
CHAPTER 1

MODELS

The modeling approach in this book is based on the use of a general-purpose
programming language for model implementation at the computational level. The
alternative approach is to use a special-purpose simulation language; for a survey
of several such languages, see Appendix A.
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This chapter presents an introduction to discrete-event simulation, with an emphasis
on model building. The focus in Section 1.1 is on the multiple steps required to construct
a discrete-event simulation model. By design, the discussion in this section is at a high
level of generality, with few details. In contrast, two specific discrete-event system models
are presented in Sections 1.2 and 1.3, with a significant amount of detail. A single-server
queue model is presented in Section 1.2 and a simple inventory system model is presented
in Section 1.3. Both of these models are of fundamental importance because they serve as
a basis for a significant amount of material in later chapters.

Although the material in this chapter also can be found in other modeling and sim-
ulation texts, there is a relatively novel emphasis on model building at the conceptual,
specification and computational levels. Moreover, in Sections 1.2 and 1.3 there is a sig-
nificant amount of notation, terminology, and computational philosophy which extends to
subsequent chapters. For these reasons, this chapter is important to any reader of the
book, even those already familiar with the rudiments of discrete-event simulation.



2 1.1 Introduction

This book is the basis for a first course on discrete-event simulation. That is, the book
provides an introduction to computational and mathematical techniques for modeling, sim-
ulating and analyzing the performance of discrete-event stochastic systems. By definition,
the nature of discrete-event simulation is that one does not actually experiment with or
modify an actual system. Instead, one develops and then works with a discrete-event sim-
ulation model. Consistent with that observation, the emphasis in this first chapter is on
model building.

1.1.1 MODEL CHARACTERIZATION

Briefly, a discrete-event simulation model is both stochastic and dynamic with the
special discrete-event property that the system state variables change value at discrete
times only (see Definition 1.1.1). But what does that mean?

A system model is deterministic or stochastic. A deterministic system model has no
stochastic (random) components. For example, provided the conveyor belt and machine
never fail, a model of a constant velocity conveyor belt feeding parts to a machine with
a constant service time is deterministic. At some level of detail, however, all systems
have some stochastic components; machines fail, people are not robots, service requests
occur at random, etc. An attractive feature of discrete-event simulation is that stochastic
components can be accommodated, usually without a dramatic increase in the complexity
of the system model at the computational level.

A system model is static or dynamic. A static system model is one in which time
is not a significant variable. For example, if three million people play the state lottery
this week, what is the probability that there will be at least one winner? A simulation
program written to answer this question should be based on a static model; when during
the week these three million people place their bets is not significant. If, however, we are
interested in the probability of no winners in the next four weeks, then this model needs
to be dynamic. That is, experience has revealed that each week there are no winners, the
number of players in the following week increases (because the pot grows). When this
happens, a dynamic system model must be used because the probability of at least one
winner will increase as the number of players increases. The passage of time always plays
a significant role in dynamic models.

A dynamic system model is continuous or discrete. Most of the traditional dynamic
systems studied in classical mechanics have state variables that evolve continuously. A
particle moving in a gravitational field, an oscillating pendulum, or a block sliding on an
inclined plane are examples. In each of these cases the motion is characterized by one
or more differential equations which model the continuous time evolution of the system.
In contrast, the kinds of queuing, machine repair and inventory systems studied in this
book are discrete because the state of the system is a piecewise-constant function of time.
For example, the number of jobs in a queuing system is a natural state variable that only
changes value at those discrete times when a job arrives (to be served) or departs (after
being served).
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The characterization of a system model can be summarized by a tree diagram that
starts at the system model root and steps left or right at each of the three levels, as
illustrated in Figure 1.1.1.
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Figure 1.1.1.
System model

taxonomy.

As summarized by Definition 1.1.1, the system model characterized by the right-most
branch of this tree is of primary interest in this book.

Definition 1.1.1 A discrete-event simulation model is defined by three attributes:

• stochastic — at least some of the system state variables are random;

• dynamic — the time evolution of the system state variables is important;

• discrete-event — significant changes in the system state variables are associated with
events that occur at discrete time instances only.

One of the other five branches of the system model tree is of significant, but secondary,
interest in this book. A Monte Carlo simulation model is stochastic and static — at least
some of the system state variables are random, but the time evolution (if any) of the system
state variables is not important. Accordingly, the issue of whether time flows continuously
or discretely is not relevant.

Because of space constraints, the remaining four branches of the system model tree
are not considered. That is, there is no material about deterministic systems, static or
dynamic, or about stochastic dynamic systems that evolve continuously in time.

1.1.2 MODEL DEVELOPMENT

It is naive to think that the process of developing a discrete-event simulation model
can be reduced to a simple sequential algorithm. As an instructional device, however, it is
useful to consider two algorithms that outline, at a high level, how to develop a discrete-
event simulation model (Algorithm 1.1.1) and then conduct a discrete-event simulation
study (Algorithm 1.1.2).
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Algorithm 1.1.1 If done well, a typical discrete-event simulation model will be devel-
oped consistent with the following six steps. Steps (2) through (6) are typically iterated,
perhaps many times, until a (hopefully) valid computational model, a computer program,
has been developed.

(1) Determine the goals and objectives of the analysis once a system of interest has been
identified. These goals and objectives are often phrased as simple Boolean decisions
(e.g., should an additional queuing network service node be added) or numeric de-
cisions (e.g., how many parallel servers are necessary to provide satisfactory perfor-
mance in a multi-server queuing system). Without specific goals and objectives, the
remaining steps lack meaning.

(2) Build a conceptual model of the system based on (1). What are the state variables, how
are they interrelated and to what extent are they dynamic? How comprehensive should
the model be? Which state variables are important; which have such a negligible effect
that they can be ignored? This is an intellectually challenging but rewarding activity
that should not be avoided just because it is hard to do.

(3) Convert the conceptual model into a specification model. If this step is done well, the
remaining steps are made much easier. If instead this step is done poorly (or not at
all) the remaining steps are probably a waste of time. This step typically involves
collecting and statistically analyzing data to provide the input models that drive the
simulation. In the absence of such data, the input models must be constructed in an
ad hoc manner using stochastic models believed to be representative.

(4) Turn the specification model into a computational model, a computer program. At this
point, a fundamental choice must be made — to use a general-purpose programming
language or a special-purpose simulation language. For some this is a religious issue
not subject to rational debate.

(5) Verify. As with all computer programs, the computational model should be consistent
with the specification model — did we implement the computational model correctly?
This verification step is not the same as the next step.

(6) Validate. Is the computational model consistent with the system being analyzed — did
we build the right model? Because the purpose of simulation is insight, some (including
the authors) would argue that the act of developing the discrete-event simulation
model — steps (2), (3), and (4) — is frequently as important as the tangible product.
However, given the blind faith many people place in any computer generated output
the validity of a discrete-event simulation model is always fundamentally important.
One popular non-statistical, Turing-like technique for model validation is to place
actual system output alongside similarly formatted output from the computational
model. This output is then examined by an expert familiar with the system. Model
validation is indicated if the expert is not able to determine which is the model output
and which is the real thing. Interactive computer graphics (animation) can be very
valuable during the verification and validation steps.
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Example 1.1.1 The following machine shop model helps illustrate the six steps in Algo-
rithm 1.1.1. A new machine shop has 150 identical machines; each operates continuously,
8 hours per day, 250 days per year until failure. Each machine operates independently of
all the others. As machines fail they are repaired, in the order in which they fail, by a
service technician. As soon as a failed machine is repaired, it is put back into operation.
Each machine produces a net income of $20 per hour of operation. All service technicians
are hired at once, for 2 years, at the beginning of the 2-year period with an annual salary
expense of $52,000. Because of vacations, each service technician only works 230 8-hour
days per year. By agreement, vacations are coordinated to maximize the number of service
technicians on duty each day. How many service technicians should be hired?

(1) The objective seems clear — to find the number of service technicians for which the
profit is maximized. One extreme solution is to hire one technician for each machine;
this produces a huge service technician overhead but maximizes income by minimizing
the amount of machine down-time. The other extreme solution is to hire just one
technician; this minimizes overhead at the potential expense of large down-times and
associated loss of income. In this case, neither extreme is close to optimal for typical
failure and repair times.

(2) A reasonable conceptual model for this system can be expressed in terms of the state
of each machine (failed or operational) and each service technician (busy or idle).
These state variables provide a high-level description of the system at any time.

(3) To develop a specification model, more information is needed. Machine failures are
random events; what is known (or can be assumed) about the time between failures for
these machines? The time to repair a machine is also random; what, for example, is
the distribution of the repair time? In addition, to develop the associated specification
model some systematic method must be devised to simulate the time evolution of the
system state variables.

(4) The computational model will likely include a simulation clock data structure to keep
track of the current simulation time, a queue of failed machines and a queue of available
service technicians. Also, to characterize the performance of the system, there will be
statistics gathering data structures and associated procedures. The primary statistic
of interest here is the total profit associated with the machine shop.

(5) The computational model must be verified, usually by extensive testing. Verification is
a software engineering activity made easier if the model is developed in a contemporary
programming environment.

