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Histogram

= For each gray level, it reports the number of pixels of that color.

= For an image I[m,n] we have
H(k) = number of pixels of value k

= And the sum of all H is exactly mxn

= The histogram is useful for an immediate understanding of the characteristics
of the image.
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Histogram

— Channel: Gray

Pixels: 162400

[

Mean: 157 .92 Level:
Std Dey: 72.21 Count:
Median: 168 Percentile:

Cache Level: 1
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Arithmetic on images

Operating arithmetically, it may happen that a pixel has:
a) A negative value;
b) A value greater than the maximum (typically 255);

c) A non-integer value (easily solved by approximation or truncation);
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Normalization

Problems (a) and (b) on the previous slide are called range problems.

Two are the most common solutions:
= Set negative values to O (black) and values greater than 255 to 255 (white).

= Re-normalize the range by transforming each value according to the equation:

Vold — minobserved
Vyew = 255 * 0

Mmaxgypserved — minobserved
~— ~—

Max value Min value
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Generic Formula

* Normalize in the range [MIN, MAX]

Volg — Min
Voo = (MAX o MIN) . old observed - MIN

Maxgopserved — MNgpserved
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Operations on images

Processing in the spatial domain can be expressed as:

gx,y) =T[f(x,y)]

f being the input image to the processing, g being the output image, and T
being an operator on f defined in a neighborhood of (x,y).
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Types of operations

The size of the neighborhood of (x,y) defines the character of the processing:
" punctual (the neighborhood coincides with the pixel itself);
" local (for example, a small square region centered on the pixel);

= global (the neighborhood coincides with the entire f).
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Types of operations

The size of the neighborhood of (x,y) defines the character of the processing:
= punctual (the neighborhood coincides with the pixel itself);
" local (for example, a small square region centered on the pixel);

= global (the neighborhood coincides with the entire f).
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Typical point operations:

= addition or subtraction of a constant to all pixels (to compensate for
underexposure or overexposure);

= gray scale inversion (negative);
= contrast expansion;

= changing (equalizing or specifying) the histogram;
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OUT

)] (s
7 X[ XX
U : : 6 X
This is universally the interface
that all commercial imaging O X
programs offer for viewing and 4 X
managing point operations 3 X | X
2 | X
1
0
IN
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Look-up Tables (LUT)

light

" This type of chart is called look-up tables
(LUT).

A Look-Up Table (LUT) is a mathematical table used to transform input values into
desired output values. In image processing, LUTs are commonly applied to adjust
colors, brightness, contrast, or tone within an image. By mapping each pixel's
original value to a new value based on predefined settings, LUTs can quickly apply

complex color grading or correction without requiring extensive calculations. -
©
©
dark m ight
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Negative

™ Regola le curve di colore “'Regola le curve di colore
0_1- 1 .png-2 ([0_1- 1 ] (importata)) 0_1- 1 .png-2 ([0_1-_1_] (importata))

Preimpostazioni: 3 Preimpostazioni:

Canale: Valore ¥ Reimposta canale : Canale: Valore - Reimposta canale

e -
Ingresso: 0 Uscita: 255 . Tipo: © ¢

Ingresso: 255 . Uscita: 255 . Tipo: © ¢

Tipo di curva: ~Smussata
Tipo di curva: ~Smussata P
SR + Opzioni di fusione
+ Opzioni di fusione A
e x Dividi vista
x Dividi vista
Aiuto Reimposta (6] ¢ Annulla
Aiuto Reimposta (6] 4 Annulla
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Variations in contrast

" Increasing the contrast, means making color differences more evident.

= This is achieved by going to change the value of one pixel to another that is
darker or lighter.
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Increased contrast

* How should the curve be changed?

Luca Guarnera

Preset: Custom

Cancel

— Channel: RGB

()2

Smooth
Auto
Options...

Preview

-
Input:

th, 151 A # #  [show Clipping

]

%) Curve Display Options

Show Amount of: @ Light (0-255) i
) Pigment/Ink %

show: [¥]Channel Overays [¥]Baseline
Histogram Intersection Line

LN

FLII7
o

* 1438

.|
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Types of operations

The size of the neighborhood of (x,y) defines the character of the processing:
" punctual (the neighborhood coincides with the pixel itself);
" local (for example, a small square region centered on the pixel);

= global (the neighborhood coincides with the entire f).
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Canonical base

= Given a vector of length N, this can be thought of as an element of an N-
dimensional space.

