Exponential(µ) random variate.

* The function log(x) in the ANSI C library <math.h> represents the mathematical
natural log function ln(x). In the equation x = −µ ln(1 − u) do not confuse the positive,
real-valued parameter µ with the Uniform(0, 1) random variate u.

102 3. Discrete-Event Simulation

It is often appropriate to generate interarrivals as Exponential(µ) random variates, as
we will do later in Example 3.1.2. In some important theoretical situations, service times
are also modeled this way (see Section 8.5). The geometry associated with the Exponen-
tial(µ) random variate transformation x = −µ ln(1 − u) is illustrated in Figure 3.1.1.

0.0 u 1.0

0.0

x

x = −µ ln(1 − u)

...................
.................

.................
................

...............
..............
..............
.............
............
............
............
...........
...........
..........
..........
..........
..........
.........
.........
.........
.........
.........
.........
.........
.........
........
........
........
........
........
........
.........
.......

Figure 3.1.1.
Exponential variate
generation geometry.

By inspection we see that the transformation is monotone increasing and, for any value of
the parameter µ > 0, the interval 0 < u < 1 is mapped one-to-one and onto the interval
0 < x < ∞. That is,

0 < u < 1 ⇐⇒ 0 < (1 − u) < 1
⇐⇒ −∞ < ln(1 − u) < 0
⇐⇒ 0 < −µ ln(1 − u) < ∞
⇐⇒ 0 < x < ∞.

Definition 3.1.1 This ANSI C function generates an Exponential(µ) random variate*

double Exponential(double µ) /* use µ > 0.0 */

{
return (-µ * log(1.0 - Random()));

}

The statistical significance of the parameter µ is that if repeated calls to the function
Exponential(µ) are used to generate a random variate sample x1, x2, . . ., xn then, in
the limit as n → ∞, the sample mean (average) of this sample will converge to µ. In
the same sense, repeated calls to the function Uniform(a, b) will produce a sample whose
mean converges to (a + b)/2 and repeated calls to the function Equilikely(a, b) will also
produce a sample whose mean converges to (a + b)/2.

* The ANSI C standard says that log(0.0) may produce “a range error”. This possi-
bility is naturally avoided in the function Exponential because the largest possible value
of Random is less than 1.0. See Exercise 3.1.3.

3.1 Discrete-Event Simulation 103

Example 3.1.2 In a single-server service node simulation, to generate a sequence of
random variate arrival times a1, a2, a3, . . . , an with an average interarrival time that will
converge to µ as n → ∞ it is common to generate Exponential(µ) interarrival times (see
Definition 1.2.3) and then (with a0 = 0) create the arrival times by the assignment

ai = ai−1 + Exponential(µ); i = 1, 2, 3, . . . , n

As discussed in Chapter 7, this use of an Exponential(µ) random variate corresponds
naturally to the idea of jobs arriving at random with an arrival rate that will converge
to 1/µ as n → ∞. Similarly, as in Example 3.1.1, to generate a random variate sequence
of service times s1, s2, s3, . . . , sn equally likely to lie anywhere between a and b (with
0 ≤ a < b) and with an average service time that converges to (a + b)/2, the assignment

si = Uniform(a, b); i = 1, 2, 3, . . . , n

can be used. The average service time (a + b)/2 corresponds to a service rate of 2/(a + b).

Program ssq2

Program ssq2 is based on the two stochastic modeling assumptions in Example 3.1.2.*
Program ssq2 is an extension of program ssq1 in that the arrival times and service times
are generated randomly (rather than relying on a trace-driven input) and a complete set
of first-order statistics r̄, w̄, d̄, s̄, l̄, q̄, x̄ is generated. Note that each time the function
GetArrival() is called the static variable arrival, which represents an arrival time, is
incremented by a call to the function Exponential(2.0), which generates an interarrival
time.

Because program ssq2 generates stochastic data as needed there is essentially no
restriction on the number of jobs that can be processed. Therefore, the program can
be used to study the steady-state behavior of a single-server service node. That is, by
experimenting with an increasing number of jobs processed, one can investigate whether
or not the service node statistics will converge to constant values, independent of the choice
of the rng initial seed and the initial state of the service node. Steady-state behavior —
can it be achieved and, if so, how many jobs does it take to do so — is an important issue
that will be explored briefly in this chapter and in more detail in Chapter 8.

Program ssq2 can also be used to study the transient behavior of a single-server
service node. The idea in this case is to fix the number of jobs processed at some finite
value and run (replicate) the program repeatedly with the initial state of the service node
fixed, changing only the rng initial seed from run to run. In this case replication will
produce a natural variation in the service node statistics consistent with the fact that for
a fixed number of jobs, the service node statistics are not independent of the initial seed
or the initial state of the service node. Transient behavior, and its relation to steady-state
behavior, will be considered in Chapter 8.

* In the jargon of queuing theory (see Section 8.5), program ssq2 simulates what is
known as an M/G/1 queue (see Kleinrock, 1975, 1976, or Gross and Harris, 1985).

104 3. Discrete-Event Simulation

Steady-State Statistics

Example 3.1.3 If the Exponential(µ) interarrival time parameter is set to µ = 2.0
so that the steady-state arrival rate is 1/µ = 0.5 and if the Uniform(a, b) service time
parameters are set to a = 1.0 and b = 2.0 respectively so that the steady-state service rate
is 2/(a + b) ∼= 0.67, then to d.dd precision the theoretical steady-state statistics generated
from an analytic model (exact, not estimates by simulation) program ssq2 will produce
are (see Gross and Harris, 1985)

r̄ w̄ d̄ s̄ l̄ q̄ x̄
2.00 3.83 2.33 1.50 1.92 1.17 0.75

Therefore, although the server is only busy 75% of the time (x̄ = 0.75), “on average” there
are approximately two jobs (l̄ = 23/12 ∼= 1.92) in the service node and a job can expect to
spend more time (d̄ = 23/6− 3/2 ∼= 2.33 time units) in the queue than in service (s̄ = 1.50
time units). As illustrated in Figure 3.1.2 for the average wait, the number of jobs that
must be pushed through the service node to achieve these steady-state statistics is large.
To produce this figure, program ssq2 was modified to print the accumulated average wait
every 20 jobs. The results are presented for three choices of the rng initial seed.* The
solid, horizontal line at height 23/6 ∼= 3.83 represents the steady-state value of w̄.

0 100 200 300 400 500 600 700 800 900 1000

Number of jobs (n)

0

2

4

6

8

10

w̄

Initial seed
◦ – 12345
� – 54321
∗ – 2121212

◦
◦ ◦ ◦ ◦

◦

◦
◦ ◦

◦ ◦
� � � � � � � � � � � � � �

� �
∗
∗ ∗ ∗ ∗ ∗

∗ ∗

Figure 3.1.2.
Average
wait times.

In Example 3.1.3 convergence of w̄ to the steady-state value 3.83 is slow, erratic, and
very dependent on the random variate sequence of stochastic arrival and service times, as
manifested by the choice of initial seed. Note, for example, the dramatic rise in average wait
beginning at about job 100 associated with the rng initial seed 12345. You are encouraged
to add diagnostic printing and additional statistics gathering to program ssq2 to better
understand what combination of chance events occurred to produce this rise.

The Uniform(a, b) service time model in Example 3.1.3 may not be realistic. Service
times seldom “cut off” beyond a minimum and maximum value. More detail will be given
in subsequent chapters on how to select realistic distributions for input models.

* There is nothing special about these three initial seeds. Do not fall into the common
trap of thinking that some rng initial seeds are necessarily better than others.

3.1 Discrete-Event Simulation 105

Example 3.1.3 shows that the stochastic character of the arrival times and service
times, as manifested by the choice of rng initial seed, has a significant effect on the
transition-to-steady-state behavior of a single-server service node. This example also il-
lustrates the use of the library rng to conduct controlled “what if” experiments. Studies
like this are the stuff of discrete-event simulation. Additional examples of this kind of
experimentation, and the selection of values of µ, a, and b, are presented in later chapters.

Geometric Random Variates

As discussed in Chapter 2, an Equilikely(a, b) random variate is the discrete analog of
a continuous Uniform(a, b) random variate. Consistent with this characterization, one way
to generate an Equilikely(a, b) random variate is to generate a Uniform(a, b + 1) random
variate instead (note that the upper limit is b + 1, not b) and then convert (cast) the
resulting floating-point result to an integer. That is, if a and b are integers with a < b and
if x is a Uniform(a, b + 1) random variate then �x� is an Equilikely(a, b) random variate.

