Corso Zero Equazioni e disequazioni esponenziali e logaritmiche

Dott.ssa L. Marino

Università di Catania

September 19, 2022

Esponenziali

Teoria in sintesi

Ricordiamo le seguenti formule:

Preso un numero intero positivo *n* avremo che

$$a^{-n} = \frac{1}{a^n}$$

Esempio: $a^{-3} = \frac{1}{a^3}$

Ricordiamo inoltre che una potenza con esponente frazionario è uguale in simboli

$$\sqrt[n]{a^m} = a^{\frac{m}{n}}, \ m, n \in \mathbb{Z}$$

Esempio:
$$\sqrt[2]{a^1} = a^{\frac{1}{2}}$$

 $12^{\frac{5}{2}} = \sqrt{12^{-5}} = \sqrt{\frac{1}{12^5}}$

Potenze con esponente reale

La potenza a^x è definita:

- Se la base è positiva, cioè a > 0, invece l'esponente è un numero reale sia positivo che negativo $\forall x \in \mathbb{R}$.
- Se la base è nulla, cioè a=0, l'esponente per tutti i numeri reali positivi, $\forall x \in \mathbb{R}^+$
- Se la base è negativa, $(-a)^x$, allora l'esponente deve essere un numero intero relativo, $\forall x \in \mathbb{Z}$
- Se la base è uno, $1^x = 1, \forall x \in \mathbb{R}$

Esempi:

- 1) $2^x \to \forall x \in \mathbb{R}$
- 2) $0^x \to \forall x > 0$. Questo perchè? Se avessimo $0^{-2} = \frac{1}{0^2} \to \text{impossibile}$
- 3) $(-2)^x o \forall x \in \mathbb{Z}$. Questo perchè ? $(-2)^{\frac{1}{2}} = \sqrt{(-2)^1}$ assurdo

Le equazioni esponenziali

Le equazioni esponenziali

Si chiamano equazioni esponenziali tutte le equazioni che contengono un valore incognito all'esponente. Le più semplici in cui ci si può imbattere sono dette elementari e si presentano nella forma:

$$a^{x} = b$$

con $a > 0, a \neq 1$.

Quante soluzioni ha questa equazione? Poiché a^x è un numero sempre positivo, l'equazione risulterà impossibile se $b \le 0$. L'equazione ha invece un'unica soluzione con b>0. Per risolvere le equazioni elementari vanno ricordate e applicate le proprietà delle potenze e la definizione di logaritmo.

Se a > 0, avremo quindi

$$a^x > 0 \forall x \in \mathbb{R}$$

Esempio:

Vediamo il segno di 2^x :

supponiamo $x = 3 \rightarrow 2^3 = 8 > 0$

supponiamo
$$x = -2 \rightarrow 2^{-2} = \frac{1}{2^2} = \frac{1}{4} > 0$$

Equazioni esponenziali: Sia a > 0, consideriamo l'equazione

$$a^{x} = b$$

Per equilibrare l'equazione, b come deve essere?

Poichè il I membro sempre positivo, II lo deve essere pure.

Esempio n.1:

Risolvere la seguente equazione esponenziale:

$$4^{x+1} = -2$$

E' chiaro che è IMPOSSIBILE.

Esempio n.2:

 $4^{x+1}=2 o 2^{2(x+1)}=2^1 o$ si uguagliano gli esponenti

$$2(x+1) = 1 \rightarrow 2x + 2 = 1 \rightarrow 2x = 1 - 2 \rightarrow 2x = -1 \rightarrow x = -\frac{1}{2}$$

Proprietà delle potenze

Proprietà delle potenze

Per ogni opportuna scelta dei numeri reali a, b, c, valgono le seguenti proprietà:

$$a^b \cdot a^c = a^{b+c}$$
$$a^b \cdot c^b = (a \cdot c)^b$$

Da queste proprietà si possono dedurre le seguenti:

$$a^b: a^c = \frac{a^b}{a^c} = a^{b-c}$$

 $a^b: c^b = (a:c)^b$
o equivalentemente $\frac{a^b}{c^b} = (\frac{a}{c})^b$
 $(a^b)^c = a^{b \cdot c}$ (proprietà della potenza di una potenza).

