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Convolutions



Why "convolutional" filters?

▪ Linear and translation invariant filters are also called convolutional filters.

▪We need to study the convolution operation to better understand how a
filter can be computed.

▪ In addition, convolution is an extremely important phenomenon for all kinds
of signal processing and for describing many physical events.
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Convolution: properties

• To indicate the convolution operation, we use the notation 

h = f     g

• The convolution is commutative

f      g = g       f

• The convolution is associative

(f     g)    h  = f    (g     h)
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▪ If kernel f has size kxh, the formula should be rewritten as follows.

▪ If the kernel indexes are arranged so that the coordinate point (0,0) is at the central position.

In the finite case (1)
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▪ If kernel f has size kxh, the formula should be rewritten as follows.

▪ If the kernel indexes are arranged starting from 1 until h or k.

Nel caso finito (2)
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In the implementation

One problem is with edges: how to do convolution and filtering at edges?

POSSIBLE SOLUTIONS:

a) Filter only the central areas of the image

b) Assume that all around the image there is 0

c) Assume a "toroidal" topology: when you "overflow to the right" you indent to the left, when you
"overflow" to the bottom you indent to the top and vice versa;

d) Add a row at the beginning equal to the previous rows, a row at the end equal to the last row, a
column at the beginning equal to the starting column, and a column at the end equal to the ending
column.
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Median

▪ It is a nonlinear filter that outputs the median value of the pixel's
neighborhood.
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Median filter
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Minimum filter
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Maximum filter
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Edge extraction

▪ Local operators help us extract edges from an image.

▪ Edges are defined as local luminance discontinuities.

▪ Edge detectors provide images in which luminance variations are preserved
and all other information is removed.
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Edge detectors based on the first derivative

▪ If I have a one-dimensional signal and calculate the first derivative, I find that the
edges are the correspondences of the maxima of the derivative.

▪ Then the filters have to calculate the derivative in the x-direction that in the y-
direction and then combine them together.
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Sobel x
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Sobel y
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Better results...

▪ They are obtained with more sophisticated (nonlinear) algorithms for calculating
the magnitude of the gradient (sum of the square of the response of a horizontal
edge finder and the square of the response of a vertical edge finder)

▪ They are obtained with more "intelligent" strategies (Canny's algorithm, fuzzy
algorithms, backtracking techniques, etc.)
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Edge detectors based on the second derivative

▪ If I have a one-dimensional signal and calculate
the second derivative, I find that at the side it
passes through zero.
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Laplacian 
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Laplacian 
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Confronto 
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Morphology Mathematics



Morphology Mathematics

▪Goal: To distinguish relevant shape information from irrelevant
information.

▪Most techniques for analyzing and processing the shape of regions are based
on making a shape operator that satisfies the required properties.



Examples

The analysis of an image involves the
extraction of measures characteristic
of the image under consideration.

For example, Geometric measures
consist of the position of an "object,"
orientation, area and length of the
perimeter...



Preliminaries

If an element of A is

defined as a=(a1,a2) the

following expressions are

well defined:

 

a a belongs to the set A;

a a does not belong to the set A;

 A is included in B;

=C Union;

=C Intersection;

= Empty intersection;

 = ww
c

| Complementary of A;

  c
wwwB ==− ,| Insiemistic difference;



Examples



Logical 
operations



Reflection and Translation

 

       '    ,  ,)(

 '  ,  ,ˆ

AinsiemedelleTraslazionAazawwA

BinsiemedelleRiflessionBbbwwB

z +==

−==
Let A and B be sets in Z2 



Structuring element

The image structure is "probed" with a user-definable shape set (structuring element)
usually encoded by a small raster image (3×3 or 5×5).



The expansion effect is due to the application of the structuring element B near the edges.

It follows from the definition that the structuring element is flipped with respect to its
origin, through the reflection operation, and shifted by z positions through a translation.
The result of the operator is the set of z positions such that (B^)z intersects at least one
element of A.

Dilatation
Expands objects

( )  ( ) AABzABzBA zz == ˆˆ



Example of Dilation



Applications: 
Filling



Example of Dilation

> B=ones(3,3)



Example of Dilation

> B=ones(3,3)
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Example of Dilation
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Example of Dilation

> B=ones(3,3)

0
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Erodes/shrinks objects

The erosion effect is due to the fact that when the structuring element B is
translated near the edges it is not completely contained in A.

Erosion

( ) ABzBA z =



Example of Erosion



Example of Erosion
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Example of Erosion
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Example of Erosion



Particle Size Analysis

Shown on the left is an image containing white squares of size 1,3,5,7,9 and 15. In the center
is the output of an erosion process with a structural element of side 13. Then applying an
expansion with the same structural element results in an elegant removal of the initial
details



Estrazione dei contorni

As dilation makes regions thicker and erosion thins them, their difference emphasizes the
boundaries between regions. The result is an image in which the edges between objects are
clearly seen and in which the contribution of homogeneous regions is not present.