(6) The validation step is used to see if the verified computational model is a reasonable
approximation of the machine shop. If the machine shop is already operational, the
basis for comparison is clear. If, however, the machine shop is not yet operational,
validation is based primarily on consistency checks. If the number of technicians is
increased, does the time-averaged number of failed machines go down; if the average
service time is increased, does the time-averaged number of failed machines go up?
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System Diagrams

Particularly at the conceptual level, the process of model development can be facili-
tated by drawing system diagrams. Indeed, when asked to explain a system, our experience
is that, instinctively, many people begin by drawing a system diagram. For example, con-
sider this system diagram of the machine shop model in Example 1.1.1.
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Figure 1.1.2.
Machine shop
system diagram.

The box at the top of Figure 1.1.2 represents the pool of machines. The composite
object at the bottom of the figure represents the four service technicians and an associated
single queue. Operational machines are denoted with a ◦ and broken machines with a •.
Conceptually, as machines break they change their state from operational (◦) to broken
(•) and move along the arc on the left from the box at the top of the figure to the queue
at the bottom of the figure. From the queue, a broken machine begins to be repaired as
a service technician becomes available. As each broken machine is repaired, its state is
changed to operational and the machine moves along the arc on the right, back to the pool
of operational machines.*

As time evolves, there is a continual counter-clockwise circulation of machines from
the pool at the top of Figure 1.1.2 to the service technicians at the bottom of the figure,
and then back again. At the “snapshot” instant illustrated, there are six broken machines;
four of these are being repaired and the other two are waiting in the queue for a service
technician to become available.

* The movement of the machines to the servers is conceptual, as is the queue. In
practice, the servers would move to the machines and there would not be a physical queue
of broken machines.
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In general, the application of Algorithm 1.1.1 should be guided by the following ob-
servations.

• Throughout the development process, the operative principle should always be to
make every discrete-event simulation model as simple as possible, but never simpler.
The goal is to capture only the relevant characteristics of the system. The dual
temptations of (1) ignoring relevant characteristics or (2) including characteristics
that are extraneous to the goals of the model, should be avoided.

• The actual development of a complex discrete-event simulation model will not be
as sequential as Algorithm 1.1.1 suggests, particularly if the development is a team
activity in which case some steps will surely be worked in parallel. The different
characteristics of each step should always be kept clearly in mind avoiding, for example,
the natural temptation to merge steps (5) and (6).

• There is an unfortunate tendency on the part of many to largely skip over steps (1), (2),
and (3), jumping rapidly to step (4). Skipping these first three steps is an approach to
discrete-event simulation virtually certain to produce large, inefficient, unstructured
computational models that cannot be validated. Discrete-event simulation models
should not be developed by those who like to think a little and then program a lot.

1.1.3 SIMULATION STUDIES

Algorithm 1.1.2 Following the successful application of Algorithm 1.1.1, use of the
resulting computational model (computer program) involves the following steps.

(7) Design the simulation experiments. This is not as easy as it may seem. If there are a
significant number of system parameters, each with several possible values of interest,
then the combinatoric possibilities to be studied make this step a real challenge.

(8) Make production runs. The runs should be made systematically, with the value of
all initial conditions and input parameters recorded along with the corresponding
statistical output.

(9) Analyze the simulation results. The analysis of the simulation output is statistical
in nature because discrete-event simulation models have stochastic (random) com-
ponents. The most common statistical analysis tools (means, standard deviations,
percentiles, histograms, correlations, etc.) will be developed in later chapters.

(10) Make decisions. Hopefully the results of step (9) will lead to decisions that result in
actions taken. If so, the extent to which the computational model correctly predicted
the outcome of these actions is always of great interest, particularly if the model is to
be further refined in the future.

(11) Document the results. If you really did gain insight, summarize it in terms of specific
observations and conjectures. If not, why did you fail? Good documentation facilitates
the development (or avoidance) of subsequent similar system models.
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Example 1.1.2 As a continuation of Example 1.1.1, consider the application of Algo-
rithm 1.1.2 to a verified and validated machine shop model.

(7) Since the objective of the model is to determine the optimal number of service tech-
nicians to hire to maximize profit, the number of technicians is the primary system
parameter to be varied from one simulation run to the next. Other issues also con-
tribute to the design of the simulation experiments. What are the initial conditions
for the model (e.g., are all machines initially operational)? For a fixed number of ser-
vice technicians, how many replications are required to reduce the natural sampling
variability in the output statistics to an acceptable level?

(8) If many production runs are made, management of the output results becomes an issue.
A discrete-event simulation study can produce a lot of output files which consume large
amounts of disk space if not properly managed. Avoid the temptation to archive “raw
data” (e.g., a detailed time history of simulated machine failures). If this kind of data
is needed in the future, it can always be reproduced. Indeed, the ability to reproduce
previous results exactly is an important feature which distinguishes discrete-event
simulation from other, more traditional, experimental sciences.

(9) The statistical analysis of simulation output often is more difficult than classical sta-
tistical analysis, where observations are assumed to be independent. In particular,
time-sequenced simulation-generated observations are often correlated with one an-
other, making the analysis of such data a challenge. If the current number of failed
machines is observed each hour, for example, consecutive observations will be found
to be significantly positively correlated. A statistical analysis of these observations
based on the (false) assumption of independence may produce erroneous conclusions.

(10) For this example, a graphical display of profit versus the number of service technicians
yields both the optimal number of technicians and a measure of how sensitive the profit
is to variations about this optimal number. In this way a policy decision can be made.
Provided this decision does not violate any external constraints, such as labor union
rules, the policy should be implemented.

(11) Documentation of the machine shop model would include a system diagram, expla-
nations of assumptions made about machine failure rates and service repair rates, a
description of the specification model, software for the computational model, tables
and figures of output, and a description of the output analysis.

Insight

An important benefit of developing and using a discrete-event simulation model is that
valuable insight is acquired. As conceptual models are formulated, computational models
developed and output data analyzed, subtle system features and component interactions
may be discovered that would not have been noticed otherwise. The systematic application
of Algorithms 1.1.1 and 1.1.2 can result in better actions taken due to insight gained by
an increased understanding of how the system operates.
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1.1.4 PROGRAMMING LANGUAGES

There is a continuing debate in discrete-event simulation — to use a general-purpose
programming language or a (special-purpose) simulation programming language. For ex-
ample, two standard discrete-event simulation textbooks provide the following contradic-
tory advice. Bratley, Fox, and Schrage (1987, page 219) state “. . . for any important
large-scale real application we would write the programs in a standard general-purpose
language, and avoid all the simulation languages we know.” In contrast, Law and Kelton
(2000, page 204) state “. . . we believe, in general, that a modeler would be prudent to give
serious consideration to the use of a simulation package.”

General-purpose languages are more flexible and familiar; simulation languages allow
modelers to build computational models quickly. There is no easy way to resolve this
debate in general. However, for the specific purpose of this book — learning the principles
and techniques of discrete-event simulation — the debate is easier to resolve. Learning
discrete-event simulation methodology is facilitated by using a familiar, general-purpose
programming language, a philosophy that has dictated the style and content of this book.

General-Purpose Languages

Because discrete-event simulation is a specific instance of scientific computing, any
general-purpose programming language suitable for scientific computing is similarly suit-
able for discrete-event simulation. Therefore, a history of the use of general-purpose pro-
gramming languages in discrete-event simulation is really a history of general-purpose
programming languages in scientific computing. Although this history is extensive, we will
try to summarized it in a few paragraphs.

For many years FORTRAN was the primary general-purpose programming language
used in discrete-event simulation. In retrospect, this was natural and appropriate because
there was no well-accepted alternative. By the early 80’s things began to change dramati-
cally. Several general-purpose programming languages created in the 70’s, primarily C and
Pascal, were as good as or superior to FORTRAN in most respects and they began to gain
acceptance in many applications, including discrete-event simulation, where FORTRAN
was once dominant. Because of its structure and relative simplicity, Pascal became the de
facto first programming language in many computer science departments; because of its
flexibility and power, the use of C became common among professional programmers.

Personal computers became popular in the early 80’s, followed soon thereafter by
increasingly more powerful workstations. Concurrent with this development, it became
clear that networked workstations or, to a lesser extent, stand-alone personal comput-
ers, were ideal discrete-event simulation engines. The popularity of workstation networks
then helped to guarantee that C would become the general-purpose language of choice
for discrete-event simulation. That is, the usual workstation network was Unix-based, an
environment in which C was the natural general-purpose programming language of choice.
The use of C in discrete-event simulation became wide-spread by the early 90’s when C
became standardized and C++, an object-oriented extension of C, gained popularity.
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In addition to C, C++, FORTRAN, and Pascal, other general-purpose programming
languages are occasionally used in discrete-event simulation. Of these, Ada, Java, and
(modern, compiled) BASIC are probably the most common. This diversity is not surprising
because every general-purpose programming language has its advocates, some quite vocal,
and no matter what the language there is likely to be an advocate to argue that it is ideal
for discrete-event simulation. We leave that debate for another forum, however, confident
that our use of ANSI C in this book is appropriate.