234

204

34

16

44

134

12

11

56

* Then we can decompose it using the canonical basis of that space.

= What is the canonical basis?
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234 *
204 *
34 *

44 =
134 *

11 =

234 204 |34 |16 |44 |134 |12 |11 |56
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

+ + + + + + + +

-

yolvy,
9‘ 0@
&
< &y Z
u = \ Fd
= I
-, Q ~
1!"” ", 5 »
e ‘1438 "
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Lo stesso ragionamento vale per le immagini

234 1204 | 34
16 44 134 | =
12 11 56
1 0 0 0 1 0 0 0 1
234 * |0 0 0 +204 * |0 0 0 + 34 * 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
16 * 1 0 0 + 44 * 0 1 0 +134 * |0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
12 * 0 0 0 + 11 * 0 0 0 + 56 * 0 0 0
1 0 0 0 1 0 0 0 1
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Why use the canonical base?

Decomposing an image into its canonical basis serves to represent the image as a linear combination of fundamental
elements (the "basis vectors") that uniquely describe the image. This process has several purposes, including:

1. Compression: Representing the image with only a few significant coefficients reduces the amount of data needed to
describe it.

2. Feature Analysis: Decomposition allows for separating components like details, textures, edges, or other relevant
features of the image, facilitating analysis.

3. Simplified Processing: Manipulating or analyzing an image in terms of a canonical basis can make certain operations,
such as filtering, noise reduction, or reconstruction, simpler and more efficient.

4. Dimensionality Reduction: Reducing data to principal components or other bases can be useful for machine learning
and classification, improving performance and reducing noise.

In general, decomposition into a canonical base is useful for breaking down the image into its simplest and most

comprehensible elements, facilitating the manipulation, analysis and enhancement of visual data.
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self. mlndex dlct(np(seu Vi
self.ndins

self. ?aturefile 0s.path.
"(BigFlle] %d features, %d dimensions"
binary: %s" % self.featurefile
txt: %s" o idfile

join(datadir, “feature.bin")
(len(self.names), self.ndims

requested,
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Local operators

= The output value of each pixel depends on a limited neighborhood of the
corresponding input point.

" They are used to improve image quality or to extract information from the
Image.

" They can be thought of as image filtering.
= A filtering is achieved by convolving between the image and a matrix.
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Linear operators

An operator
'V ——>W

is said to be LINEAR if for each pair of vectors vl and v2 in V and for each pair of scalars a, b we
have that:

(av,+bv,)=aF(v,)+b F(v,)

Consequence: if | know a basis of V and the behavior of operator F on each element of that basis, |
can calculate the behavior of F on each element of V.
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Is the function f(x,y)=(x/2,y/3) linear? YES

To be linear, the equality should occur.
a*f(x,,y,)+b*f(x,,y,)=f(ax,+bx,,ay,+by,)

The first member is
a*(x,/2,y,/3)+b*(x,/2,y,/3)=(ax,/2+bx,/2,ay,/3+by,/3)

The second member is.
((ax,+bx,)/2,(ay,+by,)/3)

Clearly, the two members are equal, so the function is linear.

——_; 9‘\|D”’Mo U . N
j Luca Guarnera . S % _nlversﬂ.;a
) N "ﬁ di Catania

434




Is the function f(x,y)=(255-x,255-y) linear? NO

To be linear, the equality should occur.
a*f(x,,y,)+b*f(x,,y,)=f(ax,+bx,,ay,+by,)
The first member is
a*(255-x,,255-y,)+b*(255-x,,255-y,)=
=(a*255-a*x,,a*255-a*y,) + (b*255-b*x,,b*255-b*y,)=
=(a*255-a*x,+ b*255-b*x,, a*255-a*y,+ b*255-b*y,)
The second member is.
(255 - (ax,+bx,), 255 - (ay,+by,)) = (255 - ax,-bx,), 255 - ay, - by,))
Clearly the two members are different so the function is NOT linear.
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Shift invariant?

= The examples in the previous slides have behavior that is not the same on all elements of the
canonical base of RN,

* |n fact: the behavior varies from element to element depending on the position within the image.
= This is a NON-invariant operator for shifts!

= To describe these operators, we need to know its behavior on each "pulse" at each location in the
images!