Given the analogy between Uniform(a, b) and Equilikely(a, b) random variates, it is
reasonable to expect that there is a discrete analog to a continuous Exponential(µ) random
variate; and there is. Specifically, if x is an Exponential(µ) random variate, let y be the
discrete random variate defined by y = �x�. For a better understanding of this discrete
random variate, let p = Pr(y �= 0) denote the probability that y is not zero. Since x is
generated as x = −µ ln(1−u) with u a Uniform(0, 1) random variate, y = �x� will not be
zero if and only if x ≥ 1. Equivalently

x ≥ 1 ⇐⇒ −µ ln(1 − u) ≥ 1
⇐⇒ ln(1 − u) ≤ −1/µ

⇐⇒ 1 − u ≤ exp(−1/µ)

where exp(−1/µ) is e−1/µ, and so y �= 0 if and only if 1− u ≤ exp(−1/µ). Like u, 1− u is
also a Uniform(0, 1) random variate. Moreover, for any 0 < p < 1, the condition 1−u ≤ p
is true with probability p (see Section 7.1). Therefore, p = Pr(y �= 0) = exp(−1/µ).

If x is an Exponential(µ) random variate and if y = �x� with p = exp(−1/µ), then it
is conventional to call y a Geometric(p) random variable (see Chapter 6). Moreover, it is
conventional to use p rather than µ = −1/ ln(p) to define y directly by the equation

y = �ln(1 − u)/ ln(p)�.

Definition 3.1.2 This ANSI C function generates a Geometric(p) random variate*

long Geometric(double p) /* use 0.0 < p < 1.0 */

{
return ((long) (log(1.0 - Random()) / log(p)));

}

* Note that log(0.0) is avoided in this function because the largest possible value
returned by Random is less than 1.0.

106 3. Discrete-Event Simulation

In addition to its significance as Pr(y �= 0), the parameter p is also related to the mean
of a Geometric(p) sample. Specifically, if repeated calls to the function Geometric(p) are
used to generate a random variate sample y1, y2, . . . , yn then, in the limit as n → ∞, the
mean of this sample will converge to p/(1−p). Note that if p is close to 0.0 then the mean
will be close to 0.0. At the other extreme, if p is close to 1.0 then the mean will be large.

In the following example, a Geometric(p) random variate is used as part of a composite
service time model. In this example the parameter p has been adjusted to make the average
service time match that of the Uniform(1.0, 2.0) server in program ssq2.

Example 3.1.4 Usually one has sufficient information to argue that a Uniform(a, b)
random variate service time model is not appropriate; instead, a more sophisticated model
is justified. Consider a hypothetical server that, as in program ssq2, processes a stream
of jobs arriving, at random, with a steady-state arrival rate of 0.5 jobs per minute. The
service requirement associated with each arriving job has two stochastic components:

• the number of service tasks is one plus a Geometric(0.9) random variate;

• the time (in minutes) per task is, independently for each task, a Uniform(0.1, 0.2)
random variate.

In this case, program ssq2 would need to be modified by including the function Geometric
from Definition 3.1.2 and changing the function GetService to the following.

double GetService(void)

{
long k;

double sum = 0.0;

long tasks = 1 + Geometric(0.9);

for (k = 0; k < tasks; k++)

sum += Uniform(0.1, 0.2);

return (sum);

}
With this modification, the population steady-state statistics from the analytic model to
d.dd precision that will be produced are:

r̄ w̄ d̄ s̄ l̄ q̄ x̄
2.00 5.77 4.27 1.50 2.89 2.14 0.75

Program ssq2 will produce results that converge to these values for a very long run. When
compared with the steady-state results in Example 3.1.3, note that although the arrival rate
1/r̄ = 0.50, the service rate 1/s̄ = 0.67, and the utilization x̄ = 0.75 are the same, the other
four statistics are significantly larger than in Example 3.1.3. This difference illustrates the
sensitivity of the performance measures to the service time distribution. This highlights
the importance of using an accurate service time model. See Exercise 3.1.5.

3.1 Discrete-Event Simulation 107

3.1.2 SIMPLE INVENTORY SYSTEM

Example 3.1.5 In a simple inventory system simulation, to generate a random variate
sequence of demands d1, d2, d3, . . . equally likely to have any integer value between a and
b inclusive and with an average of (a + b)/2 use

di = Equilikely(a, b) i = 1, 2, 3, . . .

Recognize, however, that the previous discussion about Uniform(a, b) service times as an
unrealistic model also applies here in the discrete case. That is, in this application the
modeling assumption that all the demands between a and b are equally likely is probably
unrealistic; some demands should be more likely than others. As an alternative model we
could consider generating the demands as Geometric(p) random variates. In this particular
case, however, a Geometric(p) demand model is probably not very realistic either. In
Chapter 6 we will consider alternative models that are more appropriate.

Program sis2

Program sis2 is based on the Equilikely(a, b) stochastic modeling assumption in Ex-
ample 3.1.5. This program is an extension of program sis1 in that the demands are gen-
erated randomly (rather than relying on a trace-driven input). Consequently, in a manner
analogous to that illustrated in Example 3.1.3, program sis2 can be used to study the
transition-to-steady-state behavior of a simple inventory system.

Example 3.1.6 If the Equilikely(a, b) demand parameters are set to (a, b) = (10, 50) so
that the average demand per time interval is (a + b)/2 = 30, then with (s, S) = (20, 80)
the (approximate) steady-state statistics program sis2 will produce are

d̄ ō ū l̄+ l̄−

30.00 30.00 0.39 42.86 0.26

As illustrated in Figure 3.1.3 (using the same three rng initial seeds used in Example 3.1.3)
for the average inventory level l̄ = l̄+ − l̄−, at least several hundred time intervals must be
simulated to approximate these steady-state statistics. To produce Figure 3.1.3, program
sis2 was modified to print the accumulated value of l̄ every 5 time intervals.

0 20 40 60 80 100 120 140 160 180 200

Number of time intervals (n)

35

40

45

50

55

l̄

Initial seed
◦ – 12345
� – 54321
∗ – 2121212

◦
◦

◦ ◦
◦ ◦ ◦

◦ ◦

�

�

� �
∗

∗
∗

∗
∗ ∗

Figure 3.1.3.
Average

inventory
level.

108 3. Discrete-Event Simulation

Optimal Steady-State System Performance

Example 3.1.7 As an extension of Example 1.3.7, a modified version of program sis2
was used to simulate n = 100 weeks (about two years) of automobile dealership operation
with S = 80 and values of s varied from 0 to 60. The cost parameters from Example 1.3.5
were used to determine the variable part of the dealership’s average weekly cost of opera-
tion. That is, as discussed in Section 1.3, the (large) part of the average weekly cost that
is proportional to the average weekly order ō, and therefore is independent of (s, S), was
ignored so that only the dependent cost was computed. The results are presented with
◦’s representing the n = 100 averages. As illustrated in Figure 3.1.4, there is a relatively
well-defined minimum with an optimal value of s somewhere between 20 and 30.

0 5 10 15 20 25 30 35 40 45 50 55 60

Inventory parameter (s)

1600

1800

2000

2200

2400

dependent
cost, $

S = 80
◦ – n = 100
• – n = 10000

◦◦◦◦◦
◦◦◦

◦

◦

◦◦

◦◦

◦◦◦◦◦◦◦
◦◦◦◦◦◦◦◦◦◦◦◦◦

◦
◦
◦◦◦

◦◦◦
◦◦

◦◦
◦◦

◦◦◦◦
◦
◦◦◦

◦◦◦◦
◦

•
•
•
•
•
•
•
•
•
••••••••••••••••••••••

•••
•••

••
••

••
••

••
••

••
••

••
••

••
••

Figure 3.1.4.
Dependent
cost for (s, S)
inventory
system.