Simulation Languages

Simulation languages have built-in features that provide many of the tools needed
to write a discrete-event simulation program. Because of this, simulation languages sup-
port rapid prototyping and have the potential to decrease programming time significantly.
Moreover, animation is a particularly important feature now built into most of these sim-
ulation languages. This is important because animation can increase the acceptance of
discrete-event simulation as a legitimate problem-solving technique. By using animation,
dynamic graphical images can be created that enhance verification, validation, and the
development of insight. The most popular discrete-event simulation languages historically
are GPSS, SIMAN, SLAM II, and SIMSCRIPT II.5. Because of our emphasis in the book
on the use of general-purpose languages, any additional discussion of simulation languages
is deferred to Appendix A.

Because it is not discussed in Appendix A, for historical reasons it is appropriate here
to mention the simulation language Simula. This language was developed in the 60’s as an
object-oriented ALGOL extension. Despite its object orientation and several other novel
(for the time) features, it never achieved much popularity, except in Europe. Still, like
other premature-but-good ideas, the impact of Simula has proven to be profound, including
serving as the inspiration for the creation of C++.

1.1.5 ORGANIZATION AND TERMINOLOGY

We conclude this first section with some brief comments about the organization of the
book and the sometimes ambiguous use of the words simulation, simulate, and model.

Organization

The material in this book could have been organized in several ways. Perhaps the
most natural sequence would be to follow, in order, the steps in Algorithms 1.1.1 and
1.1.2, devoting a chapter to each step. However, that sequence is not followed. Instead, the
material is organized in a manner consistent with the experimental nature of discrete-event
simulation. That is, we begin to model, simulate, and analyze simple-but-representative
systems as soon as possible (indeed, in the next section). Whenever possible, new concepts
are first introduced in an informal way that encourages experimental self-discovery, with
a more formal treatment of the concepts deferred to later chapters. This organization has
proven to be successful in the classroom.
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Terminology

The words “model” and “simulation” or “simulate” are commonly used interchange-
ably in the discrete-event simulation literature, both as a noun and as a verb. For pedagog-
ical reasons this word interchangeability is unfortunate because, as indicated previously,
a “model” (the noun) exists at three levels of abstraction: conceptual, specification, and
computational. At the computational level, a system model is a computer program; this
computer program is what most people mean when they talk about a system simulation.
In this context a simulation and a computational system model are equivalent. It is uncom-
mon, however, to use the noun “simulation” as a synonym for the system model at either
the conceptual or specification level. Similarly, “to model” (the verb) implies activity at
three levels, but “to simulate” is usually a computational activity only.

When appropriate we will try to be careful with these words, generally using simulation
or simulate in reference to a computational activity only. This is consistent with common
usage of the word simulation to characterize not only the computational model (computer
program) but also the computational process of using the discrete-event simulation model
to generate output statistical data and thereby analyze system performance. In those cases
when there is no real need to be fussy about terminology, we will yield to tradition and use
the word simulation or simulate even though the word model may be more appropriate.

1.1.6 EXERCISES

Exercise 1.1.1 There are six leaf nodes in the system model tree in Figure 1.1.1. For
each leaf node, describe a specific example of a corresponding physical system.

Exercise 1.1.2 The distinction between model verification and model validation is not
always clear in practice. Generally, in the sense of Algorithm 1.1.1, the ultimate objective
is a valid discrete-event simulation model. If you were told that “this discrete-event sim-
ulation model had been verified but it is not known if the model is valid” how would you
interpret that statement?

Exercise 1.1.3 The state of a system is important, but difficult to define in a general
context. (a) Locate at least five contemporary textbooks that discuss system modeling
and, for each, research and comment on the extent to which the technical term “state”
is defined. If possible, avoid example-based definitions or definitions based on a specific
system. (b) How would you define the state of a system?

Exercise 1.1.4 (a) Use an Internet search engine to identify at least 10 different simula-
tion languages that support discrete-event simulation. (Note that the ‘-’ in discrete-event
is not a universal convention.) Provide a URL, phone number, or mailing address for each
and, if it is a commercial product, a price. (b) If you tried multiple search engines, which
produced the most meaningful hits?
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In this section we will construct a trace-driven discrete-event simulation model (i.e., a
model driven by external data) of a single-server service node. We begin the construction
at the conceptual level.

1.2.1 CONCEPTUAL MODEL

Definition 1.2.1 A single-server service node consists of a server plus its queue.*
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Figure 1.2.1.
Single-server
service node
system diagram.

Jobs (customers) arrive at the service node at random points in time seeking service. When
service is provided, the service time involved is also random. At the completion of service,
jobs depart. The service node operates as follows: as each (new) job arrives, if the server
is busy then the job enters the queue, else the job immediately enters service; as each (old)
job departs, if the queue is empty then the server becomes idle, else a job is selected from
the queue to immediately enter service. At any time, the state of the server will either be
busy or idle and the state of the queue will be either empty or not empty. If the server is
idle, the queue must be empty; if the queue is not empty then the server must be busy.

Example 1.2.1 If there is just one service technician, the machine shop model presented
in Examples 1.1.1 and 1.1.2 is a single-server service node model. That is, the “jobs” are
the machines to be repaired and the “server” is the service technician. (In this case,
whether the jobs move to the server or the server moves to the jobs is not an important
distinction because the repair time is the primary source of delay.)

Definition 1.2.2 Control of the queue is determined by the queue discipline — the
algorithm used when a job is selected from the queue to enter service. The standard
algorithms are:

• FIFO — first in, first out (the traditional computer science queue data structure);

• LIFO — last in, first out (the traditional computer science stack data structure);

• SIRO — service in random order;

• Priority — typically, shortest job first (SJF) or equivalently, in job-shop terminology,
shortest processing time (SPT).

The maximum possible number of jobs in the service node is the capacity. The capacity
can be either finite or infinite. If the capacity is finite then jobs that arrive and find the
service node full will be rejected (unable to enter the service node).

* The term “service node” is used in anticipation of extending this model, in later
chapters, to a network of service nodes.
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Certainly the most common queue discipline is FIFO (also known as FCFS — first
come, first served). If the queue discipline is FIFO, then the order of arrival to the service
node and the order of departure from the service node are the same; there is no passing.
In particular, upon arrival a job will enter the queue if and only if the previous job has
not yet departed the service node. This is an important observation that can be used
to simplify the simulation of a FIFO single-server service node. If the queue discipline is
not FIFO then, for at least some jobs, the order of departure will differ from the order of
arrival. In this book, the default assumptions are that the queue discipline is FIFO and
the service node capacity is infinite, unless otherwise specified. Discrete-event simulation
allows these assumptions to be easily altered for more realistic modeling.

There are two important additional default assumptions implicit in Definition 1.2.1.
First, service is non-preemptive — once initiated, service on a job will be continued until
completion. That is, a job in service cannot be preempted by another job arriving later.
Preemption is commonly used with priority queue disciplines to prevent a job with a large
service time requirement from producing excessive delays for small jobs arriving soon after
service on the large job has begun. Second, service is conservative — the server will never
remain idle if there is one or more jobs in the service node. If the queue discipline is not
FIFO and if the next arrival time is known in advance then, even though one or more
jobs are in the service node, it may be desirable for a non-conservative server to remain
idle until the next job arrives. This is particularly true in non-preemptive job scheduling
applications if a job in the service node has a much larger service requirement than the
next job scheduled to arrive.

1.2.2 SPECIFICATION MODEL

The following variables, illustrated in Figure 1.2.2, provide the basis for moving from
a conceptual model to a specification model. At their arrival to the service node, jobs are
indexed by i = 1, 2, 3, . . . For each job there are six associated time variables.

• The arrival time of job i is ai.

• The delay of job i in the queue is di ≥ 0.

• The time that job i begins service is bi = ai + di.

• The service time of job i is si > 0.

• The wait of job i in the service node (queue and service) is wi = di + si.

• The time that job i completes service (the departure time) is ci = ai + wi.

ai bi ci

←−−−−−−−−−− wi −−−−−−−−−−→
←−−−−− di −−−−−→←−− si −−→

time

Figure 1.2.2.
Six variables

associated
with job i.
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The term “wait” can be confusing; wi represents the total time job i spends in the
service node, not just the time spent in the queue. The time spent in the queue (if any) is
the delay di. In many computer science applications the term response time is used. To
some authors this means wait , to others it means delay. Because of this ambiguity, we will
generally avoid using the term “response time” choosing instead to consistently use the
terminology specified previously. Similarly, we avoid the use of the common terms sojourn
time, flow time, or system time, in place of wait.

Arrivals

As a convention, if the service node capacity is finite then rejected jobs (if any) are
not indexed. That is, although rejected jobs may be counted for statistical purposes (for
example, to estimate the probability of rejection), the index i = 1, 2, 3, . . . is restricted to
only those jobs that actually enter the service node.

Rather than specify the arrival times a1, a2, . . . explicitly, in some discrete-event
simulation applications it is preferable to specify the interarrival times r1, r2, . . ., thereby
defining the arrival times implicitly, as shown in Figure 1.2.3 and defined in Definition 1.2.3.

ai−2 ai−1 ai ai+1

←− ri −→
time (t)

Figure 1.2.3.
Relationship
between
arrival and
interarrival
times.

