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Local operators



Local operators

▪ The output value of each pixel depends on a limited neighborhood of the
corresponding input point.

▪ They are used to improve image quality or to extract information from the
image.

▪ They can be thought of as image filtering.

▪ A filtering is achieved by convolving between the image and a matrix.
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Linear operators

An operator

F : V            W

is said to be LINEAR if for each pair of vectors v1 and v2 in V and for each pair of scalars a, b we
have that:

F(a v1 + b v2) = a F(v1) + b F(v2)

Consequence: if I know a basis of V and the behavior of operator F on each element of that basis, I
can calculate the behavior of F on each element of V.
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Is the function f(x,y)=(x/2,y/3) linear? 

To be linear, the equality should occur.

a*f(x1,y1)+b*f(x2,y2)=f(ax1+bx2,ay1+by2)

The first member is

a*(x1/2,y1/3)+b*(x2/2,y2/3)=(ax1/2+bx2/2,ay1/3+by2/3)

The second member is.

((ax1+bx2)/2,(ay1+by2)/3)

Clearly, the two members are equal, so the function is linear.
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Is the function f(x,y)=(255-x,255-y) linear? 

To be linear, the equality should occur.

a*f(x1,y1)+b*f(x2,y2)=f(ax1+bx2,ay1+by2)

The first member is

a*(255-x1,255-y1)+b*(255-x2,255-y2)=

=(a*255-a*x1,a*255-a*y1) + (b*255-b*x2,b*255-b*y2)=

=(a*255-a*x1+ b*255-b*x2, a*255-a*y1+ b*255-b*y2)

The second member is.

(255 - (ax1+bx2), 255 - (ay1+by2)) = (255 - ax1-bx2), 255 - ay1 - by2)) 

Clearly the two members are different so the function is NOT linear.
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Shift invariant?

▪ The examples in the previous slides have behavior that is not the same on all elements of the
canonical base of RN.

▪ In fact: the behavior varies from element to element depending on the position within the image.

▪ This is a NON-invariant operator for shifts!

▪ To describe these operators, we need to know its behavior on each "pulse" at each location in the
images!

▪ Please note: these operators are not "bad" but only "difficult" to study....

◼10



11

Translation invariant operators

An operator is said to be translation invariant (shift invariant) when its
behavior on impulsive images is always the same regardless of the position
at which the pixel is located.

All point operators are translation invariant (even if they are nonlinear).



Negative operator f(x,y)=(255-I(x,y))

▪ The negative operator is translation invariant.

▪ The operator takes the gray value at the point (x,y) and subtracts it from 255.

▪ This behavior is always the same for all the same layers, regardless of their
position in the image.

▪WARNING. The function f(x,y)=(255-x,255-y) is not the negative function!
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A linear and shift invariant operator corresponds to a mask, but the reverse is also true: a mask
corresponds to such an operator
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EXAMPLE

Consider the operation taking an impulse:

0 0 0 

 0 1 0 

 0 0 0 

transforms it into:

Such an "impulse response" or PSF completely defines a linear, invariant operator for translations F.

Often an operator on an image is called a "filter."

The matrix describing the impulse response is also called the kernel or mask of the operator.

It is also called the convolution mask of F for reasons we will see shortly.

0    0   0 

 0.5 0 0.5 

 0    0   0 
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Finite or infinite kernels and complexity

▪ The size of the kernel can vary until it is infinite

▪ For practical reasons, however, only kernels with finite size are used.

▪ The size of the kernel affects the complexity of the filtering operation.

▪ This complexity obviously also depends on the number of pixels in an image.
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Why "convolutional" filters?

▪ Linear and translation invariant filters are also called convolutional filters.

▪We need to study the convolution operation to better understand how a
filter can be computed.

▪ In addition, convolution is an extremely important phenomenon for all kinds
of signal processing and for describing many physical events.
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Convolution: properties

• To indicate the convolution operation, we use the notation 

h = f     g

• The convolution is commutative

f      g = g       f

• The convolution is associative

(f     g)    h  = f    (g     h)
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• If kernel f has size kxh, the formula should be rewritten as follows.

• If the kernel indexes are arranged so that the coordinate point (0,0) is at the central position.

In the finite case (1)
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• If kernel f has size kxh, the formula should be rewritten as follows.

• If the kernel indexes are arranged starting from 1 until h or k.

Nel caso finito (2)
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Convolution and filtering

Applying a linear and shift invariant filter to an image is

equivalent to computing the convolution of the filter kernel with

the image.
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In the implementation

One problem is with edges: how to do convolution and filtering at edges?

POSSIBLE SOLUTIONS:

a) Filter only the central areas of the image

b) Assume that all around the image there is 0

c) Assume a "toroidal" topology: when you "overflow to the right" you indent to the left, when you
"overflow" to the bottom you indent to the top and vice versa;

d) Add a row at the beginning equal to the previous rows, a row at the end equal to the last row, a
column at the beginning equal to the starting column, and a column at the end equal to the ending
column.



(a) Filter only the central areas of the image.
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(b) Assume that all around the input image is the "0"

1 2 2

3 2 2

2 5 2

3 1

1 4

7 1

9 0 1

3 1 2

1 2

4 1

30 45

46 27

30

37

34 41 28

output0 0 0 0 0

0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

11 19 17 22 11

31

19

29

1018122716

35

25

25



(c) Fill in the added rows and columns in a "toroidal" 
manner.
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(d) Fill in the added rows and columns with the nearest 
values.
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Examples of local operators
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Median

▪ It is a nonlinear filter that outputs the median value of the pixel's
neighborhood.