The same initial seed (12345) was used for each value of s. Fixing the initial seed guarantees
that exactly the same sequence of demands will be processed; therefore, any changes in the
resulting system statistics are due to changes in s only. As in Example 3.1.6, the demands
were generated as Equilikely(10, 50) random variates. To compute steady-state statistics,
all the modeling assumptions upon which this simulation is based would have to remain
valid for many years. For that reason, steady-state statistics are not very meaningful in
this example. Indeed, it is questionable to assume that the demand distribution, cost
parameters, and inventory policy will remain constant for even two years. Steady-state
performance statistics are fashionable, however, and represent an interesting limiting case.
For that reason averages based on n = 10000 weeks of operation (approximately 192
years) are presented as •’s for comparison. These estimated steady-state averages have
the attractive feature that they vary smoothly with s and, because of that, the optimum
steady-state value of s is relatively well defined. In a world that (on average) never changes,
if S = 80 the auto dealer should use an inventory threshold of s = 23. This example
illustrates the more general problem of optimizing a function that is not known with
certainty known as stochastic optimization.

3.1 Discrete-Event Simulation 109

3.1.3 STATISTICAL CONSIDERATIONS

The statistical analysis of simulation-generated data is discussed in Chapters 4 and 8.
In anticipation of that discussion, we note that Example 3.1.7 illustrates two important
ideas: variance reduction and robust estimation. We consider variance reduction first,
particularly as it relates to transient (small n) output statistics.

Variance Reduction

Because the transient statistical output produced by any discrete-event simulation
program depends on the sequence of random variates generated as the program executes,
the output will always have some inherent uncertainty. That is, as illustrated in Exam-
ples 3.1.3 and 3.1.6, the transient statistical output depends on the value of the rng initial
seed, particularly if the number of jobs or the number of simulated time intervals is small.
Therefore, if a variety of initial seeds are used (a policy we certainly advocate) there will
be a natural variance in any computed transient statistic.

The statistical tools used to quantify this variance/uncertainty will be developed in
Chapter 8. For now, the key point to be made is that using common random numbers,
as in Example 3.1.7 when n = 100, is an intuitive approach to reducing the variance in
computed system statistics. This example of variance reduction (using common random
numbers) is consistent with the time-honored approach to experimental scientific “what
if” studies where, if possible, all variables except one are fixed. Fixing the initial seed
at 12345 in Example 3.1.7 isolates the variability of the performance measure (dependent
cost). This technique is more generally known as blocking in statistics.

Robust Estimation

The optimal (minimal cost) estimated steady-state threshold value s = 23 in Exam-
ple 3.1.7 is a robust estimate because other values of s close to 23 yield essentially the same
cost. Therefore, the impact of using one of these alternate values of s in place of s = 23
would be slight. In a more general sense, it is desirable for an optimal value to be robust
to all the assumptions upon which the discrete-event simulation model is based. Relative
to Example 3.1.7, this means that we would be interested in determining what happens to
the optimal value of s when, for example S is varied about 80, or the average demand (per
week) is varied about 30, or there are delivery lags. The estimate s = 23 is robust only if
it remains close to the minimal cost operating policy level when all these assumptions are
altered. In general, robust estimators are insensitive to model assumptions.

3.1.4 EXERCISES

Exercise 3.1.1 (a) Modify program ssq2 to use Exponential(1.5) service times. (b) Pro-
cess a relatively large number of jobs, say 100 000, and determine what changes this pro-
duces relative to the statistics in Example 3.1.3? (c) Explain (or conjecture) why some
statistics change and others do not.

110 3. Discrete-Event Simulation

Exercise 3.1.2 (a) Relative to the steady-state statistics in Example 3.1.3 and the sta-
tistical equations in Section 1.2, list all of the consistency checks that should be applicable.
(b) Verify that all of these consistency checks are valid.

Exercise 3.1.3 (a) Given that the Lehmer random number generator used in the library
rng has a modulus of 231 − 1, what are the largest and smallest possible numerical values
(as a function of µ) that the function Exponential(µ) can return? (b) Comment on this
relative to the theoretical expectation that an Exponential(µ) random variate can have an
arbitrarily large value and a value arbitrarily close to zero.

Exercise 3.1.4 (a) Conduct a transition-to-steady-state study like that in Example 3.1.3
except for a service time model that is Uniform(1.3, 2.3). Be specific about the number
of jobs that seem to be required to produce steady-state statistics. (b) Comment.

Exercise 3.1.5 (a) Verify that the mean service time in Example 3.1.4 is 1.5. (b) Verify
that the steady-state statistics in Example 3.1.4 seem to be correct. (c) Note that the
arrival rate, service rate, and utilization are the same as those in Example 3.1.3, yet all
the other statistics are larger than those in Example 3.1.3. Explain (or conjecture) why
this is so. Be specific.

Exercise 3.1.6 (a) Modify program sis2 to compute data like that in Example 3.1.7.
Use the functions PutSeed and GetSeed from the library rng in such a way that one
initial seed is supplied by the system clock, printed as part of the program’s output and
used automatically to generate the same demand sequence for all values of s. (b) For s =
15, 16, . . . , 35 create a figure (or table) similar to the one in Example 3.1.7. (c) Comment.

Exercise 3.1.7 (a) Relative to Example 3.1.5, if instead the random variate sequence
of demands are generated as

di = Equilikely(5, 25) + Equilikely(5, 25) i = 1, 2, 3, . . .

then, when compared with those in Example 3.1.6, demonstrate that some of the steady-
state statistics will be the same and others will not. (b) Explain why this is so.

Exercise 3.1.8a Modify program sis2 to simulate the operation of a simple inventory
system with a delivery lag. (a) Specifically, assume that if an order is placed at time
t = i − 1 then the order will arrive at the later time t = i − 1 + δi where the delivery lag
δi is a Uniform(0, 1) random variate, independent of the size of the order. (b) What are
the equations for l̄+i and l̄−i ? (c) Using the same parameter values as in Example 3.1.7,
determine that value of s for which the average dependent cost is least. Compare this
result with that obtained in Example 3.1.7. (d) It is important to have the same sequence
of demands for all values of s, with and without a lag. Why? How did you accomplish
this? (e) Discuss what you did to convince yourself that the modification is correct.
(f) For both n = 100 and n = 10000 produce a table of dependent costs corresponding to
s = 10, 20, 30, 40, 50, 60.

3.2 Multi-Stream Lehmer Random Number Generators 111

A typical discrete-event simulation model will have many stochastic components.
When this model is implemented at the computational level, the statistical analysis of
system performance is often facilitated by having a unique source of randomness for each
stochastic component. Although it may seem that the best way to meet this need for
multiple sources of randomness is to create multiple random number generators, there is
a simpler and better approach — use one random number generator to generate multiple
“streams” of random numbers using multiple initial seeds as entry points, one for each
stochastic system component. Consistent with this approach, in this section we extend
the Lehmer random number generation algorithm from Chapter 2 by adding the ability to
partition the generator’s output sequence into multiple subsequences (streams).

3.2.1 STREAMS

The library rng provides a way to partition the random number generator’s output
into multiple streams by establishing multiple states for the generator, one for each stream.
As illustrated by the following example, the function PutSeed can be used to set the state
of the generator with the current state of the stream before generating a random variate
appropriate to the corresponding stochastic component and the function GetSeed can be
used to retrieve the revised state of the stream after the random variate has been generated.

Example 3.2.1 The program ssq2 has two stochastic components, the arrival process
and the service process, represented by the functions GetArrival and GetService respec-
tively. To create a different stream of random numbers for each component, it is sufficient
to allocate a different Lehmer generator state variable to each function. This is illustrated
by modifying GetService from its original form in ssq2, which is

double GetService(void) /* original form */

{
return (Uniform(1.0, 2.0));

}
to the multi-stream form indicated which uses the static variable x to represent the current
state of the service process stream, initialized to 123456789.

double GetService(void) /* multi-stream form */

{
double s;

static long x = 123456789; /* use your favorite initial seed */

PutSeed(x); /* set the state of the generator */

s = Uniform(1.0, 2.0);

GetSeed(&x); /* save the new generator state */

return (s);

}

112 3. Discrete-Event Simulation

Example 3.2.2 As in the previous example, the function GetArrival should be modified
similarly, with a corresponding static variable to represent the current state of the arrival
process stream, but initialized to a different value. That is, the original form of GetArrival
in program ssq2

double GetArrival(void) /* original form */

{
static double arrival = START;

arrival += Exponential(2.0);

return (arrival);

}
should be modified to something like

double GetArrival(void) /* multi-stream form */

{
static double arrival = START;

static long x = 987654321; /* use an appropriate initial seed */

PutSeed(x); /* set the state of the generator */

arrival += Exponential(2.0);

GetSeed(&x); /* save the new generator state */

return (arrival);

}
As in Example 3.2.1, in the multi-stream form the static variable x represents the current
state of the arrival process stream, initialized in this case to 987654321. Note that there
is nothing magic about this initial state (relative to 123456789) and, indeed, it may not
even be a particularly good choice — more about that point later in this section.

