
Alessia Ciraudo

Formal Analysis of Security Policies

Security Workshop University of Catania

Development of an Access
Control System

1)1) AuthenticationAuthentication

2)2) Security PoliciesSecurity Policies

3)3) Security MechanismsSecurity Mechanisms

Security Policy

““A set of norms regulating the modalitiesA set of norms regulating the modalities

–– obligation, permission, interdiction obligation, permission, interdiction ––

for a set of agents on some action for a set of agents on some action ””

Inconsistencies
•• Contradiction: Contradiction:

““forbidden smokeforbidden smoke”” and and ““obligatory smokeobligatory smoke””!!

•• Dilemma:Dilemma:
““forbidden smokeforbidden smoke”” and and ““forbidden no smokeforbidden no smoke””!!

User SecretSecret Sso

BadBad

Roles

Example Policy
N1: if play(a,User) and public(f)

then Perm(Read(a,f))

N2: if play(a,User) and public(f) and owner(f,a)
then Perm(Write(a,f))

N3: if play(a,User)
then Forb(Downgrade(a,f))

N4: if play(a,User) and password(a,p) and old(p)
then Obl(Change_Psswd(a))

11 Norms
4 Roles

11 Norms11 Norms
4 Roles4 Roles

Example Policy

N5: if play(a,Secret) and not(public(f))
then Perm(Read(a,f))

N6: if play(a,Secret) and not(public(f))
and owner(f,a)

then Perm(Write(a,f))

N7: if play(a,Sso)

then Perm(Downgrade(a,f))

Example Policy
N8: if play(a,Bad)

then Forb(Read(a,f))

N9: if play(a,Bad)
then Forb(Write(a,f))

N10: if play(a,Bad)
then Forb(Downgrade(a,f))

N11: if play(a,Bad)
then Forb(Change_Psswd(a))

Inductive Approach

•• TraceTrace:: list of admissible norms induced list of admissible norms induced
by policyby policy

•• Model of PolicyModel of Policy:: set of all possible trace of set of all possible trace of
norms that the policy admitsnorms that the policy admits
-- Mechanized with the proof assistant: Mechanized with the proof assistant:

PVS or IsabellePVS or Isabelle

•• Properties of the model proved with the Properties of the model proved with the
correspondent inductive principlecorrespondent inductive principle

Inductive Definition of Policy

““Set of all possible trace of norms that Set of all possible trace of norms that
the policy admitsthe policy admits””

Base caseBase case
[] ∈ Policy

Inductive caseInductive case
trace ∈ Policy ⇒ nm # trace ∈ Policy

Types

typedecl Agent

typedecl File

typedecl Psswd

datatype Role = User | Sso | Secret | Bad

Functions

consts

play :: "[Agent, Role] ⇒ bool"

owner :: "[File, Agent] ⇒ bool"

password :: "[Agent, Psswd] ⇒ bool"

public :: "File ⇒ bool"

old :: "Psswd ⇒ bool"

Constraints on Roles

axioms

Secret_User [simp] : "play a Secret → play a User"

Sso_Secret [simp] : "play a Sso → play a Secret"

Bad_User [simp] : "play a Bad → play a User"

lemma Transitivity_Sso_User [simp] :

" ∀ (a::Agent). play a Sso → play a User"

Operations

datatype operation =

Read Agent File

| Write Agent File

| Change_Psswd Agent

| Downgrade Agent File

| Not_op operation ("¬o")

axioms

Not_op_idemp [simp] : "¬o (¬o oper) = oper"

Norms

datatype norma =

Obl operation

| Perm operation

| Forb operation

| Waived operation

| Not_norma norma ("¬n")

Axioms for Norms

axioms

Not_norma_idemp [simp]: "¬n (¬n nm) = nm"

Perm_Obl [simp]: "Perm oper = ¬n (Obl (¬o oper))"

Forb_Obl [simp]: "Forb oper = Obl (¬o oper)"

Mechanization with Isabelle

types trace = “norma list”

consts Policy :: "trace set"

inductive "Policy"

intros

Empty : “[] ∈ Policy”

Norma_1 : “[|tr1 ∈ Policy; play a User;

public f|]

⇒ Perm (Read a f) # tr1 ∈ Policy”

Inconsistencies
ContradictionContradiction

(Obligatory(op) ∧ ¬ Obligatory(op))
∨

(Obligatory(¬ op) ∧ ¬ Obligatory(¬ op)

DilemmaDilemma

Obligatory(op) ∧ Obligatory(¬ op)

∨

(¬ Obligatory(op) ∧ ¬ Obligatory (¬ op))