Definition 1.2.3 The interarrival time between jobs i− 1 and i is ri = ai − ai−1. That
is, ai = ai−1 + ri and so (by induction), with a0 = 0 the arrival times are*

ai = r1 + r2 + · · · + ri i = 1, 2, 3, . . .

(We assume that ri > 0 for all i, thereby eliminating the possibility of bulk arrivals. That
is, jobs are assumed to arrive one at a time.)

Algorithmic Question

The following algorithmic question is fundamental. Given a knowledge of the arrival
times a1, a2, . . . (or, equivalently, the interarrival times r1, r2, . . .), the associated service
times s1, s2, . . ., and the queue discipline, how can the delay times d1, d2, . . . be computed?

As discussed in later chapters, for some queue disciplines this question is more difficult
to answer than for others. If the queue discipline is FIFO, however, then the answer is
particularly simple. That is, as demonstrated next, if the queue discipline is FIFO then
there is a simple algorithm for computing di (as well as bi, wi, and ci) for all i.

* All arrival times are referenced to the virtual arrival time a0. Unless explicitly stated
otherwise, in this chapter and elsewhere we assume that elapsed time is measured in such
a way that a0 = 0.
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Two Cases

If the queue discipline is FIFO then the delay di of job i = 1, 2, 3, . . . is determined by
when the job’s arrival time ai occurs relative to the departure time ci−1 of the previous
job. There are two cases to consider.

• Case I. If ai < ci−1, i.e., if job i arrives before job i − 1 departs then, as illustrated,
job i will experience a delay of di = ci−1 − ai. Job i − 1’s history is displayed above
the time axis and job i’s history is displayed below the time axis in Figures 1.2.4 and
1.2.5.

ai bi ci

←−− ri −−→←−−−−− di −−−−−→←−− si −−→| | | |

t

ai−1 bi−1 ci−1

←−−−− di−1 −−−−→←−− si−1 −−→| | | Figure 1.2.4.
Job i arrives

before job
i − 1 departs.

• Case II. If instead ai ≥ ci−1, i.e., if job i arrives after (or just as) job i − 1 departs
then, as illustrated, job i will experience no delay so that di = 0.

ai ci

←−−−−−−−−−−−−−− ri −−−−−−−−−−−−−−→←−− si −−→| | |

t

ai−1 bi−1 ci−1

←−−−− di−1 −−−−→←−− si−1 −−→| | | Figure 1.2.5.
Job i arrives

after job
i − 1 departs.

Algorithm

The key point in algorithm development is that if the queue discipline is FIFO then the
truth of the expression ai < ci−1 determines whether or not job i will experience a delay.
Based on this logic, the computation of the delays is summarized by Algorithm 1.2.1. This
algorithm, like all those presented in this book, is written in a C-like pseudo-code that is
easily translated into other general-purpose programming languages.

Although it is not an explicit part of Algorithm 1.2.1, an equation can be written for
the delay that depends on the interarrival and service times only. That is

ci−1 − ai = (ai−1 + di−1 + si−1) − ai

= di−1 + si−1 − (ai − ai−1)
= di−1 + si−1 − ri.

If d0 = s0 = 0 then d1, d2, d3, . . . are defined by the nonlinear equation

di = max{ 0, di−1 + si−1 − ri } i = 1, 2, 3, . . .

This equation is commonly used in theoretical studies to analyze the stochastic behavior
of a FIFO service node.
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Algorithm 1.2.1 If the arrival times a1, a2, . . . and service times s1, s2, . . . are known
and if the server is initially idle, then this algorithm computes the delays d1, d2, . . . in a
single-server FIFO service node with infinite capacity.

c0 = 0.0; /* assumes that a0 = 0.0 */

i = 0;
while ( more jobs to process ) {

i++;

ai = GetArrival();

if (ai < ci−1)

di = ci−1 - ai; /* calculate delay for job i */

else

di = 0.0; /* job i has no delay */

si = GetService();

ci = ai + di + si; /* calculate departure time for job i */

}
n = i;

return d1, d2, . . ., dn;

The GetArrival and GetService procedures read the next arrival and service time from a
file. (An algorithm that does not rely on the FIFO assumption is presented in Chapter 5.)

Example 1.2.2 If Algorithm 1.2.1 is used to process n = 10 jobs according to the
input indicated below (for simplicity the ai’s and si’s are integer time units, e.g., seconds,
minutes, etc.) then the output is the sequence of delays are calculated as:

i : 1 2 3 4 5 6 7 8 9 10
read from file ai : 15 47 71 111 123 152 166 226 310 320

from algorithm di : 0 11 23 17 35 44 70 41 0 26
read from file si : 43 36 34 30 38 40 31 29 36 30

For future reference, note that the last job arrived at time an = 320 and departed at time
cn = an + dn + sn = 320 + 26 + 30 = 376.

As discussed in more detail later in this section, it is a straight-forward programming
exercise to produce a computational model of a single-server FIFO service node with infinite
capacity using Algorithm 1.2.1. The ANSI C program ssq1 is an example. Three features
of this program are noteworthy. (i) Because of its reliance on previously recorded arrival
and service time data read from an external file, ssq1 is a so-called trace-driven discrete-
event simulation program. (ii) Because the queue discipline is FIFO, program ssq1 does
not need to use a queue data structure. (iii) Rather than produce a sequence of delays
as output, program ssq1 computes four averages instead: the average interarrival time,
service time, delay, and wait. These four job-averaged statistics and three corresponding
time-averaged statistics are discussed next.
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1.2.3 OUTPUT STATISTICS

One basic issue that must be resolved when constructing a discrete-event simulation
model is the question of what statistics should be generated. The purpose of simulation is
insight and we gain insight about the performance of a system by looking at meaningful
statistics. Of course, a decision about what statistics are most meaningful is dependent
upon your perspective. For example, from a job’s (customer’s) perspective the most im-
portant statistic might be the average delay or the 95th percentile of the delay — in either
case, the smaller the better. On the other hand, particularly if the server is an expensive
resource whose justification is based on an anticipated heavy workload, from management’s
perspective the server’s utilization (the proportion of busy time, see Definition 1.2.7) is
most important — the larger the better.

Job-Averaged Statistics

Definition 1.2.4 For the first n jobs, the average interarrival time and the average
service time are, respectively*

r̄ =
1
n

n�

i=1

ri =
an

n
and s̄ =

1
n

n�

i=1

si.

The reciprocal of the average interarrival time, 1/r̄, is the arrival rate; the reciprocal of
the average service time, 1/s̄, is the service rate.

Example 1.2.3 For the n = 10 jobs in Example 1.2.2, r̄ = an/n = 320/10 = 32.0 and
s̄ = 34.7. If time in this example is measured in seconds, then the average interarrival
time is 32.0 seconds per job and the average service time is 34.7 seconds per job. The
corresponding arrival rate is 1/r̄ = 1/32.0 ∼= 0.031 jobs per second; the service rate is
1/s̄ = 1/34.7 ∼= 0.029 jobs per second. In this particular example, the server is not quite
able to process jobs at the rate they arrive on average.

Definition 1.2.5 For the first n jobs, the average delay in the queue and the average
wait in the service node are, respectively

d̄ =
1
n

n�

i=1

di and w̄ =
1
n

n�

i=1

wi.

Recall that wi = di + si for all i. Therefore, the average time spent in the service
node will be the sum of the average times spent in the queue and in service. That is

w̄ =
1
n

n�

i=1

wi =
1
n

n�

i=1

(di + si) =
1
n

n�

i=1

di +
1
n

n�

i=1

si = d̄ + s̄.

The point here is that it is sufficient to compute any two of the statistics w̄, d̄, s̄. The
third statistic can then be computed from the other two, if appropriate.

* The equation r̄ = an/n follows from Definition 1.2.3 and the assumption that a0 = 0.
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Example 1.2.4 For the data in Example 1.2.2, d̄ = 26.7 and s̄ = 34.7. Therefore, the
average wait in the node is w̄ = 26.7 + 34.7 = 61.4. (See also Example 1.2.6.)

In subsequent chapters we will construct increasingly more complex discrete-event
simulation models. Because it is never easy to verify and validate a complex model, it is
desirable to be able to apply as many consistency checks to the output data as possible.
For example, although program ssq1 is certainly not a complex discrete-event simulation
model, it is desirable in this program to accumulate w̄, d̄, and s̄ independently. Then, from
the program output the equation w̄ = d̄ + s̄ can be used as a consistency check.

Time-Averaged Statistics

The three statistics w̄, d̄ and s̄ are job-averaged statistics — the data is averaged over
all jobs. Job averages are easy to understand; they are just traditional arithmetic averages.
We now turn to another type of statistic that is equally meaningful, time-averaged. Time-
averaged statistics may be less familiar, however, because they are defined by an area
under a curve, i.e., by integration instead of summation.

