

Secure Inter-communication in Multi Agent System

Gianpiero Costantino

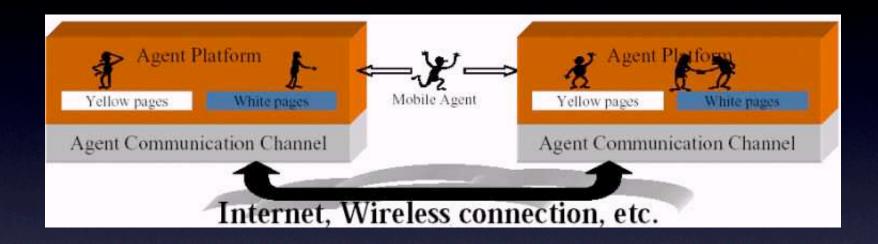
miniWorkshop on Security Frameworks 12 December 2006

Intelligent Agent

Agent definition

- **Object programming**: a set of passive objects that interact between them through an invoker/invoked relation
- Agent programming: a set of active agents that interact between them through a p2p logic

Main characteristics


- Goal Oriented: an agent is programmed in order to pursue a goal
- Autonomous: an agent must complete its goal independently
- **Situated**: an agent woks in platforms

Obligatory characteristics for an agent

Intelligent Agent Other characteristics

- **Reactive**: an agent reacts on the base of events that happen in the platform
- **Proactive**: an agent is able to elaborate action plans in order to obtain the goal
- **Social**: an agent is able to communicate with other agents
- **Mobile**: an agent is able to move in other platforms

Agent Platform

Two fundamental agents:

- Directory Facilitator (DF)
- Agent Management System (AMS)

Communication of the Agents

• Agent communication with ACL Message

• Most important items:

(inform :sender (sender@platform.net) :receiver (receiver@platform.net) :language (FIPA-SL0) :content ("Text to be signed")

Security in MAS

- It is inevitable to ensure security today
- Integrity, authenticity and privacy
- The existing security systems in MAS bring some disadvantages

Attacks

- Passive attacks: monitoring of network packets from malicious agent
- Active attacks : replay attacks, spoofing attacks and modification of messages

MAS needs security

Goals

- Possibility to secure not the whole ACL message but only some of its parts.
- Not to bind the security support tightly into the agent platform
- To avoid agent's core necessity to choose, set type or negotiate about algorithms used in secure communication
- All private keys and other security related data have to be available only to their owner

X-Security Prototype

- In the proposed system the function of the central authority is exerted by the Security Certification Authority (SCA)
- SCA releases certificates to agents

Certificates

- The agents use their certificates to prove their identities and to execute security related to their actions within the system
- The certificates contain mandatory information requested by SCA and they may contain additional information supplied by an agent

Certificates .2

- certificate-ident
- sca-ident
- agent-ident
- time-from -
- time-to -
- security-level
- key-description
 - ident 0
 - time-from 0
 - time-to 0
 - type 0
 - key-param 0
 - key-value 0
- key-description

-

- ident 0
- time-from 0
- time-to 0
- type 0
- key-param 0
- 0

SCA CERTIFICATE 1 < (agent-identifier :name sca@platform.net) (agent-identifier :name testAgent@platform.net) Wed Jan 01 00:00:00 CET 2003 Wed Dec 31 23:59:59 CET 2003 VISITOR

SIGN Wed Jan 01 00:00:00 CET 2003 Wed Dec 31 23:59:59 CET 2003 public-key

SHAwithDSA/1024

56A7ED89C2......6AC54DF983

CRYPT 1 Wed Jan 01 00:00:00 CET 2003

- Wed Dec 31 23:59:59 CET 2003
- public-key
- **RSA/1024**
- key-value

5A234DC82B......85329B76DC

Integration of Security into the message

 The message is extended to contain a new slot called X-Security

(inform		
	:sender	(sender@platform.net)
	:receiver	(receiver@platform.net)
	:language	(FIPA-SL0)
	:content	("Text to be signed")
	:X-Security	(:type SIGN ←
		:signature 48A720AD
		:certificate-ident SCA CERTIFICATE 1
		:key-ident SIGN 1))

Integration of Security into the message .2

Now, X-Security slot items inform that the message content is encrypted ...

Description of SCA's activity

• What does it happen when SCA fails? ...

Description of SCA's activity

• What does it happen when SCA fails? ...