If GetService and GetArrival are modified as in Examples 3.2.1 and 3.2.2, then the
arrival times will be drawn from one stream of random numbers and the service times will
be drawn from another stream. Provided the two streams don’t overlap, in this way the
arrival process and service process will be uncoupled.* As the following example illustrates,
the cost of this uncoupling in terms of execution time is modest.

Example 3.2.3 The parameter LAST in program ssq2 was changed to process 1 000 000
jobs and the execution time to process this many jobs was recorded. (A large number of
jobs was used to get an accurate time comparison.) Program ssq2 was then modified as
in Examples 3.2.1 and 3.2.2 and used to process 1 000 000 jobs, with the execution time
recorded. The increase in execution time was 20%.

* Also, because the scope of the two stream state variables (both are called x) is local
to their corresponding functions, the use of PutSeed in program ssq2 to initialize the
generator can, and should, be eliminated from main.

3.2 Multi-Stream Lehmer Random Number Generators 113

Jump Multipliers

As illustrated in the previous examples, the library rng can be used to support the al-
location of a unique stream of random numbers to each stochastic component in a discrete-
event simulation program. There is, however, a potential problem with this approach —
the assignment of initial seeds. That is, each stream requires a unique initial state that
should be chosen to produce disjoint streams. But, if multiple initial states are picked
at whim there is no convenient way to guarantee that the streams are disjoint; some of
the initial states may be just a few calls to Random away from one another. With this
limitation of the library rng in mind, we now turn to the issue of constructing a random
number generation library called rngs which is a multi-stream version of the library rng.
We begin by recalling two key points from Section 2.1.

• A Lehmer random number generator is defined by the function

g(x) = ax mod m,

where the modulus m is a large prime integer, the full-period multiplier a is modulus
compatible with m, and x ∈ Xm = {1, 2, . . . , m − 1}.

• If x0, x1, x2, . . . is an infinite sequence in Xm generated by g(x) = ax mod m then each
xi is related to x0 by the equation

xi = aix0 mod m i = 1, 2, . . .

The following theorem is the key to creating the library rngs. The proof is left as an
exercise.

Theorem 3.2.1 Given a Lehmer random number generator defined by g(x) = ax mod m
and any integer j with 1 < j < m − 1, the associated jump function is

gj(x) = (aj mod m)x mod m

with the jump multiplier aj mod m. For any x0 ∈ Xm, if the function g(·) generates the
sequence x0, x1, x2, . . . then the jump function gj(·) generates the sequence x0, xj , x2j , . . .

Example 3.2.4 If m = 31, a = 3, and j = 6 then the jump multiplier is

aj mod m = 36 mod 31 = 16.

Starting with x0 = 1 the function g(x) = 3x mod 31 generates the sequence

1, 3, 9, 27, 19, 26, 16, 17, 20, 29, 25, 13, 8, 24, 10, 30, 28, 22, 4, 12, 5, 15, 14, 11, 2, 6, . . .

while the jump function g6(x) = 16x mod 31 generates the sequence of underlined terms

1, 16, 8, 4, 2, . . .

That is, the first sequence is x0, x1, x2, . . . and the second sequence is x0, x6, x12, . . .

114 3. Discrete-Event Simulation

The previous example illustrates that once the jump multiplier aj mod m has been
computed — this is a one-time cost — then the jump function gj(·) provides a mechanism
to jump from x0 to xj to x2j , etc. If j is properly chosen then the jump function can be
used in conjunction with a user supplied initial seed to “plant” additional initial seeds,
each separated one from the next by j calls to Random. In this way disjoint streams can be
automatically created with the initial state of each stream dictated by the choice of just
one initial state.

Example 3.2.5 There are approximately 231 possible values in the full period of our
standard (a, m) = (48271, 231 − 1) Lehmer random number generator. Therefore, if we
wish to maintain 256 = 28 streams of random numbers (the choice of 256 is largely arbi-
trary) it is natural to partition the periodic sequence of possible values into 256 disjoint
subsequences, each of equal length. This is accomplished by finding the largest value of j
less than 231/28 = 223 = 8388608 such that the associated jump multiplier 48271j mod m
is modulus-compatible with m. Because this jump multiplier is modulus-compatible, the
jump function

gj(x) = (48271j mod m)x mod m

can be implemented using Algorithm 2.2.1. This jump function can then be used in
conjunction with one user supplied initial seed to efficiently plant the other 255 additional
initial seeds, each separated one from the next by j ∼= 223 steps.* By planting the additional
seeds this way, the possibility of stream overlap is minimized.

Maximal Modulus-Compatible Jump Multipliers

Definition 3.2.1 Given a Lehmer random number generator with (prime) modulus m,
full-period modulus-compatible multiplier a, and a requirement for s disjoint streams as
widely separated as possible, the maximal jump multiplier is aj mod m where j is the
largest integer less than �m/s� such that aj mod m is modulus compatible with m.

Example 3.2.6 Consistent with Definition 3.2.1 and with (a,m) = (48271, 231 − 1) a
table of maximal modulus-compatible jump multipliers can be constructed for 1024, 512,
256, and 128 streams, as illustrated.

of streams s �m/s� jump size j jump multiplier aj mod m

1024 2097151 2082675 97070
512 4194303 4170283 44857
256 8388607 8367782 22925
128 16777215 16775552 40509

Computation of the corresponding table for a = 16807 (the minimal standard multiplier)
is left as an exercise.

* Because j is less than 231/28, the last planted initial seed will be more than j steps
from the first.

3.2 Multi-Stream Lehmer Random Number Generators 115

Library rngs

The library rngs is an upward-compatible multi-stream replacement for the library
rng. The library rngs can be used as an alternative to rng in any of the programs presented
earlier by replacing

#include "rng.h"

with

#include "rngs.h"

As configured rngs provides for 256 streams, indexed from 0 to 255, with 0 as the default
stream. Although the library is designed so that all streams will be initialized to default
values if necessary, the recommended way to initialize all streams is by using the function
PlantSeeds. Only one stream is active at any time; the other 255 are passive. The function
SelectStream is used to define the active stream. If the default stream is used exclusively,
so that 0 is always the active stream, then the library rngs is functionally equivalent to
the library rng in the sense that rngs will produce exactly the same Random output as rng
(for the same initial seed, of course).

The library rngs provides six functions, the first four of which correspond to analogous
functions in the library rng.

• double Random(void) — This is the Lehmer random number generator used through-
out this book.

• void PutSeed(long x) — This function can be used to set the state of the active
stream.

• void GetSeed(long *x) — This function can be used to get the state of the active
stream.

• void TestRandom(void) — This function can be used to test for a correct implemen-
tation of the library.

• void SelectStream(int s) — This function can be used to define the active stream,
i.e., the stream from which the next random number will come. The active stream
will remain as the source of future random numbers until another active stream is
selected by calling SelectStream with a different stream index s.

• void PlantSeeds(long x) — This function can be used to set the state of all the
streams by “planting” a sequence of states (seeds), one per stream, with all states
dictated by the state of the default stream. The following convention is used to set
the state of the default stream:

if x is positive then x is the state;

if x is negative then the state is obtained from the system clock;

if x is 0 then the state is to be supplied interactively.

116 3. Discrete-Event Simulation

3.2.2 EXAMPLES

The following examples illustrate how to use the library rngs to allocate a separate
stream of random numbers to each stochastic component of a discrete-event simulation
model. We will see additional illustrations of how to use rngs in this and later chapters.
From this point on rngs will be the basic random number generation library used for all
the discrete-event simulation programs in this book.