▪ Binary images

▪ Grayscale images



Python and OpenCV

An introduction on Deepfakes Creation 
and Detection Approaches
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Dilate and Erode
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Python and OpenCV
Example with Gray scale image
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B&W Vs Gray scale
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Introduction 

A periodic function can be expressed as a sum of sines
and/or cosines of different frequencies and amplitudes
(Fourier Series).

Even a nonperiodic function, (under certain conditions) can
be expressed as an integral of sines and/or cosines,
multiplied by appropriate weight-functions (Fourier
Transform).

Jean Baptiste Joseph Fourier 

(Auxerre, 1768 –Paris, 1830) 



Introduction

▪Originally, Fourier analysis found application in the field of heat diffusion
where it enabled the formulation and solving of differential equations of
certain physical phenomena in a completely original way.

Both the Fourier series and the Fourier Transform share the fact that a
function can be "reconstructed" (recovered) by a simple inversion process
without loss of information.

That is, it is possible to work in the so-called Fourier domain and return to
the original domain of the function in a completely natural way.



Introduzione

With the emergence in the 1960s of the FFT (Fast Fourier Transform), the field of digital
signal processing (DSP) underwent a real revolution, and today these concepts find
application in a wide variety of industrial fields, from medicine to telecommunications, etc.



Images and Signals

▪ An image can be viewed as a discrete function in two dimensions whose
values represent the gray level of a given pixel.

▪ The "image" function can be viewed as a signal, that is, a variable function in
a domain with its own frequency (constant or variable).



A

T = 1/f

Time Domain Frequency Domain

➢ Amplitude (A) expressed in decibels dB;
➢ Period (T) expressed in seconds;
➢ Frequency (f) number of cycles (waves) per

second; measured in Hertz Hz



Discrete Fourier Transform

In the 2-D case the transformed / anti-transformed pair of the two-dimensional sequence f(x,y)
takes the following form:

u and v are the indices related to the discretized frequency axes, while M and N are the dimensions
(in pixels) of the image.
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Euler formula

▪ For each real number x we have:

eix = cos x + i sen x

▪ And so:

 e-ix = cos x - i sen x



Trasformata di Fourier

Transform Spectrum
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Since the F transform has complex values, it can be expressed in terms of its real part and
its imaginary part.



Dynamic range

▪ When viewing the Fourier spectrum as an intensity image, it typically manifests much greater dynamics
than can be reproduced on a typical display, so only the brightest parts of the spectrum are visible. For
example, the spectrum of Lena's image varies between 0 (approximately) and 6.47x106.

▪ By performing the normalization necessary to display it with L=256 levels of gray, only very few very bright
parts are visible.

▪ This can be remedied, as is known, by means of a logarithmic type of compression, displaying, instead of
the spectrum, a function of the type:

D(u,v)=c log(1+ F(u,v))

▪ c is a scaling constant, which must be chosen appropriately so that the transformed values fall in the desired
range, that is, in [0, L-1]



Dynamic range

Since 0 < |F(u,v)|< R = 6.47x106, we have 0 < D(u,v)<clog(1+R). Since R>>1, as, moreover, is normally the case
for the Fourier spectrum of an image, one can put c log R=L-1, whence c= (L-1)/log R= 255/log(6.47x106) =
16.26

Therefore D(u,v) has all values in the range [0, 255], and this allows for the visualization of much more detail.



Details
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Lena's module



Logarithm of Lena's modulus



Lena Phase



The spectrum display is actually about not |F(u,v)| but a logarithmically compressed version of it. Otherwise only

a dot in the center would be seen.

The amplitude contains information concerning whether a certain periodic structure is present in the image.

The phase contains the information regarding where the highlighted periodic structures in the DFT are

located. So it is much more significant than it may appear in the image.



Amplitude vs. phase

Reconstruction alone module

Single-stage reconstruction





3D module



trasformata

A few examples



The spectrum in 3D



trasformata
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The spectrum in 3D
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The spectrum in 3D
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The spectrum in 3D



Fourier transforms: advantages
What advantage can be obtained from the Fourier
transform?

▪ In the space of frequencies it is possible to:
▪ remove unwanted frequencies

▪ reduce the space used by data while limiting signal degeneration (JPEG, MPEG, DivX,
MP3)

▪ regenerate degraded signals



Other Transforms

In addition to the Fourier transform, several transforms used in image processing, with extensive use in
restoration and, especially, compression, belong to the class of unitary transforms.