Time-averaged statistics for a single-server service node are defined in terms of three
additional variables. At any time t > 0:

• l(t) = 0, 1, 2, . . . is the number of jobs in the service node at time t;

• q(t) = 0, 1, 2, . . . is the number of jobs in the queue at time t;

• x(t) = 0, 1 is the number of jobs in service at time t.

By definition, l(t) = q(t) + x(t) for any t > 0.

The three functions l(·), q(·), and x(·) are piecewise constant. That is, for example,
a display of l(t) versus t will consist of a sequence of constant segments with unit height
step discontinuities as illustrated in Figure 1.2.6. (This figure corresponds to the data in
Example 1.2.2. The dashed line represents the time-averaged number in the node — see
Example 1.2.6.)

0 376
0

1

2

3

4

l(t)

t...................................
........
........
........
........
........
..................................................................

........

........

........

........

........

........

..................................................................................................................
........
........
........
........
........
...............................................................................................................................................

........

........

........

........

........

...............................
........
........
........
........
........
........
...........................................................................................................................

........

........

........

........

........

..................................................................................................
........
........
........
........
........
..................................................................................................................................................................................

........

........

........

........

........

.............................................................................................................................................................................................................................................................................................................................................
........
........
........
........
........
...........................

........

........

........

........

........

........

..........................................................................................................................................................................................................................

Figure 1.2.6.
Number of
jobs in the
service
node.

The step discontinuities are positive at the arrival times and negative at the departure
times. The corresponding figures for q(·) and x(·) can be deduced from the fact that
q(t) = 0 and x(t) = 0 if and only if l(t) = 0, otherwise q(t) = l(t) − 1 and x(t) = 1.
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Definition 1.2.6 Over the time interval (0, τ) the time-averaged number in the node is

l̄ =
1
τ

� τ

0

l(t) dt.

Similarly, the time-averaged number in the queue and the time-averaged number in service
are

q̄ =
1
τ

� τ

0

q(t) dt and x̄ =
1
τ

� τ

0

x(t) dt.

Because l(t) = q(t) + x(t) for all t > 0 it follows that

l̄ = q̄ + x̄.

Example 1.2.5 For the data in Example 1.2.2 (with τ = c10 = 376) the three time-
averaged statistics are l̄ = 1.633, q̄ = 0.710, and x̄ = 0.923. These values can be determined
by calculating the areas associated with the integrals given in Definition 1.2.6 or by ex-
ploiting a mathematical relationship between the job-averaged statistics w̄, d̄, and s̄ and
the time-averaged statistics l̄, q̄, and x̄, as illustrated subsequently in Example 1.2.6.

The equation l̄ = q̄ + x̄ is the time-averaged analog of the job-averaged equation
w̄ = d̄ + s̄. As we will see in later chapters, time-averaged statistics have the following
important characterizations.

• If we were to observe (sample) the number in the service node, for example, at many
different times chosen at random between 0 and τ and then calculate the arithmetic
average of all these observations, the result should be close to l̄.

• Similarly, the arithmetic average of many random observations of the number in the
queue should be close to q̄ and the arithmetic average of many random observations
of the number in service (0 or 1) should be close to x̄.

• x̄ must lie in the closed interval [0, 1].

Definition 1.2.7 The time-averaged number in service x̄ is also known as the server
utilization. The reason for this terminology is that x̄ represents the proportion of time
that the server is busy.

Equivalently, if one particular time is picked at random between 0 and τ then x̄ is
the probability that the server is busy at that time. If x̄ is close to 1.0 then the server is
busy most of the time and correspondingly large values of l̄ and q̄ will be produced. On
the other hand, if the utilization is close to 0.0 then the server is idle most of the time and
the values of l̄ and q̄ will be small. The case study, presented later, is an illustration.

Little’s Equations

One important issue remains — how are job averages and time averages related?
Specifically, how are w̄, d̄, and s̄ related to l̄, q̄, and x̄?
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In the particular case of an infinite capacity FIFO service node that begins and ends in
an idle state, the following theorem provides an answer to this question. See Exercise 1.2.7
for a generalization of this theorem to any queue discipline.

Theorem 1.2.1 (Little, 1961) If the queue discipline is FIFO, the service node capacity
is infinite, and the server is idle both initially (at t = 0) and immediately after the departure
of the nth job (at t = cn) then

� cn

0

l(t) dt =
n�

i=1

wi and
� cn

0

q(t) dt =
n�

i=1

di and
� cn

0

x(t) dt =
n�

i=1

si.

Proof For each job i = 1, 2, . . ., define an indicator function ψi(t) that is 1 when the ith

job is in the service node and is 0 otherwise

ψi(t) =
� 1 ai < t < ci

0 otherwise.
Then

l(t) =
n�

i=1

ψi(t) 0 < t < cn

and so
� cn

0

l(t) dt =
� cn

0

n�

i=1

ψi(t) dt =
n�

i=1

� cn

0

ψi(t) dt =
n�

i=1

(ci − ai) =
n�

i=1

wi.

The other two equations can be derived in a similar way.
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Example 1.2.6 Figure 1.2.7 illustrates Little’s first equation for the data in Exam-
ple 1.2.2. The top step function denotes the cumulative number of arrivals to the service
node and the bottom step function denotes the cumulative number of departures from the
service node. The vertical distance between the two step-functions at any time t is l(t),
which was plotted in Figure 1.2.6. The wait times are indicated as the horizontal distances
between the risers. In this figure, it is easy to see that

� 376

0

l(t) dt =
10�

i=1

wi = 614.

Little’s equations provide a valuable link between the job-averaged statistics w̄, d̄, and s̄
and the time-averaged statistics l̄, q̄, and x̄. In Definition 1.2.6 let τ = cn. Then from
Theorem 1.2.1 we have

cn l̄ =
� cn

0

l(t) dt =
n�

i=1

wi = nw̄

so that l̄ = (n/cn)w̄. Similarly, cnq̄ = nd̄ and cnx̄ = ns̄. Therefore

l̄ =
�

n

cn

�
w̄ and q̄ =

�
n

cn

�
d̄ and x̄ =

�
n

cn

�
s̄

which explains how w̄, d̄, and s̄ are related to l̄, q̄, and x̄. These important equations relate
to steady-state statistics and Little’s equations — for more detail, see Chapter 8.

Example 1.2.7 For the data in Example 1.2.2 the last (n = 10) job departs at cn = 376.
From Example 1.2.4, w̄ = 61.4 and therefore l̄ = (10/376) 61.4 ∼= 1.633. Similarly, the
time-averaged number in the queue and in service are q̄ = (10/376) 26.7 ∼= 0.710 and
x̄ = (10/376) 34.7 ∼= 0.923.

1.2.4 COMPUTATIONAL MODEL

As discussed previously, by using Algorithm 1.2.1 in conjunction with some statistics
gathering logic it is a straight-forward programming exercise to produce a computational
model of a single-server FIFO service node with infinite capacity. The ANSI C program
ssq1 is an example. Like all of the software presented in this book, this program is designed
with readability and extendibility considerations.

Program ssq1

Program ssq1 reads arrival and service time data from the disk file ssq1.dat. This
is a text file that consists of arrival times a1, a2, . . . , an and service times s1, s2, . . . , sn for
n = 1000 jobs in the format

a1 s1

a2 s2
...

...
an sn
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In Chapter 3 we will free this trace-driven program from its reliance on external data by
using randomly generated arrival and service times instead.

Because the queue discipline is FIFO, program ssq1 does not need to use a queue
data structure. In Chapter 5 we will consider non-FIFO queue disciplines and some cor-
responding priority queue data structures that can be used at the computational model
level.

Program ssq1 computes the average interarrival time r̄, the average service time s̄,
the average delay d̄, and the average wait w̄. In Exercise 1.2.2 you are asked to modify
this program so that it will also compute the time-averaged statistics l̄, q̄, and x̄.

Example 1.2.8 For the datafile ssq1.dat the observed arrival rate 1/r̄ ∼= 0.10 is signif-
icantly less than the observed service rate 1/s̄ ∼= 0.14. If you modify ssq1 to compute l̄,
q̄, and x̄ you will find that 1− x̄ ∼= 0.28, and so the server is idle 28% of the time. Despite
this significant idle time, enough jobs are delayed so that the average number in the queue
is nearly 2.0.

Traffic Intensity

The ratio of the arrival rate to the service rate is commonly called the traffic intensity.
From the equations in Definition 1.2.4 and Theorem 1.2.1 it follows that the observed traffic
intensity is the ratio of the observed arrival rate to the observed service rate

1/r̄

1/s̄
=

s̄

r̄
=

s̄

an/n
=

�
cn

an

�
x̄.

Therefore, provided the ratio cn/an is close to 1.0, the traffic intensity and utilization will
be nearly equal. In particular, if the traffic intensity is less than 1.0 and n is large, then
it is reasonable to expect that the ratio cn/an = 1 + wn/an will be close to 1.0. We will
return to this question in later chapters. For now, we close with an example illustrating
how relatively sensitive the service node statistics l̄, q̄, w̄, and d̄ are to changes in the
utilization and how nonlinear this dependence can be.