Example 3.2.7 As a superior alternative to the multi-stream generator approach in
Examples 3.2.1 and 3.2.2, the functions GetArrival and GetService in program ssq2 can
be modified to use the library rngs, as illustrated

double GetArrival(void)

{
static double arrival = START;

SelectStream(0); /* this line is new */

arrival += Exponential(2.0);

return (arrival);

}

double GetService(void)

{
SelectStream(2); /* this line is new */

return (Uniform(1.0, 2.0));

}
The other modification is to include "rngs.h" in place of "rng.h" and use the function
PlantSeeds(123456789) in place of PutSeed(123456789) to initialize the streams.*

If program ssq2 is modified consistent with Example 3.2.7, then the arrival process
will be uncoupled from the service process. That is important because we may want to
study what happens to system performance if, for example, the return in the function
GetService is replaced with

return (Uniform(0.0, 1.5) + Uniform(0.0, 1.5));

Although two calls to Random are now required to generate each service time, this new
service process “sees” exactly the same job arrival sequence as did the old service process.
This kind of uncoupling provides a desirable variance reduction technique when discrete-
event simulation is used to compare the performance of different systems.

* Note that there is nothing magic about the use of rngs stream 0 for the arrival process
and stream 2 for the service process — any two different streams can be used. In particular,
if even more separation between streams is required then, for example, streams 0 and 10
can be used.

3.2 Multi-Stream Lehmer Random Number Generators 117

A Single-Server Service Node With Multiple Job Types

A meaningful extension to the single-server service node model is multiple job types,
each with its own arrival and service process. This model extension is easily accommo-
dated at the conceptual level; each arriving job carries a job type that determines the kind
of service provided when the job enters service. Similarly, provided the queue discipline
is FIFO the model extension is straightforward at the specification level. Therefore, using
program ssq2 as a starting point, we can focus on the model extension at the implementa-
tion level. Moreover, we recognize that to facilitate the use of common random numbers,
the library rngs can be used with a different stream allocated to each of the stochastic
arrival and service processes in the model. The following example is an illustration.

Example 3.2.8 Suppose that there are two job types arriving independently, one with
Exponential(4.0) interarrivals and Uniform(1.0, 3.0) service times and the other with Ex-
ponential(6.0) interarrivals and Uniform(0.0, 4.0) service times. In this case, the arrival
process generator in program ssq2 can be modified as

double GetArrival(int *j) /* j denotes job type */

{
const double mean[2] = {4.0, 6.0};
static double arrival[2] = {START, START};
static int init = 1;

double temp;

if (init) { /* initialize the arrival array */

SelectStream(0);

arrival[0] += Exponential(mean[0]);

SelectStream(1);

arrival[1] += Exponential(mean[1]);

init = 0;

}
if (arrival[0] <= arrival[1])

j = 0; / next arrival is job type 0 */

else

j = 1; / next arrival is job type 1 */

temp = arrival[*j]; /* next arrival time */

SelectStream(*j); /* use stream j for job type j */

arrival[*j] += Exponential(mean[*j]);

return (temp);

}
Note that GetArrival returns the next arrival time and the job type as an index with
value 0 or 1, as appropriate.

118 3. Discrete-Event Simulation

Example 3.2.9 As a continuation of Example 3.2.8, the corresponding service process
generator in program ssq2 can be modified as

double GetService(int j)

{
const double min[2] = {1.0, 0.0};
const double max[2] = {3.0, 4.0};
SelectStream(j + 2); /* use stream j + 2 for job type j */

return (Uniform(min[j], max[j]));

}
Relative to Example 3.2.9, note that the job type index j is used in GetService to

insure that the service time corresponds to the appropriate job type. Also, rngs streams
2 and 3 are allocated to job types 0 and 1 respectively. In this way all four simulated
stochastic processes are uncoupled. Thus, the random variate model corresponding to any
one of these four processes could be changed without altering the generated sequence of
random variates corresponding to the other three processes.

Consistency Checks

Beyond the modifications in Examples 3.2.8 and 3.2.9, some job-type-specific statistics
gathering needs to be added in main to complete the modification of program ssq2 to
accommodate multiple job types. If these modifications are made correctly, with d.dd
precision the steady-state statistics that will be produced are

r̄ w̄ d̄ s̄ l̄ q̄ x̄
2.40 7.92 5.92 2.00 3.30 2.47 0.83

The details are left in Exercise 3.2.4. How do we know these values are correct?

In addition to w̄ = d̄+ s̄ and l̄ = q̄ + x̄, the three following intuitive consistency checks
give us increased confidence in these (estimated) steady-state results:

• Both job types have an average service time of 2.0, so that s̄ should be 2.00. The
corresponding service rate is 0.5.

• The arrival rate of job types 0 and 1 are 1/4 and 1/6 respectively. Intuitively, the net
arrival rate should then be 1/4 + 1/6 = 5/12 which corresponds to r̄ = 12/5 = 2.40.

• The steady-state utilization should be the ratio of the arrival rate to the service rate,
which is (5/12)/(1/2) = 5/6 ∼= 0.83.

3.2.3 EXERCISES

Exercise 3.2.1 (a) Construct the a = 16807 version of the table in Example 3.2.6.
(b) What is the O(·) time complexity of the algorithm you used?

3.2 Multi-Stream Lehmer Random Number Generators 119

Exercise 3.2.2a (a) Prove that if m is prime, 1 ≤ a ≤ m − 1, and a∗ = am−2 mod m
then

a∗a mod m = 1.

Now define
g(x) = ax mod m and g∗(x) = a∗x mod m

for all x ∈ Xm = {1, 2, . . . ,m − 1}. (b) Prove that the functions g(·) and g∗(·) generate
the same sequence of states, except in opposite orders. (c) Comment on the implication of
this relative to full period multipliers. (d) If m = 231 − 1 and a = 48271 what is a∗?

Exercise 3.2.3 Modify program ssq2 as suggested in Example 3.2.7 to create two pro-
grams that differ only in the function GetService. For one of these programs, use the
function as implemented in Example 3.2.7; for the other program, use

double GetService(void)

{
SelectStream(2); /* this line is new */

return (Uniform(0.0, 1.5) + Uniform(0.0, 1.5));

}
(a) For both programs verify that exactly the same average interarrival time is produced
(print the average with d.dddddd precision). Note that the average service time is approx-
imately the same in both cases, as is the utilization, yet the service nodes statistics w̄, d̄,
l̄, and q̄ are different. (b) Why?

Exercise 3.2.4 Modify program ssq2 as suggested in Examples 3.2.8 and 3.2.9.
(a) What proportion of processed jobs are type 0? (b) What are w̄, d̄, s̄, l̄, q̄, and x̄
for each job type? (c) What did you do to convince yourself that your results are valid?
(d) Why are w̄, d̄, and s̄ the same for both job types but l̄, q̄, and x̄ are different?

Exercise 3.2.5 Prove Theorem 3.2.1.

Exercise 3.2.6 Same as Exercise 3.2.3, but using the GetService function in Exam-
ple 3.1.4 instead of the GetService function in Exercise 3.2.3.

Exercise 3.2.7 Suppose there are three job types arriving independently to a single-
server service node. The interarrival times and service times have the following character-
ization

job type interarrival times service times
0 Exponential(4.0) Uniform(0.0, 2.0)
1 Exponential(6.0) Uniform(1.0, 2.0)
2 Exponential(8.0) Uniform(1.0, 5.0)

(a) What is the proportion of processed jobs for each type? (b) What are w̄, d̄, s̄, l̄, q̄, and
x̄ for each job type? (c) What did you do to convince yourself that your results are valid?
(Simulate at least 100 000 processed jobs.)

120 3.3 Discrete-Event Simulation Examples

In this section we will consider three discrete-event system models, each of which is
an extension of a model considered previously. The three models are (i) a single-server
service node with immediate feedback, (ii) a simple inventory system with delivery lag, and
(iii) a single-server machine shop.

3.3.1 SINGLE-SERVER SERVICE NODE WITH IMMEDIATE FEEDBACK

We begin by considering an important extension of the single-server service node
model first introduced in Section 1.2. Consistent with the following definition (based on
Definition 1.2.1) the extension is immediate feedback — the possibility that the service a
job just received was incomplete or otherwise unsatisfactory and, if so, the job feeds back
to once again request service.

Definition 3.3.1 A single-server service node with immediate feedback consists of a
server plus its queue with a feedback mechanism, as illustrated in Figure 3.3.1.

...
.............
..........
.........
.........
........
........
........
........
.........
..........
............

.................
..

...