Alcune definizioni

Definizioni

Consideriamo un numero reale a > 0

Se eleviamo *a* alla zero, otteniamo 1, ovvero:

$$a^{0} = 1$$

Preso un numero intero positivo, definiamo:

$$a^{-m}=\frac{1}{a^m}$$

Preso un numero razionale della forma $\frac{1}{q}, q \in \mathbb{N}$ definiamo $a^{\frac{1}{q}}$ come quel numero che elevato a q dà come risultato a.

$$a^{\frac{1}{q}} = \sqrt[q]{a}$$

e chiameremo questo numero radice q-esima di a.

Come si procede se l'equazione esponenziale non è elementare? I casi più frequenti sono tre e vengono illustrati in questo video tramite esempi ed esercizi svolti.

1) Nei due membri dell'equazione compaiono solo prodotti e quozienti di potenze con la stessa base.

Ci si può ricondurre a una forma del tipo

$$a^{f(x)}=a^{g(x)}$$

La soluzione si trova imponendo l'uguaglianza tra gli esponenti:

$$f(x) = g(x)$$

2) Compaiono esponenziali con due basi diverse ma stesso esponente. Applicando le proprietà delle potenze si può ridurre l'equazione a una forma del tipo $m \cdot a^{f(x)} = n \cdot b^{f(x)}$

Basta dividere e si ritrova un'equazione elementare $\left(\frac{a}{b}\right)^{f(x)} = \frac{n}{m}$ Esempio:

$$15 \cdot 3^{2x+1} = 9 \cdot 5^{2x+1}$$

hanno lo stesso esponente

$$\frac{3^{2x+1}}{5^{2x+1}} = \frac{9}{15} \to \left(\frac{3}{5}\right)^{2x+1} = \frac{9}{15} \to \left(\frac{3}{5}\right)^{2x+1} = \frac{3}{5} \to 2x+1 = 1 \to 2x = 0 \to x = 0$$

3) L'equazione contiene a^x e il suo quadrato a^{2x} . Tramite la sostituzione $t=a^x$ si può trasformare l'equazione in un'equazione di secondo grado nella variabile t; risolta questa, si riconduce la soluzione a un'equazione esponenziale elementare.

$$\lambda \cdot (a^x)^2 + \mu \cdot a^x + \delta = 0 \rightarrow pongo \ a^x = t \rightarrow \lambda t^2 + \mu t + \delta = 0$$
 e si risolve l'equazione di secondo grado in t.

Esempio

$$2^{2x} - 2^x - 2 = 0 \rightarrow (2^x)^2 - 2^x - 2 = 0$$

pongo $2^x = t$ e l'equazione diventa:

$$t^2 - t - 2 = 0 \rightarrow \triangle = 1 + 8 = 9 \rightarrow t = \frac{1 \pm \sqrt{9}}{2} = \frac{1 \pm 3}{2} \rightarrow t_1 = 2, t_2 = -1$$

Adesso t chi era?

$$t_1 = 2^{x_1} = 2^1 \rightarrow x_1 = 1$$

$$t_2 = 2^{x_2} = -1 \rightarrow impossibile, \emptyset$$

Esercizi sulle equazioni esponenziali di base

Equazioni esponenziali risolubili mediante applicazione delle proprietà delle potenze:

•
$$8^{x^2-3x} = 1 [R : x = 0 \ o \ x = 3]$$

•
$$7^{x^2+4x+3} = \frac{1}{7} [R : x = -2]$$

•
$$3^{3x} = \frac{1}{27} R : [x = -1]$$

$$\frac{7}{3}^{-2x} = \frac{9}{49} [R: x = 1]$$

•
$$2^x = -2 [R : impossibile]$$

Esercizi sulle equazioni esponenziali mediante variabile ausiliaria

Equazioni esponenziali risolubili mediante una variabile ausiliaria:

•
$$10^2x + 3 \cdot 10^x + \frac{5}{4} = 0$$
 [R: impossibile]

•
$$3^{4\sqrt{x}} - 4 \cdot 3^{2\sqrt{x}} + 3 = 0$$
 [R: $x = \frac{1}{4}$ o $x = 0$]