These include:

▪ The discrete Walsh transform (DWT)

▪ The discrete Hadamard transform (DHT)

▪ The discrete Cosine transform (DCT)

▪ The discrete Karhunen Loeve transform (KLT)
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Some properties of 2-D DFT

▪ Separability

▪ Translation

▪Mean Value



Separability

The discrete Fourier transform can be expressed in separable form. In particular, the
following expression applies:
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The main advantage of the separability properties is that F(u,v) can be obtained by applying
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Translation

In the two-dimensional case it is useful before operating on the transform to
apply a shift (translation) of the origin at the point (M/2, N/2) that is, the
center of the coefficient matrix of frequencies.

This shifts the data in such a way that F(0,0) results in the center of the
rectangle of frequencies defined between [0,M-1] and [0,N-1].

It is also shown that a shift in f(x,y) does not change the magnitude of the
transform.

These properties are used for better visualization of the spectrum.



Translation

A B

DC B

CD

A



The value of the transform at the origin, that is, at the point (u,v)=(0,0) is given by:

As can be seen, it is nothing but the mean of f(x,y). The value of the Fourier transform of an

image f(x) in the origin is equal to the average of the gray values contained in the image.

F(0,0) also takes the name of continuous component or DC component.

Mean Value
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Fast Fourier Transform

▪ In its classical form implementing the Fourier transform would require a number of
operations proportional to N2 (N complex multiplications and N-1 additions for
each of the N values of u).

▪ Using appropriate decomposition techniques, it is possible to lower the complexity
to Nlog2N by implementing the so-called Fast Fourier Transform (FFT).
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Frequencies: Low and High

▪ Normally it is impossible to make direct associations between specific parts of the image
and its transform (loss of spatial localization).

▪ Remembering that frequency is related to rate of change, however, it is possible to
associate low frequencies with uniform areas of the image, high frequencies with more
or less abrupt changes and thus with edges or noise.



An introduction on Deepfakes Creation 
and Detection Approaches

Luca Guarnera

Filtering in the Frequency Domain



Filtering in the Frequency Domain



Filtering in the Frequency Domain

▪ The function H(u,v) is called a filter because it
acts on some frequencies of the transform
while leaving the others unchanged.

▪ Very often the H function is a real function
and each of its components multiplies both
the corresponding real and imaginary
components of the F.

▪ This type of filter is called zerophaseshift
because it does not introduce phase shifting.



Convolution Theorem

Why is the frequency domain and not the spatial domain used to use global operators?

Because the following theorem applies:

The convolution of two signals in the spatial domain is equivalent to the antitransform of
the product of frequencies.



Convolution Theorem

▪ The theoretical foundation of processing techniques in the frequency domain, based on
DFT manipulation of the image, is represented by the convolution theorem, which makes
the operation thus defined correspond to the spatial domain:

▪ the operation, in the frequency domain:

G(u,v) = F(u, v)H(u,v)
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Convolution Theorem

▪ So if the convolution operation in the spatial domain is defined as follows:

▪ The same operation in the frequency domain becomes:

g(x,y)=F-1{F(u,v)H(u,v)}
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Convolution Theorem

▪ Complexity for a 1D signal:
▪ In the frequency domain O(n logn)

▪ In the spatial domain O(n2)

▪ It is actually worthwhile to move to the frequency domain!



Filtering in the Frequency Domain

▪ If the filter is comparable in size to the image, it is more computationally
efficient to perform filtering in the frequency domain.

▪With smaller masks it becomes more computationally efficient to compute in
the spatial domain.

▪ Defining a filter in the frequency domain is more intuitive.
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How to get a filter from a spatial mask

1. The filter H has the same size as the image I;

2. H must have in the upper left corner the values of the spatial mask, in the
rest always the value 0;

3. A shift of H is made.

4. One calculates from H the fourier transform.



Low pass filters in the 
frequency domain
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Low pass ideal



Ideal low-
pass filter



Ideal low-pass 
filter with D0=50



Butterworth low pass filters

The transfer function of the Butterworth low-pass filter of order n and cutoff
frequency D0 è: 
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Butterworth 
low-pass 

filter 



Butterworth low-pass filter with D0=50



Gaussian filter 

▪ Gaussian filters are defined by:

▪ Gaussian filters have the great advantage of still having a Gaussian as the Fourier
transform.
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Gaussian 
low-pass 

filter



Gaussian low-pass filter with D0=50



High pass filters in the 
frequency domain
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Filtro high-pass ideale



Filtro high-pass di Butterworth 



Filtro high-pass gaussiano



Band reject filters in the 
frequency domain
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Ideal band-
reject filter



Butterworth 
band-reject 

filter



Gaussian 
band-

reject filter
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Examples 









An introduction on Deepfakes Creation 
and Detection Approaches

Luca Guarnera



Python code
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https://medium.com/@osah.dilshan/applying-fourier-transform-to-images-
for-patterned-noise-removal-b543f99f61db 
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