...
arrival

departurequeue server •
..

feedback

service nodeFigure 3.3.1.
Single-server
service node
with immediate
feedback.

Jobs arrive at the service node, generally at random, seeking service. When service is
provided, the time involved is generally also random. At the completion of service, jobs
either depart the service node (forever) or immediately feed back and once again seek
service. The service node operates as follows: as each job arrives, if the server is busy then
the job enters the queue, else the job immediately enters service; as each job completes
service, either a departure or a feedback occurs, generally at random. When a departure
occurs, if the queue is empty then the server becomes idle, else another job is selected from
the queue to immediately enter service. When a feedback occurs, if the queue is empty
then the job immediately re-enters service, else the job enters the queue, after which one
of the jobs in the queue is selected to immediately enter service. At any instant in time,
the state of the server will either be busy or idle and the state of the queue will be either
empty or not empty. If the server is idle then the queue must be empty; if the queue is
not empty then the server must be busy.

Note the distinction between the two events “completion of service” and “departure”.
If there is no feedback these two events are equivalent; if feedback is possible then it is
important to make a distinction. When the distinction is important, the completion-of-
service event is more fundamental because at the completion of service, either a departure
event or a feedback event then occurs. This kind of “which event comes first” causal
reasoning is important at the conceptual model-building level.

3.3 Discrete-Event Simulation Examples 121

Model Considerations

When feedback occurs we assume that the job joins the queue (if any) consistent with
the queue discipline. For example, if the queue discipline is FIFO then a fed-back job would
receive no priority; it would join the queue at the end, in effect becoming indistinguishable
from an arriving job. Of course, other feedback queue disciplines are possible, the most
common of which involves assigning a priority to jobs that are fed back. If feedback is
possible the default assumption in this book is that a fed-back job will join the queue
consistent with the queue discipline and a new service time will be required, independent
of any prior service provided. Similarly, the default assumption is that the decision to
depart or feed back is random with feedback probability β, as illustrated in Figure 3.3.2.

...
............
..........
.........
........
........
........
........
.........
.........
...........

..............
..

...

...
λ

ν •
...

β

1 − β
Figure 3.3.2.
Single-server
service node

with feedback
probability β.

In addition to β, the other two parameters that characterize the stochastic behavior of a
single-server service node with immediate feedback are the arrival rate λ and the service
rate ν. Consistent with Definition 1.2.5, 1/λ is the average interarrival time and 1/ν is the
average service time.*

As each job completes service, it departs the service node with probability 1 − β or
feeds back with probability β. Consistent with this model, feedback is independent of past
history and so a job may feed back more than once. Indeed, in theory, a job may feed back
arbitrarily many times — see Exercise 3.3.1. Typically β is close to 0.0 indicating that
feedback is a rare event. This is not a universal assumption, however, and so a well written
discrete-event simulation program should accommodate any probability of feedback in the
range 0.0 ≤ β < 1.0. At the computational model-building level, feedback can be modeled
with a boolean-valued function as illustrated.

int GetFeedback(double beta) /* use 0.0 <= beta < 1.0 */

{
SelectStream(2); /* use rngs stream 2 for feedback */

if (Random() < beta)

return (1); /* feedback occurs */

else

return (0); /* no feedback */

}

* The use of the symbol ν to denote the service rate is non-standard. Instead, the usual
convention is to use the symbol µ. See Section 8.5 for more discussion of arrival rates,
service rates, and our justification for the use of ν in place of µ.

122 3. Discrete-Event Simulation

Statistical Considerations

If properly interpreted, the mathematical variables and associated definitions in Sec-
tion 1.2 remain valid if immediate feedback is possible. The interpretation required is that
the index i = 1, 2, 3, . . . counts jobs that enter the service node; once indexed in this way, a
fed-back job is not counted again. Because of this indexing all the job-averaged statistics
defined in Section 1.2 remain valid provided delay times, wait times, and service times are
incremented each time a job is fed back. For example, the average wait is the sum of the
waits experienced by all the jobs that enter the service node divided by the number of
such jobs; each time a job is fed back it contributes an additional wait to the sum of waits,
but it does not cause the number of jobs to be increased. Similarly, the time-averaged
statistics defined in Section 1.2 also remain valid if feedback is possible.

The key feature of immediate feedback is that jobs from outside the system are merged
with jobs from the feedback process. In this way, the (steady-state) request-for-service rate
is larger than λ by the positive additive factor βx̄ν. As illustrated later in Example 3.3.2, if
there is no corresponding increase in service rate this increase in the request-for-service rate
will cause job-averaged and time-averaged statistics to increase from their non-feedback
values. This increase is intuitive — if you are entering a grocery store and the check-
out queues are already long, you certainly do not want to see customers re-entering these
queues because they just realized they were short-changed at check-out or forgot to buy a
gallon of milk.

Note that indexing by arriving jobs will cause the average service time s̄ to increase as
the feedback probability increases. In this case do not confuse s̄ with the reciprocal of the
service rate; 1/ν is the (theoretical) average service time per service request, irrespective
of whether that request is by an arriving job or by a fed back job.

Algorithm and Data Structure Considerations

Example 3.3.1 Consider the following arrival times, service times, and completion times
for the first 9 jobs entering a single-server FIFO service node with immediate feedback.
(For simplicity all times are integers.)

job index : 1 2 3 4 5 · 6 · 7 8 · 9 · · ·
arrival/feedback : 1 3 4 7 10 13 14 15 19 24 26 30 · · ·

service : 9 3 2 4 7 5 6 3 4 6 3 7 · · ·
completion : 10 13 15 19 26 31 37 40 44 50 53 60 · · ·

The bold-face times correspond to jobs that were fed back. For example, the third job
completed service at time 15 and immediately fed back. At the computational level, note
that some algorithm and data structure is necessary to insert fed back jobs into the arrival
stream. That is, an inspection of the yet-to-be-inserted feedback times (15, 26) reveals
that the job fed back at time 15 must be inserted in the arrival stream after job 6 (which
arrived at time 14) and before job 7 (which arrived at time 19).

3.3 Discrete-Event Simulation Examples 123

The reader is encouraged to extend the specification model of a single-server service
node in Section 1.2 to account for immediate feedback. Then, extend this model at the
computational level by starting with program ssq2 and using a different rngs stream for
each stochastic process. Example 3.3.1 provides insight into an algorithmic extension and
associated data structure that can be used to accomplish this.

Example 3.3.2 Program ssq2 was modified to account for immediate feedback. Con-
sistent with the stochastic modeling assumptions in Example 3.1.3, the arrival process
has Exponential(2.0) random variate interarrivals corresponding to a fixed arrival rate of
λ = 0.50, the service process has Uniform(1.0, 2.0) random variate service times corre-
sponding to a fixed service rate of ν ∼= 0.67 and the feedback probability is 0.0 ≤ β ≤ 1.0.
To illustrate the effect of feedback, the modified program was used to simulate the oper-
ation of a single-server service node with nine different values of levels of feedback varied
from β = 0.0 (no feedback) to β = 0.20. In each case 100 000 arrivals were simulated.
Utilization x̄ as a function of β is illustrated on the left-hand-side of Figure 3.3.3; the
average number in the queue q̄ as a function of β is illustrated on the right-hand-side.

0.00 0.05 0.10 0.15 0.20 0.25
0.0

2.0

4.0

6.0

8.0

10.0

q̄

β

• • • • •
•

•

•

•

..
................................

........................
.........................

...................
..............

..............
.............
............
............
...........
.........
.........
.........
.........
.........
.........
..........
........
........
........
........
.........
........
.........
........
........
.........
........
.....

0.00 0.05 0.10 0.15 0.20 0.25
0.5

0.6

0.7

0.8

0.9

1.0

x̄

β

• • • • •
•

•
•

•

......................
......................

....................
.....................

.....................
...................

....................
..................

...................
.................

..................
.................

.................
................

............ Figure 3.3.3.
Utilization

and average
number in
queue as a

function
of β.

As the probability of feedback increases, the utilization increases from the steady-state
value of x̄ = 0.75 when there is no feedback toward the maximum possible value x̄ = 1.0.
If this x̄ versus β figure is extrapolated, it appears that saturation (x̄ = 1.0) is achieved as
β → 0.25.