Median filter
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Minimum and maximum

In addition to the median filter, there are other statistical filters called order statistics.

▪ The minimum filter taken an mxm neighborhood of a pixel (with m generally odd), replace the value of
the pixel with the minimum value of all values observed in that neighborhood.

▪ The maximum filter taken an mxm neighborhood of a pixel (with m generally odd), replace the value of
the pixel with the maximum value of all the values observed in that neighborhood.

If you replace it with the minimum you get a darkening of the image (clear speckles are removed, for
example);

If you replace it with the maximum, you get a brightening of the image (remove black speckles, for
example).



Minimum filter
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Maximum filter

37



N-box (or mean)

▪ They are defined by N x N kernels with each element equal to 1/N2.

▪ An odd N value is generally chosen.

▪ They have the effect of blurring images.

▪ The blurring is very strong horizontally and vertically but less so diagonally.

▪ EXAMPLES:

3-box 5-box

◼38
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3-box filter
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N-binomial

These are smoothing filters with kernels derived from the binomial distribution. Since that distribution is a
discrete approximation of the Gaussian distribution they are also called Gaussian filters.

They have the merit of smoothing equally in all directions.

They smooth less vigorously than n-boxes.

1 2 1

2 4 2

1 2 1

1/16 *

3-binomial

1 4 6

1/256 *

4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

5-binomial



3-binomial filter
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Noise cleaning e smoothing

▪ The filters just seen are also used to reduce noise in an image. In this case,
the larger the kernel, the better the result will be even though there is a risk
of increasing blurring.

▪N-box and N-binomial filters are also used to blur the image (smoothing). In
this case, the larger the kernel, the greater the blurring but the better the
noise is reduced.
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The noise

There are two main types of noise:

▪ Impulsive noise, also called "salt and pepper" noise. It is characterized by the
fraction of the modified image (in %);

▪White Gaussian noise. It is characterized by the mean and variance.



Impulsive noise (salt and pepper)

▪ If a and b are "saturated" value, that is, they are equal to the maximum and minimum
values of the image (usually a=0 and b=255), we have salt-and-pepper noise.



Examples of "salt and pepper" 
noise with 1% corrupted pixels
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Examples of "salt and pepper" 
noise with 10% corrupted pixels
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Examples of "salt and pepper" 
noise with 20% corrupted pixels
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S&P Noise Removal

▪ Both the mean and median filters
have 3x3 dimensions.

▪ For this type of noise, the median
filter works best.

51



Gaussian noise



Gaussian noise 
removal

▪ Both the mean and median filters
have 3x3 dimensions.

▪ For this type of noise, the median
filter works best
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Examples of Gaussian noise
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Gaussian noise removal
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Kernel size

▪ If the noise is widespread, is a larger kernel better or is it better to iteratively
apply the same kernel?

▪ Let's do a test on 20% salt-and-pepper noise.

▪ First we apply a 3x3 kernel twice.

▪ Then we apply a 5x5 kernel to the image with noise.

▪ In both cases the noise is removed, but the first approach blurs the final
image less.
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S&P Noise Removal
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Rimozione del rumore S&P
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Mean vs. Median

Why do median filters give better results than mean filters?

▪ The mean filter tends to create gray levels that did not exist before.

▪ The mean filter attenuates not only noise but also all high spatial frequencies
indiscriminately resulting in blurred images.

▪ The median filter does not deteriorate the sides, but eliminates peaks with small base
relative to the kernel.
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Edge extraction
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Edge extraction

▪ Local operators help us extract edges from an image.

▪ Edges are defined as local luminance discontinuities.

▪ Edge detectors provide images in which luminance variations are preserved
and all other information is removed.



Edge examples in 1D
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Edge detectors based on the first derivative

▪ If I have a one-dimensional signal and calculate the first derivative, I find that the
edges are the correspondences of the maxima of the derivative.

▪ Then the filters have to calculate the derivative in the x-direction that in the y-
direction and then combine them together.
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Notable kernels: horizontal sides

There are many of them; we present two:

X-Prewitt



Sobel x
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Prewitt x

68



70

Notable kernels: vertical sides

The situation is identical to the case of horizontal sides,
the filters are just rotated 90 degrees.



Sobel y
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Prewitt y
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▪ Sobel x provides a matrix with horizontal sides (and horizontal components of the oblique sides)
that have nonzero values.

▪ Sobel y provides a matrix with vertical sides (and vertical components of the oblique sides) that
have nonzero values.

▪ The two matrices can be combined together by the following formula

sqrt(Sobelx
2+Sobely

2)

▪ the obtained matrix has nonzero values for the "sideways" pixels. If a suitable threshold is set, a
binary matrix can be obtained that for each pixel tells us whether it is or is not sideways.

▪ Of course, the same considerations apply to Prewitt.
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Better results...

▪ They are obtained with more sophisticated (nonlinear) algorithms for calculating
the magnitude of the gradient (sum of the square of the response of a horizontal
edge finder and the square of the response of a vertical edge finder)

▪ They are obtained with more "intelligent" strategies (Canny's algorithm, fuzzy
algorithms, backtracking techniques, etc.)
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Edge detectors based on the second derivative

▪ If I have a one-dimensional signal and calculate
the second derivative, I find that at the side it
passes through zero.
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Notable Kernels: Laplacian

The most popular filter for calculating the second derivative is called the Laplacian,

and it is defined by the mask:
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Zero-crossing

▪ After applying the Laplacian operator, it is necessary for the zero-crossing condition to
occur. That is, it must always happen that with respect to the point in question there is in
its neighborhood a positive value and a negative value.



Laplacian 
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Laplacian 
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Confronto 

82
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