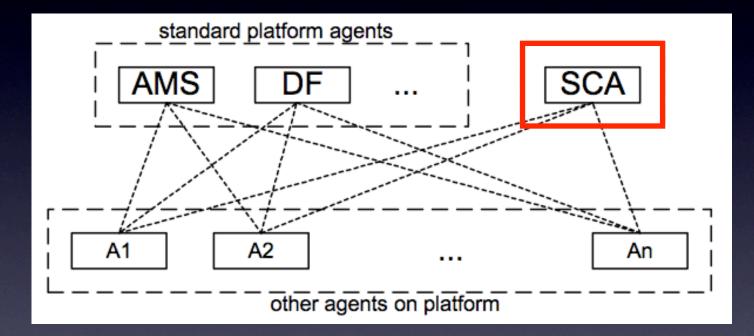
...security still works!

Protected information exchange

- It usually happens through asymmetric keys but if there is a huge amount of data:
 - Symmetric session keys can be used
 - After session keys will be removed

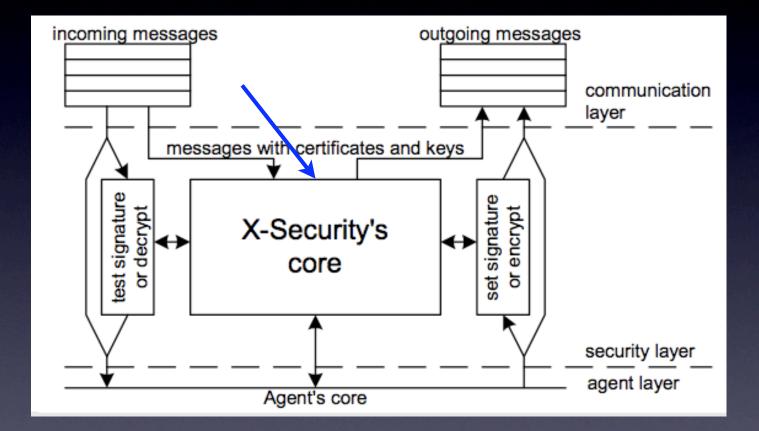
Agent key Replacement

- It generates new keys (public and private)
- A new certificate must be created by SCA
- But what does it happen when an agent uses an old certificate?

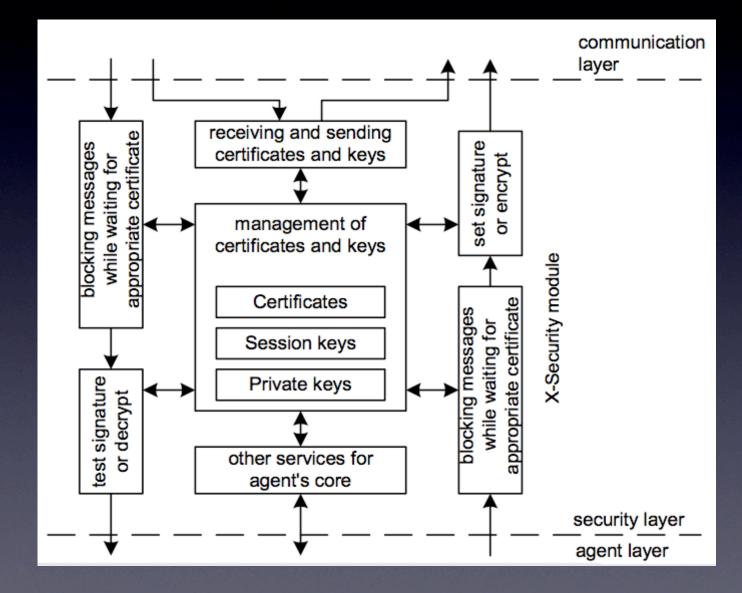

SCA key replacement

- I. It generates new keys and a new certitificate
- 2. It sends its new certificate to the agents
- 3. It sends original certificates signed by the new key.

SCA Inaccessibility


- It recovers itself from backup
- More SCA in the plattforms
- New SCA must generate new keys and a certificate for itself

Implementation


Agent platform with Security Certification Authority

Implementation .2

Integration of security module to agent

Implementation .3

Conclusions

- X-Security system is appropriate for MAS applications
- This system tries to avoid troubles during SCA inaccessibility
- Developed libraries, included SCA agent and security module, have been implemented in JAVA as an extension of JADE

References

1. Communication Security in MAS:

Peter Novaàk, Milan rollo, Jiri Hodik, Tomas Vleek

2. **FIPA** <u>http://ww.fipa.org</u>

Foundation for intelligent Physical Agents

3. JADE <u>http://jade.cselt.it</u>

Java agent DEvelopment Framework

THE END