= Please note: these operators are not "bad" but only "difficult” to study....
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Translation invariant operators

An operator is said to be translation invariant (shift invariant) when its

behavior on impulsive images is always the same regardless of the position
at which the pixel is located.

All point operators are translation invariant (even if they are nonlinear).
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Negative operator
f(x,y)=(255-1(x,y))

= The negative operator is translation invariant.
* The operator takes the gray value at the point (x,y) and subtracts it from 255.

= This behavior is always the same for all the same layers, regardless of their
position in the image.

* WARNING. The function f(x,y)=(255-x,255-y) is not the negative function!

B ' . ,,""D”“"Q . s
\j \ Luca Guarnera s é?QQ_/E g_n(lj\/ersm‘a
o 0 % ¢ dirCatania

434




A linear and shift invariant operator corresponds to a mask, but the reverse is also true: a mask
corresponds to such an operator

EXAMPLE

Consider the operation taking an impulse:

000

transforms it into:
010

000

Such an "impulse response" completely defines a linear, invariant operator for translations F.

Often an operator on an image is called a "filter."

The matrix describing the impulse response. is also called the kernel or mask of the operator.

It is also called the for reasons we will see shortly.
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Finite or infinite kernels and complexity

" The size of the kernel can vary until it is infinite
" For practical reasons, however, only kernels with finite size are used.
" The size of the kernel affects the complexity of the filtering operation.

= This complexity obviously also depends on the number of pixels in an image.
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Why "convolutional” filters?

* Linear and translation invariant filters are also called convolutional filters.

* We need to study the to better understand how a
filter can be computed.

" |n addition, convolution is an extremely important phenomenon for all kinds
of signal processing and for describing many physical events.
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Convolution: properties

* To indicate the convolution operation, we use the notation
h=fXg

e The convolution is commutative

fixig=gX f

* The convolution is associative

(fFIg)xlh = fii(g xih)
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Convolution Operation
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In the finite case (1)

* |f kernel f has size kxh, the formula should be rewritten as follows.

-1 0 1

[k/2T1 [hi2]+ -1la |b|c

hm,n — Z Z(f *gm+| n+j) O d € f
i=——|k/2] j=—|h/2] 119 |h |

* If the kernel indexes are arranged so that the coordinate point (0,0) is at the central position.
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Nel caso finito (2)

 |f kernel f has size kxh, the formula should be rewritten as follows.

k,h
hm,n — Z fi,j *gm+(i—k+\_k/2j),n+(j—h+\_h/2j) 2

i=1, j=1

O LD |-
> D TN

* If the kernel indexes are arranged starting from 1 until h or k.
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Convolution and filtering

Applying a linear and shift invariant filter to an image Is
equivalent to computing the convolution of the filter kernel with
the image.
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In the implementation

One problem is with edges: how to do convolution and filtering at edges?

POSSIBLE SOLUTIONS:

a)
b)

c)

d)

Ma

Filter only the central areas of the image
Assume that all around the image there is O

Assume a "toroidal" topology: when you "overflow to the right" you indent to the left, when you
"overflow" to the bottom you indent to the top and vice versa;

Add a row at the beginning equal to the previous rows, a row at the end equal to the last row, a
column at the beginning equal to the starting column, and a column at the end equal to the ending

column.
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(a) Filter only the central areas of the image.

input
112 2|3 |1
312 2|1 |4
2151271
91011 |2
3|12 |41

Areas in gray will not be
calculated

output

45
46 27
34

30

-

yolvy,
5t S
&
S
" 4 a
B Iy
T f"” \ 0’@ e
v ‘1438 "
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(b) Assume that all around the input image is the "0"

olofofololo]o outpu
0111212 31110 [11]19017 [22]11
832;17‘1‘8 25 180 45 30 31
25 146 27 Bl 19
09101 /1[2[0 5 ay >
03 /112 411101 Fglarl1218/10
olololololo]o
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(c) Fill in the added rows and columns in a "toroidal"

Mannevr.
113712141113 outp
1111223111 [57(30[29/32/33
‘1‘32317‘1‘;’ 33 1801 45 30 40

38 46 27 Bl 45
o0 izs G

28!35(24 12740
111 21213111

-

oIV,
5t Mo@
&
: U
A
[ 3 Q‘_/ 3
- >
1./”- \ 0’@. @“ d
L ‘1438 "
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(d) Fill in the added rows and columns with the nearest

values.
input
1112121311 outpu
1111212311111 [55]27]29/31]33
:2322317‘1“1‘ 34 180 45 30 39
51 46 27 B 32
o01e: LU
48132124 34/26
33112411
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Python Lab!