Case Study

Sven & Larry’s Ice Cream Shoppe is a thriving business that can be modeled as
a single-server queue. The owners are considering adding additional flavors and cone
options, but are concerned about the resultant increase in service times on queue length.
They decide to use a trace-driven simulation to assess the impact of the longer service
times associated with the additional flavors and cone options.

The file ssq1.dat represents 1000 customer interactions at Sven & Larry’s. The file
consists of arrival times of groups of customers and the group’s corresponding service times.
The service times vary significantly because of the number of customers in each group.
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The dependence of the average queue length q̄ on the utilization x̄ is illustrated in
Figure 1.2.8. This figure was created by systematically increasing or decreasing each service
time in the datafile ssq1.dat by a common multiplicative factor, thereby causing both x̄
and q̄ to change correspondingly. The (x̄, q̄) ∼= (0.72, 1.88) point circled corresponds to
the data in ssq1.dat while the point immediately to its right, for example, corresponds
to the same data with each service time multiplied by 1.05. The next point to the right
corresponds to each service time multiplied by 1.10. From this figure, we see that even a
modest increase in service times will produce a significant increase in the average queue
length. A nonlinear relationship between x̄ and q̄ is particularly pronounced for utilizations
near x̄ = 1. A 15% increase in the service times from their current values will result in a
109% increase in the time-averaged number of customers in queue, whereas a 30% increase
in the service times from their current values will result in a 518% increase in the time-
averaged number of customers in queue.
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Sven & Larry need to assess the impact of the increased service time associated with
new flavors and cones on their operation. If the service times increase by only a modest
amount, say 5% or 10% above the current times, the average queue length will grow
modestly. The new flavors and cone options may, however, also increase the arrival rate —
potentially exacerbating the problem with long lines. If queues grow to the point where the
owners believe that customers are taking their ice cream business elsewhere, they should
consider hiring a second server. A separate analysis would be necessary to determine the
probability that an arriving group of customers will balk (never enter the queue) or renege
(depart from the queue after entering) as a function of the queue’s length.

Graphics Considerations

Figure 1.2.8 presents “raw” simulation output data. That is, each • represents a com-
puted (x̄, q̄) point. Because there is nothing inherently discrete about either x̄ or q̄, many
additional points could have been computed and displayed to produce an (essentially)
continuous q̄ versus x̄ curve. In this case, however, additional computations seem redun-
dant; few would question the validity of the smooth curve produced by connecting the •’s
with lines, as illustrated in Figure 1.2.9. The nonlinear dependence of q̄ on x̄ is evident,
particularly as x̄ approaches 1.0 and the corresponding increase in q̄ becomes dramatic.
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Perhaps because we were taught to do this as children, there is a natural tendency
to always “connect the dots” (interpolate) when presenting a discrete set of experimental
data. (The three most common interpolating functions are linear, quadratic, and spline
functions.) Before taking such artistic liberties, however, consider the following guidelines.

• If the data has essentially no uncertainty and if the resulting interpolating curve is
smooth, then there is little danger in connecting the dots — provided the original dots
are left in the figure to remind the reader that some artistic license was used.

• If the data has essentially no uncertainty but the resulting interpolating curve is not
smooth then more dots need to be generated to achieve a graphics scale at which
smooth interpolation is reasonable.

• If the dots correspond to uncertain (noisy) data then interpolation is not justified; in-
stead, either approximation should be used in place of interpolation, or the temptation
to superimpose a continuous curve should be resisted completely.

These guidelines presume that the data is not inherently discrete. If the data is inherently
discrete then it is illogical and potentially confusing to superimpose a continuous (inter-
polating or approximating) curve. Example 1.3.7 in the next section is an illustration of
data that is inherently discrete.*

1.2.5 EXERCISES

Exercise 1.2.1a How would you use the table in Example 1.2.2 to construct the asso-
ciated l(t) versus t figure? That is, construct an algorithm that will compute in order the
interlaced arrival and departure times that define the points at which l(t) changes. (Avoid
storing a1, a2, . . . , an and c1, c2, . . . , cn as two arrays, linked lists or external disk files and
then merging the two into one due to memory and CPU considerations for large n.)

* Those interested in an excellent discussion and illustration of graphics considerations
are encouraged to read the classic The Visual Display of Quantitative Information (Tufte,
2001). The author discusses clarity of presentation through uncluttered graphics that
maximize information transmission with minimal ink. The accurate display of simulation
output will be stressed throughout this text.
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Exercise 1.2.2 (a) Modify program ssq1 to output the additional statistics l̄, q̄, and x̄.
(b) Similar to the case study, use this program to compute a table of l̄, q̄, and x̄ for traffic
intensities of 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, and 1.2. (c) Comment on how l̄, q̄, and x̄ depend
on the traffic intensity. (d) Relative to the case study, if it is decided that q̄ greater than
5.0 is not acceptable, what systematic increase in service times would be acceptable? Use
d.dd precision.

Exercise 1.2.3 (a) Modify program ssq1 by adding the capability to compute the
maximum delay, the number of jobs in the service node at a specified time (known at
compile time) and the proportion of jobs delayed. (b) What was the maximum delay
experienced? (c) How many jobs were in the service node at t = 400 and how does the
computation of this number relate to the proof of Theorem 1.2.1? (d) What proportion of
jobs were delayed and how does this proportion relate to the utilization?

Exercise 1.2.4 Complete the proof of Theorem 1.2.1.

Exercise 1.2.5 If the traffic intensity is less than 1.0, use Theorem 1.2.1 to argue why
for large n you would expect to find that l̄ ∼= λ w̄, q̄ ∼= λ d̄, and x̄ ∼= λ s̄, where the observed
arrival rate is λ = 1/r̄.

Exercise 1.2.6 The text file ac.dat consists of the arrival times a1, a2, . . . , an and the
departure times c1, c2, . . . , cn for n = 500 jobs in the format

a1 c1

a2 c2
...

...
an cn

(a) If these times are for an initially idle single-server FIFO service node with infinite
capacity, calculate the average service time, the server’s utilization and the traffic intensity.
(b) Be explicit: for i = 1, 2, . . . , n how does si relate to ai−1, ai, ci−1, and ci?

Exercise 1.2.7a State and prove a theorem analogous to Theorem 1.2.1 but valid for
any queue discipline. Hint: in place of cn use τn = max{c1, c2, . . . , cn}. For a conservative
server prove that τn is independent of the queue discipline.

Exercise 1.2.8 (a) Similar to Exercise 1.2.2, modify program ssq1 to output the ad-
ditional statistics l̄, q̄, and x̄. (b) By using the arrival times in the file ssq1.dat and an
appropriate constant service time in place of the service times in the file ssq1.dat, use
the modified program to compute a table of l̄, q̄, and x̄ for traffic intensities of 0.6, 0.7,
0.8, 0.9, 1.0, 1.1, and 1.2. (c) Comment on how l̄, q̄, and x̄ depend on the traffic intensity.

Exercise 1.2.9a (a) Work Exercises 1.2.2 and 1.2.8. (b) Compare the two tables pro-
duced and explain (or conjecture) why the two tables are different. Be specific.
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The inputs to program ssq1, the arrival times and the service times, can have any
positive real value — they are continuous variables. In some models, however, the input
variables are inherently discrete. That is the case with the (trace-driven) discrete-event
simulation model of a simple inventory system constructed in this section. As in the
previous section, we begin with a conceptual model then move to a specification model
and, finally, to a computational model.

1.3.1 CONCEPTUAL MODEL

Definition 1.3.1 An inventory system consists of a facility that distributes items from
its current inventory to its customers in response to a customer demand that is typically
random, as illustrated in Figure 1.3.1. Moreover, the demand is integer-valued (discrete)
because customers do not want a portion of an item.* Because there is a holding cost
associated with items in inventory, it is undesirable for the inventory level to be too high.
On the other hand, if the inventory level is too low, the facility is in danger of incurring a
shortage cost whenever a demand occurs that cannot be met.

facilitycustomers supplier
................................................................................................................................................................................................................................... ..........................

demand

.............................................................................................................................................................................................................................................................

items

................................................................................................................................................................................................................................... ..........................
order

.............................................................................................................................................................................................................................................................

items

Figure 1.3.1.
Simple inventory
system diagram.

As a policy, the inventory level is reviewed periodically and new items are then (and only
then) ordered from a supplier, if necessary.** When items are ordered, the facility incurs
an ordering cost that is the sum of a fixed setup cost independent of the amount ordered
plus an item cost proportional to the number of items ordered. This periodic inventory
review policy is defined by two parameters, conventionally denoted s and S.

• s is the minimum inventory level — if at the time of review the current inventory level
is below the threshold s then an order will be placed with the supplier to replenish the
inventory. If the current inventory level is at or above s then no order will be placed.

• S is the maximum inventory level — when an order is placed, the amount ordered is
the number of items required to bring the inventory back up to the level S.

• The (s, S) parameters are constant in time with 0 ≤ s < S.