Flow Balance and Saturation

The observation that saturation occurs as β approaches 0.25 is an important consis-
tency check based on steady-state flow balance considerations. That is, jobs flow into the
service node at the average rate of λ. To remain flow balanced jobs must flow out of the
service node at the same average rate. Because the average rate at which jobs flow out of
the service node is x̄(1 − β)ν, flow balance is achieved when λ = x̄(1 − β)ν. Saturation is
achieved when x̄ = 1; this happens as β → 1 − λ/ν = 0.25. Consistent with saturation,
in Example 3.3.2 we see that the average number in the queue increases dramatically as β
increases, becoming effectively infinite as β → 0.25.

124 3. Discrete-Event Simulation

3.3.2 SIMPLE INVENTORY SYSTEM WITH DELIVERY LAG

The second discrete-event system model we will consider in this section represents an
important extension of the periodic review simple inventory system model first introduced
in Section 1.3. The extension is delivery lag (or lead time) — an inventory replacement
order placed with the supplier will not be delivered immediately; instead, there will be a
lag between the time an order is placed and the time the order is delivered. Unless stated
otherwise, this lag is assumed to be random and independent of the amount ordered.

If there are no delivery lags then a typical inventory time history looks like the one in
Section 1.3, reproduced in Figure 3.3.4 for convenience, with jump discontinuities possible
only at the (integer-valued) times of inventory review.

0 2 4 6 8 10 12
−40

−20

0

s

40

S

80

l(t)

t

...

...

..

...

..

•

•
•

•

•
•

•

•

•

•

•
•

•

•

•

•

•

•

Figure 3.3.4.
Inventory
levels with
no delivery
lags.

If delivery lags are possible, a typical inventory time history would have jump disconti-
nuities at arbitrary times, as illustrated in Figure 3.3.5. (The special-case order at the
terminal time t = 12 is assumed to be delivered with zero lag.)

0 2 4 6 8 10 12
−40

−20

0

s

40

S

80

l(t)

t

..

...

..

...

...

•

•
•

•
•

•

•

•

•

•

•

•

•

•

Figure 3.3.5.
Inventory
levels with
delivery
lags.

Unless stated otherwise, we assume that any order placed at the beginning of a time
interval (at times t = 2, 5, 7, and 10 in this case) will be delivered before the end of the
time interval. With this assumption there is no change in the simple inventory system
model at the specification level (see Algorithm 1.3.1). There is, however, a significant
change in how the system statistics are computed. For those time intervals in which a
delivery lag occurs, the time-averaged holding and shortage integrals in Section 1.3 must
be modified.

3.3 Discrete-Event Simulation Examples 125

Statistical Considerations

As in Section 1.3, li−1 denotes the inventory level at the beginning of the ith time
interval (at t = i−1) and di denotes the amount of demand during this interval. Consistent
with the model in Section 1.3, the demand rate is assumed to be constant between review
times. Given di, li−1, and this assumption, there are two cases to consider.

If li−1 ≥ s then, because no order is placed at t = i − 1, the inventory decreases at
a constant rate throughout the interval with no “jump” in level. The inventory level at
the end of the interval is li−1 − di. In this case, the equations for l̄+i and l̄−i in Section 1.3
remain valid (with li−1 in place of l�i−1.)

If li−1 < s then an order is placed at t = i − 1 which later causes a jump in the
inventory level when the order is delivered. In this case the equations for l̄+i and l̄−i in
Section 1.3 must be modified. That is, if li−1 < s then an order for S− li−1 items is placed
at t = i − 1 and a delivery lag 0 < δi < 1 occurs during which time the inventory level
drops at a constant rate to li−1 − δidi. When the order is delivered at t = i − 1 + δi the
inventory level jumps to S − δidi. During the remainder of the interval the inventory level
drops at the same constant rate to its final level S − di at t = i. All of this is summarized
with the observation that, in this case, the inventory-level time history during the ith time
interval is defined by one vertical and two parallel lines, as illustrated in Figure 3.3.6.*

i − 1 i − 1 + δi i

S

s

0

l(t)
.. S − di

...

li−1

t

S − δidi

li−1 − δidi

.

.

··
··
··
··
··
··
·

··
··
··
··
··
··

··
··
··
··
··
··
·

··
··
··
··
··
··

··
··
··
··
··
··

··
··
··
··
··
··

··
··
··
··
··
··

··
··
··
··
··
·

··
··
··
··
··
··

··
··
··
··
··
·

··
··
··
··
··
·

··
··
··
··
··
·

··
··
··
··
··
·

··
··
··
··
··

··
··
··
··
··
·

··
··
··
··
··

··
··
··
··
··

··
··
··
··
··

··
··
··
··
··

··
··
··
··
·

··
·
·····
·
···
·
········· · · ····

•

•

•

•

| |←−−− lag, δi −−−→

Figure 3.3.6.
Inventory level

during time
interval i

when an order
is placed.

Depending on the location of the four line-segment endpoints indicated by •’s, with each
location measured relative to the line l(t) = 0, either triangular or trapezoidal figures will
be generated. To determine the time-averaged holding level l̄+i and time-averaged shortage
level l̄−i (see Definition 1.3.3), it is necessary to determine the area of each figure. The
details are left as an exercise.

* Note that δidi must be integer-valued.

126 3. Discrete-Event Simulation

Consistency Checks

When system models are extended, it is fundamentally important to verify that the
extended model is consistent with the parent model (the model before extension). This
is usually accomplished by setting system parameters to special values. For example, if
the feedback probability is set to zero an extended computational model that simulates
a single-server service node with feedback reduces to a parent computational model of a
single-server service node without feedback. At the computational level the usual way to
make this kind of consistency check is to compare output system statistics and verify that,
with the extension removed, the output statistics produced by the extended model agree
with the output statistics produced by the parent model. Use of the library rngs facilitates
this kind of comparison. In addition to these “extension removal” consistency checks, it is
also good practice to check for intuitive “small-perturbation” consistency. For example, if
the feedback probability is small, but non-zero, the average number in the queue should
be slightly larger than its feedback-free value. The following example applies this idea to
a simple inventory system model with delivery lag.

Example 3.3.3 For a simple inventory system with delivery lag we adopt the convention
that δi is defined for all i = 1, 2, . . . , n with δi = 0.0 if and only if there is no order placed
at the beginning of the ith time interval (that is, if li−1 ≥ s). If an order is placed then
0.0 < δi < 1.0. With this convention the stochastic time evolution of a simple inventory
system with delivery lag is driven by the two n-point stochastic sequences d1, d2, . . . , dn

and δ1, δ2, . . . , δn. The simple inventory system is lag-free if and only if δi = 0.0 for all
i = 1, 2, . . . , n; if δi > 0.0 for at least one i then the system is not lag-free. Relative to the
five system statistics in Section 1.3, if the inventory parameters (S, s) are fixed then, even
if the delivery lags are small, the following points are valid.

• The average order ō, average demand d̄, and relative frequency of setups ū are exactly
the same whether the system is lag-free or not.

• Compared to the lag-free value, if the system is not lag-free then the time-averaged
holding level l̄+ will decrease.

• Compared to the lag-free value, if the system is not lag-free then the time-averaged
shortage level l̄− will either remain unchanged or it will increase.

At the computational level these three points provide valuable consistency checks for a
simple inventory system discrete-event simulation program.

Delivery Lag

If the statistics-gathering logic in program sis2 is modified to be consistent with the
previous discussion, then the resulting program will provide a computational model of a
simple inventory system with delivery lag. To complete this modification, a stochastic
model of delivery lag is needed. In the absence of information to the contrary, we assume
that each delivery lag is an independent Uniform(0, 1) random variate.

3.3 Discrete-Event Simulation Examples 127

Example 3.3.4 Program sis2 was modified to account for Uniform(0, 1) random variate
delivery lags, independent of the size of the order. As an extension of the automobile
dealership example (Example 3.1.7), this modified program was used to study the effect
of delivery lag. That is, with S = 80 the average weekly cost was computed for a range
of inventory threshold values s between 20 and 60. To avoid clutter only steady-state
cost estimates (based on n = 10 000 time intervals) are illustrated. For comparison, the
corresponding lag-free cost values from Example 3.1.7 are also illustrated in Figure 3.3.7.