= Create a numpy randon array (3x3) with values from 0 to 10

= Given the input image |, apply the convolution formula
= Show the first results without taking angles into account

= Define 3 functions to calculate the convolution in the corners:
= Function 1: Consider padding O in |
= Function 2: Considering the toroidal approach
= Function 3: Adding rows and columns with the closest values.
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self.name2index dict(zip(se, ..‘«
self.ndims - ndims

self. featurefile 0S.path. join(datadir, “feature.bin")
“[BigFile] %d features, %d dimensions"
b binary: %s" % self.featurefile
o txt: %s" o idfile

def read(self, requested, isname
°

(len(self.names), self.ndims

Luca Guarne



Median

"It is a nonlinear filter that outputs the median value of the pixel's
neighborhood.

My
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Median filter

Filtro Mediano

e
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Minimum and maximum

In addition to the median filter, there are other statistical filters called order statistics.

* The minimum filter taken an mxm neighborhood of a pixel (with m generally odd), replace the value of
the pixel with the minimum value of all values observed in that neighborhood.

* The maximum filter taken an mxm neighborhood of a pixel (with m generally odd), replace the value of
the pixel with the maximum value of all the values observed in that neighborhood.

If you replace it with the minimum you get a darkening of the image (clear speckles are removed, for
example);

If you replace it with the maximum, you get a brightening of the image (remove black speckles, for
example).
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Minimum filter

Filtro Minimo
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Maximum filter

Filtro Massimo
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N-box (or mean)

= They are defined by N x N kernels with each element equal to 1/N?2.
* An odd N value is generally chosen.

* They have the effect of blurring images.

* The blurring is very strong horizontally and vertically but less so diagonally.

—

= EXAMPLES:

111]1]1]1

3'bOX 11111 S'bOX 1111111101
Vor1]1]1 125* |1]1]1]1]1
1]1]1 111]1]1]1
111]1]1]1
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3-box filter

119+ 1 (1|1
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N-binomial

These are smoothing filters with kernels derived from the binomial distribution. Since that distribution is a
discrete approximation of the Gaussian distribution they are also called Gaussian filters.

They have the merit of smoothing equally in all directions.

They smooth less vigorously than n-boxes.

3-binomial 5-binomial
1 4 6 4 1
1121 1/256* | 4 |16 | 24 | 16 | 4
1/16*| 2 | 4 | 2

6 | 24|36 |24 | 6

4 |16 | 24|16 | 4

1 4 6 4 1
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3-binomial filter

1152 |1
1116* 2 | 4
1|2 | 4

Filtro 3-Binomiale
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Noise cleaning e smoothing

= The filters just seen are also used to reduce noise in an image. In this case,
the larger the kernel, the better the result will be even though there is a risk
of increasing blurring.

* N-box and N-binomial filters are also used to blur the image (smoothing). In
this case, the larger the kernel, the greater the blurring but the better the
noise is reduced.
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The noise

There are two main types of noise:

= Impulsive noise, also called "salt and pepper" noise. It is characterized by the
fraction of the modified image (in %);

= White Gaussian noise. It is characterized by the mean and variance.
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Impulsive noise (salt and pepper)

p(z)=4F, per z=Db
0 altrimenti

= If a and b are "saturated" value, that is, they are equal to the maximum and minimum
values of the image (usually a=0 and b=255), we have salt-and-pepper noise.

p(z)
|

Impulso
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Examples of "salt and pepper”
noise with 1% corrupted pixels
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Examples of "salt and pepper”
noise with 10% corrupted pixels
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Examples of "salt and pepper”
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input

rumore sale e pepe

S&P Noise Removal

= Both the mean and median filters
have 3x3 dimensions.

filtro media
= For this type of noise, the median ‘
filter works best.