* Some inventory systems distribute “items” that are not inherently discrete, for exam-
ple, a service station that sells gasoline. With minor modifications, the model developed
in this section is applicable to these inventory systems as well.
** An alternate to the periodic inventory review policy is a transaction reporting inven-

tory policy . With this policy, inventory review occurs after each demand instance. Because
inventory review occurs more frequently, significantly more labor may be required to imple-
ment a transaction reporting inventory policy. (The scanners at a grocery store, however,
require no extra labor). The transaction reporting policy has the desirable property that,
for the same value of s, it is less likely for the inventory system to experience a shortage.
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A discrete-event simulation model can be used to compute the cost of operating the
facility. In some cases, the values of s and S are fixed; if so, the cost of operating the
facility is also fixed. In other cases, if at least one of the (s, S) values (usually s) is not
fixed, the cost of operating the facility can be modified and it is natural to search for values
of (s, S) for which the cost of operating the facility is minimized.

To complete the conceptual model of this simple (one type of item) inventory system
we make three additional assumptions. (a) Back ordering (backlogging) is possible — the
inventory level can become negative in order to model customer demands not immediately
satisfied. (b) There is no delivery lag — an order placed with the supplier will be delivered
immediately. Usually this is an unrealistic assumption; it will be removed in Chapter 3.
(c) The initial inventory level is S.

Example 1.3.5, presented later in this section, describes an automobile dealership as
an example of an inventory system with back ordering and no delivery lag. In this example
the periodic inventory review occurs each week. The value of S is fixed, the value of s is
not.

1.3.2 SPECIFICATION MODEL

The following variables provide the basis for a specification model of a simple inventory
system. Time begins at t = 0 and is measured in a coordinate system in which the inventory
review times are t = 0, 1, 2, 3, . . . with the convention that the ith time interval begins at
time t = i − 1 and ends at t = i.

• The inventory level at the beginning of the ith time interval is an integer li−1.

• The amount ordered (if any) at time t = i − 1 is an integer oi−1 ≥ 0.

• The demand quantity during the ith time interval is an integer di ≥ 0.

Because we have assumed that back ordering is possible, if the demand during the ith

time interval is greater than the inventory level at the beginning of the interval (plus the
amount ordered, if any) then the inventory level at the end of the interval will be negative.

The inventory level is reviewed at t = i − 1. If li−1 is greater than or equal to s then
no items are ordered so that oi−1 = 0. If instead li−1 is less than s then oi−1 = S − li−1

items are ordered to replenish inventory. In this case, because we have assumed there is
no delivery lag, ordered items are delivered immediately (at t = i − 1) thereby restoring
inventory to the level S. In either case, the inventory level at the end of the ith time
interval is diminished by di. Therefore, as summarized by Algorithm 1.3.1, with l0 = S
the inventory orders o0, o1, o2, . . . and corresponding inventory levels l1, l2, . . . are defined
by

oi−1 =
�

0 li−1 ≥ s

S − li−1 li−1 < s
and li = li−1 + oi−1 − di.

Note that l0 = S > s and so o0 must be zero; accordingly, only o1, o2, . . . are of interest.
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Algorithm 1.3.1 If the demands d1, d2, . . . are known then this algorithm computes the
discrete time evolution of the inventory level for a simple (s, S) inventory system with back
ordering and no delivery lag.

l0 = S; /* the initial inventory level is S */

i = 0;

while ( more demand to process ) {
i++;

if (li−1 < s)

oi−1 = S - li−1;

else

oi−1 = 0;

di = GetDemand();

li = li−1 + oi−1 - di;

}
n = i;

on = S - ln;

ln = S; /* the terminal inventory level is S */

return l1, l2, . . . , ln and o1, o2, . . . , on;

Example 1.3.1 Let (s, S) = (20, 60) and apply Algorithm 1.3.1 to process n = 12 time
intervals of operation with the input demand schedule:

i : 1 2 3 4 5 6 7 8 9 10 11 12
input di : 30 15 25 15 45 30 25 15 20 35 20 30

As illustrated in Figure 1.3.2, the time evolution of the inventory level typically features
several intervals of decline, followed by an increase when an order is placed (indicated by
the vertical dotted line) and, because there is no delivery lag, is immediately delivered.
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Figure 1.3.2.
Inventory
levels.

At the end of the last interval (at t = n = 12) an order for on = 50 inventory units was
placed. The immediate delivery of this order restores the inventory level at the end of the
simulation to the initial inventory level S, as shown in Figure 1.3.2.
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1.3.3 OUTPUT STATISTICS

As with the development of program ssq1 in the previous section, we must address
the issue of what statistics should be computed to measure the performance of a simple
inventory system. As always, our objective is to analyze these statistics and, by so doing,
better understand how the system operates.

Definition 1.3.2 The average demand and average order are, respectively

d̄ =
1
n

n�

i=1

di and ō =
1
n

n�

i=1

oi.

Example 1.3.2 For the data in Example 1.3.1, d̄ = ō = 305/12 ∼= 25.42 items per time
interval. As explained next, these two averages must be equal.

The terminal condition in Algorithm 1.3.1 is that at the end of the nth time interval
an order is placed to return the inventory to its initial level. Because of this terminal
condition, independent of the value of s and S, the average demand d̄ and the average
order ō must be equal. That is, over the course of the simulated period of operation, all
demand is satisfied (although not immediately when back ordering occurs). Therefore, if
the inventory level is the same at the beginning and end of the simulation then the average
“flow” of items into the facility from the supplier, ō, must have been equal to the average
“flow” of items out of the facility to the customers, d̄. With respect to the flow of items
into and out of the facility, the inventory system is said to be flow balanced.

facilitycustomers supplier..................................................................................................................................................................................
d̄ ..................................................................................................................................................................................

ō Figure 1.3.3.
Flow balance.

Average Inventory Level

The holding cost and shortage cost are proportional to time-averaged inventory levels.
To compute these averages it is necessary to know the inventory level for all t, not just at
the inventory review times. Therefore, we assume that the demand rate is constant between
review times so that the continuous time evolution of the inventory level is piecewise linear
as illustrated in Figure 1.3.4.
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Definition 1.3.3 If the demand rate is constant between review times, then at any time
t in the ith time interval the inventory level is l(t) = l�i−1 − (t − i + 1)di, as illustrated in
Figure 1.3.5.

i − 1 i

l�i−1 − di

l�i−1

l(t)

t

.........................................................................................................................................................................................................................................................................................

•

•

(i − 1, l�i−1)

(i, l�i−1 − di)

l(t) = l�i−1 − (t − i + 1)di

Figure 1.3.5.
Linear inventory
level in time
interval i.

In this figure and related figures and equations elsewhere in this section, l �i−1 = li−1 +oi−1

represents the inventory level after inventory review. Accordingly, l �i−1 ≥ s for all i. (For
the figure in Example 1.3.1, the ◦’s and •’s represent li−1 and l�i−1 respectively).

The equation for l(t) is the basis for calculating the time-averaged inventory level for
the ith time interval.* There are two cases to consider. If l(t) remains non-negative over
the ith time interval then there is only a time-averaged holding level integral to evaluate:

l̄+i =
� i

i−1

l(t) dt.

If instead l(t) becomes negative at some time τ interior to the ith interval then, in addi-
tion to a time-averaged holding level integral, there is also a time-averaged shortage level
integral to evaluate. In this case the two integrals are

l̄+i =
� τ

i−1

l(t) dt and l̄−i = −
� i

τ

l(t) dt.

* Because the inventory level at any time is an integer, the figure in Definition 1.3.3 is
technically incorrect. Instead, rounding to an integer value should be used to produce the
inventory level time history illustrated in Figure 1.3.6. (�z� is the floor function; �z + 0.5�
is z rounded to the nearest integer.)
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It can be shown, however, that rounding has no effect on the value of l̄+i and l̄−i .
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No Back Ordering

The inventory level l(t) remains non-negative throughout the ith time interval if and
only if the inventory level at the end of this interval is non-negative, as in Figure 1.3.7.
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Figure 1.3.7.
Inventory level
in time interval

i with no
backordering.

Therefore, there is no shortage during the ith time interval if and only if di ≤ l�i−1. In this
case the time-averaged holding level integral for the ith time interval can be evaluated as
the area of a trapezoid so that

l̄+i =
� i

i−1

l(t) dt =
l�i−1 + (l�i−1 − di)

2
= l�i−1 −

1
2
di and l̄−i = 0.

With Back Ordering

The inventory level becomes negative at some point τ in the ith time interval if and
only if di > l�i−1, as illustrated in Figure 1.3.8.
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By using similar triangles, it can be shown that τ = i − 1 + (l�i−1/di). In this case, the
time-averaged holding level integral and shortage level integral for the ith time interval can
be evaluated as the area of a triangle so that

l̄+i =
� τ

i−1

l(t) dt = · · · =
(l�i−1)

2

2di
and l̄−i = −

� i

τ

l(t) dt = · · · =
(di − l�i−1)

2

2di
.
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The time-averaged holding level and shortage level for each time interval can be
summed over all intervals with the resulting sums divided by the number of intervals.
Consistent with Definition 1.3.4, the result represents the average number of items “held”
and “short” respectively, with the average taken over all time intervals.

Definition 1.3.4 The time-averaged holding level and the time-averaged shortage level
are, respectively

l̄+ =
1
n

n�

i=1

l̄+i and l̄− =
1
n

n�

i=1

l̄−i .