0 5 10 15 20 25 30 35 40 45 50 55 60

Inventory parameter (s)

1600

1800

2000

2200

2400

2600

2800

dependent
cost, $

S = 80

with a delivery lag•
•
•••

•
•
•
••••••••••••••••••••••••

••••
•••

••

no delivery lag•
•
•
•
••

••
•
•••••••••••••••••••••••

•••
•••

•••
•••

••
•••

•••
••

••
•••

••
Figure 3.3.7.

Effect of
delivery lag

on dependent
cost.

Figure 3.3.7 shows that the effect of delivery lag is profound; the U-shaped cost-versus-s
curve is shifted up and to the right. Because of this shift the optimum (minimum cost)
value of s is increased by approximately 20 automobiles and the corresponding minimum
weekly cost is increased by almost $200.*

The shift in the U-shaped curve in Example 3.3.4 is consistent with the second and
third points in Example 3.3.3. That is, delivery lags cause l̄+ to decrease and l̄− to increase
(or remain the same). Because the holding cost coefficient is Chold = $25 and the shortage
cost coefficient is Cshort = $700 (see Example 1.3.5), delivery lags will cause holding costs
to decrease a little for all values of s and will cause shortage costs to increase a lot, but
only for small values of s. The shift in the U-shaped curve is the result.

Examples 3.3.2 and 3.3.4 present results corresponding to significant extensions of the
two canonical system models used throughout this book. The reader is strongly encouraged
to work through the details of these extensions at the computational level and reproduce
the results in Examples 3.3.2 and 3.3.4.

* Because of the dramatic shift in the optimum value of s from the lag-free value of
s ∼= 23 to the with-lag value of s ∼= 43, we see that the optimal value of s is not robust
with respect to model assumptions about the delivery lag.

128 3. Discrete-Event Simulation

3.3.3 SINGLE-SERVER MACHINE SHOP

The third discrete-event simulation model considered in this section is a single-server
machine shop. This is a simplified version of the multi-server machine shop model used in
Section 1.1 to illustrate model building at the conceptual, specification, and computational
level (see Example 1.1.1).

A single-server machine shop model is essentially identical to the single-server service
node model first introduced in Section 1.2, except for one important difference. The service
node model is open in the sense that an effectively infinite number of jobs are available to
arrive from “outside” the system and, after service is complete, return to the “outside”. In
contrast, the machine shop model is closed because there are a finite number of machines
(jobs) that are part of the system — as illustrated in Figure 3.3.8, there is no “outside”.

queue ...
............
..........
.........
........
........
........
........
.........
.........
...........

..............
.. server

operational
machines

...

...

Figure 3.3.8.
Single-server
machine shop
system diagram.

In more detail, there is a finite population of statistically identical machines, all of
which are initially in an operational state (so the server is initially idle and the queue
is empty). Over time these machines fail, independently, at which time they enter a
broken state and request repair service at the single-server service node.* Once repaired,
a machine immediately re-enters an operational state and remains in this state until it
fails again. Machines are repaired in the order in which they fail, without interruption.
Correspondingly, the queue discipline is FIFO, non-preemptive and conservative. There is
no feedback.

To make the single-server machine shop model specific, we assume that the service
(repair) time is a Uniform(1.0, 2.0) random variate, that there are M machines, and that
the time a machine spends in the operational state is an Exponential(100.0) random variate.
All times are in hours. Based on 100 000 simulated machine failures, we want to estimate
the steady-state time-averaged number of operational machines and the server utilization
as a function of M .

* Conceptually the machines move along the network arcs indicated, from the opera-
tional pool into and out of service and then back to the operational pool. In practice, the
machines are usually stationary and the server moves to the machines. The time, if any,
for the server to move from one machine to another is part of the service time.

3.3 Discrete-Event Simulation Examples 129

Program ssms

Program ssms simulates the single-server machine shop described in this section. This
program is similar to program ssq2, but with two important differences.

• The library rngs is used to provide an independent source of random numbers to both
the simulated machine failure process and the machine repair process.

• The failure process is defined by the array failure which represents the time of next
failure for each of the M machines.

The time-of-next-failure list (array) is not maintained in sorted order and so it must be
searched completely each time a machine failure is simulated. The efficiency of this O(M)
search could be a problem for large M . Exercise 3.3.7 investigates computational efficiency
improvements associated with an alternative algorithm and associated data structure.

Example 3.3.5 Because the time-averaged number in the service node l̄ represents the
time-averaged number of broken machines, M − l̄ represents the time-averaged number of
operational machines. Program ssms was used to estimate M − l̄ for values of M between
20 and 100, as illustrated in Figure 3.3.9.

0 10 20 30 40 50 60 70 80 90 100

Number of Machines (M)

0
10
20
30
40
50
60
70
80

M − l̄

• • • • • • • • • • • • • • • • •

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

............. Figure 3.3.9.
Time-averaged

number of
operational

machines as a
function of the

number of
machines.

As expected, for small values of M the time-averaged number of operational machines is
essentially M . This is consistent with low server utilization and a correspondingly small
value of l̄. The angled dashed line indicates the ideal situation where all machines are
continuously operational (i.e., l̄ = 0). Also, as expected, for large values of M the time-
averaged number of operational machines is essentially constant, independent of M . This
is consistent with a saturated server (utilization of 1.0) and a correspondingly large value
of l̄. The horizontal dashed line indicates that this saturated-server constant value is
approximately 67.

Distribution Parameters

The parameters used in the distributions in the models presented in this section, e.g.,
µ = 2.0 for the average interarrival time and β = 0.20 for the feedback probability in the
single-server service node with feedback, have been drawn from thin air. This has been
done in order to focus on the simulation modeling and associated algorithms. Chapter 9
on “Input Modeling” focuses on techniques for estimating realistic parameters from data.

130 3. Discrete-Event Simulation

3.3.4 EXERCISES

Exercise 3.3.1 Let β be the probability of feedback and let the integer-valued random
variable X be the number of times a job feeds back. (a) For x = 0, 1, 2, . . . what is Pr(X =
x)? (b) How does this relate to the discussion of acceptance/rejection in Section 2.3?

Exercise 3.3.2a (a) Relative to Example 3.3.2, based on 1 000 000 arrivals, generate a
table of x̄ and q̄ values for β from 0.00 to 0.24 in steps of 0.02. (b) What data structure
did you use and why? (c) Discuss how external arrivals are merged with fed back jobs.

Exercise 3.3.3 For the model of a single-server service node with feedback presented in
this section, there is nothing to prevent a fed-back job from colliding with an arriving job.
Is this a model deficiency that needs to be fixed and, if so, how would you do it?

Exercise 3.3.4a Modify program ssq2 to account for a finite service node capacity.
(a) For capacities of 1, 2, 3, 4, 5, and 6 construct a table of the estimated steady-state
probability of rejection. (b) Also, construct a similar table if the service time distribution is
changed to be Uniform(1.0, 3.0). (c) Comment on how the probability of rejection depends
on the service process. (d) How did you convince yourself these tables are correct?

Exercise 3.3.5a Verify that the results in Example 3.3.4 are correct. Provide a table of
values corresponding to the figure in this example.

Exercise 3.3.6 (a) Relative to Example 3.3.5, construct a figure or table illustrating
how x̄ (utilization) depends on M . (b) If you extrapolate linearly from small values of
M , at what value of M will saturation (x̄ = 1) occur? (c) Can you provide an empirical
argument or equation to justify this value?

Exercise 3.3.7a In program ssms the time-of-next-failure list (array) is not maintained
in sorted order and so the list must be searched completely each time another machine
failure is simulated. As an alternative, implement an algorithm and associated sorted
data structure to determine if a significant improvement in computational efficiency can
be obtained. (You may need to simulate a huge number of machine failures to get an
accurate estimate of computational efficiency improvement.)

Exercise 3.3.8 (a) Relative to Example 3.3.2, compare a FIFO queue discipline with
a priority queue discipline where fed-back jobs go the head of the queue (i.e., re-enter
service immediately). (b) Is the following conjecture true or false: although statistics for
the fed-back jobs change, system statistics do not change?

Exercise 3.3.9a (a) Repeat Exercise 3.3.7 using M = 120 machines, with the time a
machine spends in the operational state increased to an Exponential(200.0) random variate.
(b) Use M = 180 machines with the time spent in the operational increased accordingly.
(c) What does the O(·) computational complexity of your algorithm seem to be?