SR NN B T

L <]

. r. "\JDIIIM
\ ‘an : Universita
j N Luca Guarnera Ha QR &

N R di Catania

~
%»
ST



Gaussian noise

1 o T V2 Yl
P(E) = —ﬁ_{-..". Y /dor (5'2_1)

dove z rappresenta l'intensita, Z e il valore medio! (media) di z e o & la sua deviazione
standard. La deviazione standard al quadrato o? & detta varianza di z. 1l grafico di
questa funzione ¢ mostrato nella Figura 5.2a. Quando z viene descritta dall’Equazione
(5.2-1), circa il 70% dei suoi valori ricade nell'intervallo [(Z - ). (Z + o)] e circa il 95%
ricade nell'intervallo [(Z - 20), (7 + 20)].

p(z)
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Gaussian noise input e gussons
removal | Sl B

* Both the mean and median filters
have 3x3 dimensions.

filtro media
= For this type of noise, the median
filter works best
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Examples of Gaussian noise
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Gaussian noise removal

Gaussiano Filtro Mediano 5x5

Filtro 5-box
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Kernel size

" |f the noise is widespread, is a larger kernel better or is it better to iteratively
apply the same kernel?

= Let's do a test on 20% salt-and-pepper noise.
= First we apply a 3x3 kernel twice.
= Then we apply a 5x5 kernel to the image with noise.

" In both cases the noise is removed, but the first approach blurs the final
image less.
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rumore sale e pepe

input

filtro mediano 3x3 (2 volte)

filtro mediano 5x5
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S&P Noise Removal

Filtro mediano 3x3

salt&pepper 10% Wsalt&pepper 20%
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S&P Noise Removal

Filtro mediano 5x5

salt&pepper 10% salt&pepper 20%
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Mean vs. Median

Why do median filters give better results than mean filters?

= The mean filter tends to create gray levels that did not exist before.

* The mean filter attenuates not only noise but also all high spatial frequencies
indiscriminately resulting in blurred images.

* The median filter does not deteriorate the sides, but eliminates peaks with small base
relative to the kernel.
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Edge extraction

= Local operators help us extract edges from an image.
= Edges are defined as local luminance discontinuities.

= Edge detectors provide images in which luminance variations are preserved
and all other information is removed.
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Edge detectors based on the first derivative

" If | have a one-dimensional signal and calculate the first derivative, | find that the
edges are the correspondences of the maxima of the derivative.

}f(x)

»
=y

brx)l bf(x)|

X X

" Then the filters have to calculate the derivative in the x-direction that in the y-
direction and then combine them together.
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Notable kernels: horizontal sides

There are many of them; we present two:

-1 -2 -1 =1 =1 -1
Sobel =| 0 0 0 Prewit =1 0 0 0
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Sobel x

_‘1 _2 _1

; 01010
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Filtro x-Sobel
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Prewitt x

IS0 400

Filtro x-Prewitt
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Notable kernels: vertical sides

The situation is identical to the case of horizontal sides,
the filters are just rotated 90 degrees.

—1 0 1 —1 0 1
Sobel,= -2 0 2 Prewitt, = =1 0 1
-1 0 1, -1 0 1]
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Filtro y-Sobel
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Prewitt y

4]0 1
1[0 1
g !

Filtro y-Prewitt
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= Sobel x provides a matrix with horizontal sides (and horizontal components of the oblique sides)
that have nonzero values.

= Sobel y provides a matrix with vertical sides (and vertical components of the oblique sides) that
have nonzero values.

= The two matrices can be combined together by the following formula
sqrt(Sobel, 2+Sobel, ?)

= the obtained matrix has nonzero values for the "sideways" pixels. If a suitable threshold is set, a
binary matrix can be obtained that for each pixel tells us whether it is or is not sideways.

= Of course, the same considerations apply to Prewitt.
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Sobel x sobel y

modulo
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Better results...

* They are obtained with more sophisticated (nonlinear) algorithms for calculating
the magnitude of the gradient (sum of the square of the response of a horizontal
edge finder and the square of the response of a vertical edge finder)

" They are obtained with more "intelligent" strategies (Canny's algorithm, fuzzy
algorithms, backtracking techniques, etc.)
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Edge detectors based on the second derivative

=Y

= |If | have a one-dimensional signal and calculate
the second derivative, | find that at the side it

passes through zero. ]\
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Notable Kernels: Laplacian

The most popular filter for calculating the second derivative is called the Laplacian,
and it is defined by the mask:

Laplaciano=| 0 4 ()
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/ero-crossing

= After applying the Laplacian operator, it is necessary for the zero-crossing condition to
occur. That is, it must always happen that with respect to the point in question there is in
its neighborhood a positive value and a negative value.
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Laplacian

-110 |-1
0/4]|0
* il -110 -1

: l '..i

Filtro Laplaciano
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Laplacian
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