It is potentially confusing to define the time-averaged shortage level as a positive
number, as we have done in Definition 1.3.3. In particular, it would be a mistake to
compute the time-averaged inventory level as the sum of l̄+ and l̄−. Instead, the time-
averaged inventory level is the difference

l̄ =
1
n

� n

0

l(t) dt = l̄+ − l̄−.

The proof of this result is left as an exercise.

Example 1.3.3 For the data in Example 1.3.1, l̄+ = 31.74 and l̄− = 0.70. Therefore,
over the 12 time intervals, the average number of items held was 31.74, the average number
of items short was 0.70, and the average inventory level was 31.04.

1.3.4 COMPUTATIONAL MODEL

Algorithm 1.3.1 is the basis for program sis1 presented at the end of this section —
a trace-driven computational model of a simple inventory system.

Program sis1

Program sis1 computes five statistics: d̄, ō, l̄+, l̄− and the order frequency ū, which
is

ū =
number of orders

n
.

Because the simulated system is flow balanced, ō = d̄ and so it would be sufficient for
program sis1 to compute just one of these two statistics. The independent computation
of both ō and d̄ is desirable, however, because it provides an important consistency check
for a (flow balanced) simple inventory system.

Example 1.3.4 Program sis1 reads input data corresponding to n = 100 time intervals
from the file sis1.dat. With the inventory policy parameter values (s, S) = (20, 80) the
results (with dd.dd precision) are

ō = d̄ = 29.29 ū = 0.39 l̄+ = 42.40 l̄− = 0.25.

As with program ssq1, in Chapter 3 we will free program sis1 from its reliance on external
data by using randomly generated demand data instead.
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1.3.5 OPERATING COST

Definition 1.3.5 In conjunction with the four statistics ō, ū, l̄+ and l̄−, a facility’s cost
of operation is determined by four constants:

• citem — the (unit) cost of a new item;

• csetup — the setup cost associated with placing an order;

• chold — the cost to hold one item for one time interval;

• cshort — the cost of being short one item for one time interval.

Case Study

Consider a hypothetical automobile dealership that uses a weekly periodic inventory
review policy. The facility is the dealer’s showroom, service area and surrounding storage
lot and the items that flow into and out of the facility are new cars. The supplier is the
manufacturer of the cars and the customers are people convinced by clever advertising that
their lives will be improved significantly if they purchase a new car from this dealer.

Example 1.3.5 Suppose space in the facility is limited to a maximum of, say S = 80,
cars. (This is a small dealership.) Every Monday morning the dealer’s inventory of cars is
reviewed and if the inventory level at that time falls below a threshold, say s = 20, then
enough new cars are ordered from the supplier to restock the inventory to level S.*

• The (unit) cost to the dealer for each new car ordered is citem = $8000.

• The setup cost associated with deciding what cars to order (color, model, options, etc.)
and arranging for additional bank financing (this is not a rich automobile dealer) is
csetup = $1000, independent of the number ordered.

• The holding cost (interest charges primarily) to the dealer, per week, to have a car sit
unsold in his facility is chold = $25.

• The shortage cost to the dealer, per week, to not have a car in inventory is hard to
determine because, in our model, we have assumed that all demand will ultimately
be satisfied. Therefore, any customer who wants to buy a new car, even if none
are available, will agree to wait until next Monday when new cars arrive. Thus the
shortage cost to the dealer is primarily in goodwill. Our dealer realizes, however, that
in this situation customers may buy from another dealer and so, when a shortage
occurs, he sweetens his deals by agreeing to pay “shorted” customers $100 cash per
day when they come back on Monday to pick up their new car. This means that the
cost of being short one car for one week is cshort = $700.

* There will be some, perhaps quite significant, delivery lag but that is ignored, for now,
in our model. In effect, we are assuming that this dealer is located adjacent to the supplier
and that the supplier responds immediately to each order.
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Definition 1.3.6 A simple inventory system’s average operating costs per time interval
are defined as follows:

• item cost: citem · ō;
• setup cost: csetup · ū;

• holding cost: chold · l̄+;

• shortage cost: cshort · l̄−.

The average total cost of operation per time interval is the sum of these four costs. This
sum multiplied by the number of time intervals is the total cost of operation.

Example 1.3.6 From the statistics in Example 1.3.4 and the constants in Example 1.3.5,
for our auto dealership the average costs are:

• the item cost is $8000 · 29.29 = $234, 320;

• the setup cost is $1000 · 0.39 = $390;

• the holding cost is $25 · 42.40 = $1060;

• the shortage cost is $700 · 0.25 = $175.

Each of these costs is a per week average.

Cost Minimization

Although the inventory system statistic of primary interest is the average total cost
per time interval, it is important to know the four components of this total cost. By
varying the value of s (and possibly S) it seems reasonable to expect that an optimal
(minimal average cost) periodic inventory review policy can be determined for which these
components are properly balanced.

In a search for optimal (s, S) values, because ō = d̄ and d̄ depends only on the demand
sequence, it is important to note that the item cost is independent of (s, S). Therefore,
the only cost that can be controlled by adjusting the inventory policy parameters is the
sum of the average setup, holding, and shortage costs. In Example 1.3.7, this sum is called
the average dependent cost . For reference, in Example 1.3.6 the average dependent cost is
$390 + $1060 + $175 = $1625 per week.

If S and the demand sequence is fixed, and if s is systematically increased, say from
0 to some large value less than S, then we expect to see the following.

• Generally, the average setup cost and holding cost will increase with increasing s.

• Generally, the average shortage cost will decrease with increasing s.

• Generally, the average total cost will have a ‘U’ shape indicating the presence of one
(or more) optimal value(s) of s.

Example 1.3.7 is an illustration.
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Example 1.3.7 With S fixed at 80, a modified version of program sis1 was used to
study how the total cost relates to the value of s. That is, the cost constants in Exam-
ple 1.3.5 were used to compute the average setup, holding, shortage, and dependent cost
for a range of s values from 1 to 40. As illustrated in Figure 1.3.9, the minimum average
dependent cost is approximately $1550 at s = 22.
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Figure 1.3.9.
Costs for an
(s, 80) simple

inventory
system for

s = 1, 2, . . . , 40.

As in the case study concerning the ice cream shop, the “raw” simulation output data is
presented. In this case, however, because the parameter s is inherently integer-valued (and
so there is no “missing” output data at, say, s = 22.5) no interpolating or approximating
curve is superimposed. [For a more general treatment of issues surrounding simulation
optimization, see Andradóttir (1998).]

1.3.6 EXERCISES

Exercise 1.3.1 Verify that the results in Example 1.3.1 and the averages in Exam-
ples 1.3.2 and 1.3.3 are correct.

Exercise 1.3.2 (a) Using the cost constants in Example 1.3.5, modify program sis1 to
compute all four components of the total average cost per week. (b) These four costs may
differ somewhat from the numbers in Example 1.3.6. Why? (c) By constructing a graph
like that in Example 1.3.7, explain the trade-offs involved in concluding that s = 22 is the
optimum value (when S = 80). (d) Comment on how well-defined this optimum is.
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Exercise 1.3.3 Suppose that the inventory level l(t) has a constant rate of change over
the time interval a ≤ t ≤ b and both l(a) and l(b) are integers. (a) Prove that

� b

a

l(t) dt =
� b

a

�l(t) + 0.5� dt =
1
2
(b − a)

�
l(a) + l(b)

�
.

(b) What is the value of this integral if l(t) is truncated rather than rounded (i.e., if the
0.5 is omitted in the second integral)?

Exercise 1.3.4 (a) Construct a table or figure similar to Figure 1.3.7 but for S = 100
and S = 60. (b) How does the minimum cost value of s seem to depend on S? (See
Exercise 1.3.2.)

Exercise 1.3.5 Provided there is no delivery lag, prove that if di ≤ s for i = 1, 2, . . . , n,
then l̄− = 0.

Exercise 1.3.6 (a) Provided there is no delivery lag, prove that if S − s < di ≤ S for
i = 1, 2, . . . , n then l̄+ = S − d̄/2. (b) What is the value of l̄− and ū in this case?

Exercise 1.3.7 Use Definitions 1.3.3 and 1.3.4 to prove that the average inventory level
equation

l̄ =
1
n

� n

0

l(t) dt = l̄+ − l̄−

is correct. Hint: use the (·)+ and (·)− functions defined for any integer (or real number)
x as

x+ =
|x| + x

2
and x− =

|x|− x

2

and recognize that x = x+ − x−.

Exercise 1.3.8 (a) Modify program sis1 so that the demands are first read into a
circular array, then read out of that array, as needed, during program execution. (b) By
experimenting with different starting locations for reading the demands from the circular
array, explore how sensitive the program’s statistical output is to the order in which the
demands occur.

Exercise 1.3.9a (a) Consider a variant of Exercise 1.3.8, where you use a conventional
(non-circular) array and randomly shuffle the demands within this array before the de-
mands are then read out of the array, as needed, during program execution. (b) Repeat
for at least 10 different random shuffles and explore how sensitive the program’s statistical
output is to the order in which the demands occur.


