Formal Analysis of Security Polici

Alessia Ciraudo

University of Catania

Development of an
Control System

1) Authentication

2) Security Policies

) Security Mechanisms

Security Policy

“A set of norms regulating the modalities

— obligation, permission, interdiction —

for a set of agents on some action ”

Inconsistencies

* Contradiction:
“forbidden smoke™ and “obligatory smoke

99'

e Dilemma:

99'

“forbidden smoke” and ““torbidden no smoke

Bad

S
Secret “

N1:

N2:

N3:

Example Policy

11 Norms

if play(a,User) and public(f)
4 Roles

then Perm(Read(a,f))

if play(a,User) and public(f) and owner(f,a)
then Perm (Write(a,f))

if play(a,User)
then Forb (Downgrade(a,f))

play (a,User) and password(a,p) and old(p)
Obl (Change Psswd(a))

Example Polic

N5: if play(a,Secret) and not (public(f))
then Perm(Read(a,f))

N6: if play(a,Secret) and not(public(f))
and owner (f,a)
then Perm(Write(a,f))

if play(a,Sso)

n Perm(Downgrade(a,f))

Example Polic

N8: if play(a,Bad)
then Forb (Read(a,f))

N9: if play(a,Bad)
then Forb (Write(a,f))

N10: if play(a,Bad)
then Forb (Downgrade(a,f))

if play(a,Bad)
then Forb (Change Psswd(a))

Inductive Approach

* Trace: list of admissible norms induced
by policy

* Model of Policy: set of all possible trace of
norms that the policy admits

- Mechanized with the proof assistant:

PVS or Isabelle

operties of the model proved with the
ondent inductive principle

Inductive Definition of

“Set of all possible trace of norms tha
the policy admits”

Base case

[] € Policy

tive case

€ Policy = nm # trace € Policy

typedecl Agent

typedecl File

typedecl Psswd

e Role = User | Sso | Secret | Bad

consts

play

owner

ublic

password ::

Functions

"[Agent, Role]
"[File, Agent]
"[Agent, Psswd]
"File

"Psswd

bool"

bool"

bool"

bool"

Y O

bool"

Constraints on Ro

axioms

Secret User [simp] : "play a Secret — play a User"
Sso Secret [simp] : "play a Sso —» play a Secret"
Bad User [simp] : "play a Bad — play a User"

ransitivity Sso User [simp]

ent). play a Sso —» play a User"

Operations

datatype operation =
Read Agent File
| Write Agent File
| Change Psswd Agent
| Downgrade Agent File

Not op operation ("—o")

emp [simp] : "o (—o oper) = oper"

Norms

datatype norma

Obl operation
Perm operation
Forb operation
Waived operation

Not norma norma ("—n")

Axioms for Nor

axioms
Not norma idemp [simp]: "—n (—n nm) = nm"

Perm Obl [simp]: "Perm oper = —n (Obl (—o oper))"

Obl [simp]: "Forb oper = Obl (—o oper)"

Mechanization with

types trace = “norma list”

consts Policy :: "trace set"
inductive "Policy"
intros

Empty : “[] € Policy”

1l : “"[|trl € Policy; play a User;
ublic f|]

Perm (Read a f) # trl € Policy”

Inconsistencies

Contradiction

(Obligatory(op) A — Obligatory (op))
%
(Obligatory(— op) A — Obligatory(— op)

Dilemma

Obligatory (op) A Obligatory(— op)

Vv

igatory (— op))

Contradiction in Isa

consts Contradiction :: “norma — norma‘

axioms Contradiction 1 [simp]

“Contradiction (Obl oper) = -n (Obl oper)"

ms Contradiction 2 [simp]

iction (-n (Obl oper)) = Obl oper”

Dilemma in Isa

consts Dilemma :: “‘norma — norma”

axioms Dilemma 1 [simp]

“Dilemma (Obl oper) = Obl (-0 oper)”

Absence of Contra
and of Dilemmas

theorem No_Contradiction

“[|Inm € set tr; tr € Policyl|] =

Contradiction nm ¢ set tr“

theorem No_Dilemma

|nm € set tr;tr € Policyl|] =

a nm ¢ set tr”

Proof - step

tr € Policy =

nm € set tr —» Contradiction nm — set

erule
Policy.induct

Proof — step 2

[l trl € Policy; play a User; public £f;
nm € set trl — Contradiction nm & set trl|]

—> nm € set (Perm (Read a f) # trl) —

Contradiction nm ¢ set (Perm(Read a f) # trl)

simp del: “Perm Obl”

Proof — step 3

[| trl € Policy; play a User; public f£f;
nm € set trl — Contradiction nm & set trl |]
— (nm = Perm (Read a f) —

Contradiction (Perm (Read a f)) # Perm (Read a f) A
Contradiction (Perm (Read a f)) €& set trl)

A (nm € set trl—> Contradiction nm # Perm(Read a f))

subgoal tac
“Contradiction (Perm(Read a £f))
¢ set trl”

Proof — step

[| trl € Policy; play a User; public f;
nm € set trl—> Contradiction nm & set trl |]

— Contradiction (Perm (Read a f)) ¢ set trl

erule
Policy.induct

Proof — step 3

[| trl € Policy; play a User; public f;
nm € set trl —» Contradiction nm & set trl;
Contradiction (Perm (Read a f)) & set trl|]

—> (nm = Perm(Read a f) —

Contradiction (Perm(Read a f)) # Perm(Read a £f) A

Contradiction (Perm(Read a f)) ¢ set trl)

€ set trl-> Contradiction nm # Perm(Read a f))

Proof — step 6

[| trl € Policy; play a User; public f;
nm € set trl — Contradiction nm & set trl;

Contradiction(Perm(Read a f)) €& set trl]]

—> nm = Perm(Read a f) —

Contradiction(Perm(Read a f)) # Perm(Read a f£f)

A Contradiction(Perm(Read a f)) & set trl

Proof — step

[| trl € Policy; play a User; public f;
nm € set trl — Contradiction nm & set trl;

Contradiction (Perm (Read a f)) ¢ set trl|]

—nm € set trl — Contradiction nm # Perm(Read a f)

erule
Policy.induct

Proof — step

A a £ tr8 trl.[| play a Bad; trl € Policy;
public £; —.n (Obl (—o (Read a f))) & set tr8;
(Obl (—o (Read a f))) & set trl]|]

lse

Policy Inconsistencies

6 Contradictions:

N7 — N3: “A system security officer 1s both permitted and forbidden
to downgrade a public file”

N8 — N1: “A bad user i1s both forbidden and permitted to read
a public file”

N8 — NS5: “A bad user 1s both forbidden and permitted to read a not
public file”

N9 — N2: “A bad user is both forbidden and permitted to write on a
public file he owns”

N9 — N6: “A bad user 1s both forbidden and permitted to write on a
not public file he owns”

N10 — N7: “A bad user 1s both forbidden and permitted to downgrade
a file”

4 : “A bad user is both forbidden and obliged to change his
assword”

Conclusions

* Developed the first inductive approach

prove security policy correctness

* Mechanized the approach with the proof

assistant Isabelle

erified presence of many inconsistence in

ample policy: proof script of 500 lines

Next steps...

» To simplify proof demonstration strateg

e Search of alternative formalization,

if possible without trace

e Application to widest study case

sion to union of more policy

Thanks!!!