•
$$16^x - \frac{3}{2}4^x + \frac{1}{2} = 0$$
 [R: $x = -\frac{1}{2}$ o $x = 0$]

•
$$2^{3x-2} - 2^{3x-3} - 2^{3x-4} = 4 [R : x = 2]$$

•
$$4^{x+8} = \frac{1}{4^{2x-5}} [R : x = -1]$$

Disequazioni esponenziali

La procedura per risolvere le disequazioni esponenziali è molto simile a quella usata per le equazioni esponenziali. Alla fine delle semplificazioni, quando va effettuato il passaggio agli esponenti, si possono presentare due casi:

1) Se a > 1 il verso della disequazione non cambia:

$$a^{f(x)} > a^{g(x)} \Leftrightarrow f(x) > g(x)$$

In questo caso la funzione esponenziale è strettamente crescente, cioè è tanto più grande quanto più è grande il suo esponente.

2) Se 0 < a < 1 il verso della disequazione cambia:

$$a^{f(x)} > a^{g(x)} \Leftrightarrow f(x) < g(x)$$

Esercizi sulle disequazioni esponenziali

•
$$3^x + \frac{1}{3 \cdot 3^x} > \frac{28}{9} [R : x < -2 \ o \ x > 1]$$

•
$$7 \cdot 49^x - 50 \cdot 7^x + 7 > 0 [R : x < -1 \ o \ x > 1]$$

•
$$2^2x - 5 \cdot 2^x + 4 < 0$$
 [R: 0 < x < 2]

•
$$2^{\frac{11}{2x+3}} > 32^{\frac{1}{2-x}} [R: -\frac{3}{2} < x < \frac{1}{3} o x > 2]$$

•
$$4^x + 2^{x+1} - 3 > 0 R : x > 0$$

•
$$2^{\frac{2x+4}{x}} < (\frac{1}{4})^{-2} [R : x < 0 \ o \ x > 2]$$

•
$$\frac{5^x}{5^x-1} + \frac{3}{5^x+1} < -\frac{2}{1-5^2x} [R : \forall x \in \mathbb{R}]$$

•
$$(\frac{1}{2})^{x+1} < 1 [R : x > -1]$$

•
$$(\frac{1}{5})^{3x+2} > 1 [R : x < -\frac{2}{3}]$$

Logaritmo

Si dice **logaritmo** in base a di b, e si scrive $x = \log_a(b)$?l'esponente x che si deve ad a (base) per ottenere b (argomento). Le due scritture $a^x = b$ e $x = \log_a(b)$?sono quindi equivalenti e i parametri devono soddisfare le condizioni già viste per la funzione esponenziale:

$$b > 0, a > 0, a \neq 1$$

Si dice funzione logaritmica una funzione che si presenta nella forma

$$y = \log_a(x)$$

dove la base a è un numero reale positivo diverso da 1. Tutte le funzioni logaritmiche sono definite solo per x>0, il loro dominio cioè è l?intervallo $(0,+\infty)$

La funzione logaritmica in una determinata base è la funzione inversa della funzione esponenziale nella stessa base. I logaritmi godono di svariate proprietà, strettamente legate alle proprietà delle potenze, illustrate nella prossima lezione.

Proprietà dei logaritmi

I logaritmi godono di tre importanti proprietà, che derivano in modo immediato dalle proprietà delle potenze:

1) Il logaritmo di un prodotto è uguale alla somma dei logaritmi dei singoli fattori

$$\log_a(x \cdot y) = \log_a(x) + \log_a(y)$$

2) Il logaritmo di un quoziente è uguale alla differenza tra il logaritmo del numeratore e il logaritmo del denominatore

$$\log_a\left(\frac{x}{y}\right) = \log_a(x) - \log_a(y)$$

3) Il logaritmo della potenza di un numero positivo è uguale al prodotto dell'esponente per il logaritmo del numero

$$\log_a(x^y) = y \cdot \log_a(x)$$

Formula del cambiamento base

Se si vuole stimare il valore di un logaritmo con la calcolatrice può essere molto utile la formula del cambiamento base:

$$\log_a(b) = \frac{\log_c(b)}{\log_c(a)}$$

Equazioni logaritmiche

Per essere risolte queste equazioni vanno semplificate con alcuni passaggi fino a quando non si presentano in una delle due forme seguenti:

1) Uguaglianza tra due logaritmi con la stessa base: si passa agli argomenti

$$\log_a f(x) = \log_a g(x) \Leftrightarrow f(x) = g(x)$$

2) Uguaglianza tra un logaritmo e un numero: si usa la definizione di logaritmo

$$\log_a f(x) = c \Leftrightarrow \log_a f(x) = \log_a a^c \Leftrightarrow f(x) = a^c$$

Ricordiamo che un numero si può sempre pensare $\log_a a^c = c$

Esercizi sulle equazioni logaritmiche

Risolvere le seguenti equazioni logaritmiche:

•
$$log_2(x-1) = 3 [R : x = 9]$$

•
$$log(x-2) - log(x-1) = log5 [R : \emptyset]$$

•
$$2 \cdot log_2 x = 2 + log_2(x+3) [R : x = 6]$$

•
$$log_3(x-1) = \frac{1}{2}log_3x \left[R : x = \frac{3+\sqrt{5}}{2}\right]$$

•
$$log(x-2) + log5 = logx [R : x = \frac{5}{2}]$$

•
$$log(x-1) - 2 \cdot log(x+1) - log8 = -2 [R : x = \frac{3}{2}, 9]$$

•
$$3log_9x + log_3x = 10 [R : x = 81]$$

Disequazioni logaritmiche

Il metodo per risolvere le disequazioni logaritmiche è simile a quello usato per le equazioni. Nell'ultimo passaggio, però, è importante fare attenzione alla base del logaritmo:

1) Se a > 1 il verso della disequazione non cambia

$$\log_a f(x) > \log_a g(x) \Leftrightarrow f(x) > g(x)$$

$$\log_a f(x) > c \Leftrightarrow \log_a f(x) > \log_a a^c \Leftrightarrow f(x) > a^c$$

2) Se 0 < a < 1 il verso della disequazione cambia

$$\log_a f(x) > \log_a g(x) \Leftrightarrow f(x) < g(x)$$
$$\log_a f(x) > c \Leftrightarrow f(x) < a^c$$

Esercizi sulle disequazioni logaritmiche ed esponenziali

Risolvere le seguenti disequazioni:

•
$$log_5 x < -10 \ [R: 0 < x < 5^{-10}]$$

•
$$log_{\frac{1}{2}}x < 2 [R: x > \frac{1}{4}]$$

•
$$log_3(x+4) \ge log_3(2x+3) [R: -\frac{3}{2} < x \le 1]$$

•
$$log_2^2 x - 6log_2 x + 8 > 0$$
 [R: 0 < x < 4 o x > 16]

•
$$log_{\frac{1}{3}}(2x-1) < 1 \ [R: x > \frac{2}{3}]$$

•
$$log_{10}x - 1 > \frac{2}{log_{10}x} [R : \frac{1}{10} < x < 1; x > 100]$$

•
$$log_3^2 x - 4log_3 x + 3 < 0 \ [R: 3 < x < 27]$$

•
$$log_{\frac{1}{2}}(x^2+2) \le log_{\frac{1}{2}}(x+1) + log_{\frac{1}{2}}(x-2) [R:x>2]$$

•
$$\sqrt{log_{10}x} < 1 \ [R: 1 \le x < 10]$$

Esercizi sulle disequazioni logaritmiche ed esponenziali

Risolvere le seguenti disequazioni:

•
$$2^{x-1} + 2^x + 2^{x+1} > 1 [R : x > log_2 \frac{2}{7}]$$

•
$$1 - 5^{x^2} \ge 0 [R : x = 0]$$

•
$$(\frac{1}{5})^x - \frac{2}{5^{1-x}} > \frac{3}{5} [R: x < 0]$$

•
$$2^{x+7} + 4 > 0 [R : \forall x \in \mathbb{R}]$$

•
$$\frac{2^x - 1}{8 - 2^x} > 0$$
 [R: 0 < x < 3]

•
$$2^{2x} - 10 \cdot 2^x + 16 < 0 \ [R : 1 < x < 3]$$

•
$$(0.2)^{(x-1)^2} < (\frac{1}{5})^{2x+x^2} [R: x < \frac{1}{4}]$$