Contradiction in Isabelle

consts Contradiction :: “norma ⇒ norma“

axioms Contradiction_1 [simp] :

“Contradiction (Obl oper) = ¬n (Obl oper)“

axioms Contradiction_2 [simp] :

“Contradiction (¬n (Obl oper)) = Obl oper”

Dilemma in Isabelle

consts Dilemma :: “norma ⇒ norma”

axioms Dilemma_1 [simp] :

“Dilemma (Obl oper) = Obl (¬o oper)”

Absence of Contradictions
and of Dilemmas

theorem No_Contradiction :

“[|nm ∈ set tr; tr ∈ Policy|] ⇒

Contradiction nm ∉ set tr“

theorem No_Dilemma :

“[|nm ∈ set tr;tr ∈ Policy|] ⇒

Dilemma nm ∉ set tr”

Proof - step 1

tr ∈ Policy ⇒

nm ∈ set tr → Contradiction nm → set tr

12 subgoal!!!

erule
Policy.induct
erule
Policy.induct

Proof – step 2

[|tr1 ∈ Policy; play a User; public f;

nm ∈ set tr1 → Contradiction nm ∉ set tr1|]

⇒ nm ∈ set (Perm (Read a f) # tr1) →

Contradiction nm ∉ set (Perm(Read a f) # tr1)

simp del: “Perm_Obl”simp del: “Perm_Obl”

Proof – step 3

[| tr1 ∈ Policy; play a User; public f;

nm ∈ set tr1 → Contradiction nm ∉ set tr1 |]

⇒ (nm = Perm (Read a f) →

Contradiction (Perm (Read a f)) ≠ Perm (Read a f) ∧

Contradiction (Perm (Read a f)) ∉ set tr1)

∧ (nm ∈ set tr1→ Contradiction nm ≠ Perm(Read a f))

subgoal_tac
“Contradiction(Perm(Read a f))
∉ set tr1”

subgoal_tac
“Contradiction(Perm(Read a f))
∉ set tr1”

Proof – step 4

[| tr1 ∈ Policy; play a User; public f;

nm ∈ set tr1→ Contradiction nm ∉ set tr1 |]

⇒ Contradiction (Perm (Read a f)) ∉ set tr1

erule
Policy.induct
erule
Policy.induct

Proof – step 5
[| tr1 ∈ Policy; play a User; public f;

nm ∈ set tr1 → Contradiction nm ∉ set tr1;

Contradiction (Perm (Read a f)) ∉ set tr1|]

⇒ (nm = Perm(Read a f) →

Contradiction(Perm(Read a f)) ≠ Perm(Read a f) ∧

Contradiction(Perm(Read a f)) ∉ set tr1)

∧ (nm ∈ set tr1→ Contradiction nm ≠ Perm(Read a f))

rule conjIrule conjI

Proof – step 6

[| tr1 ∈ Policy; play a User; public f;

nm ∈ set tr1 → Contradiction nm ∉ set tr1;

Contradiction(Perm(Read a f)) ∉ set tr1|]

⇒ nm = Perm(Read a f) →

Contradiction(Perm(Read a f)) ≠ Perm(Read a f)

∧ Contradiction(Perm(Read a f)) ∉ set tr1

simpsimp

Proof – step 7

[| tr1 ∈ Policy; play a User; public f;

nm ∈ set tr1 → Contradiction nm ∉ set tr1;

Contradiction (Perm (Read a f)) ∉ set tr1|]

⇒ nm ∈ set tr1 → Contradiction nm ≠ Perm(Read a f)

erule
Policy.induct
erule
Policy.induct

Proof – step 8

Λ a f tr8 tr1.[| play a Bad; tr1 ∈ Policy;
public f; ¬n (Obl (¬o (Read a f))) ∉ set tr8;
¬n (Obl (¬o (Read a f))) ∉ set tr1|]
⇒ False

autoauto

Policy Inconsistencies
6 Contradictions:

N7 – N3: “A system security officer is both permitted and forbidden
to downgrade a public file”

N8 – N1: “A bad user is both forbidden and permitted to read
a public file”

N8 – N5: “A bad user is both forbidden and permitted to read a not
public file”

N9 – N2: “A bad user is both forbidden and permitted to write on a
public file he owns”

N9 – N6: “A bad user is both forbidden and permitted to write on a
not public file he owns”

N10 – N7: “A bad user is both forbidden and permitted to downgrade
a file”

1 Dilemma:
N11 – N4 : “A bad user is both forbidden and obliged to change his

password”

Conclusions

•• Developed the first inductive approach to Developed the first inductive approach to
prove security policy correctnessprove security policy correctness

•• Mechanized the approach with the proof Mechanized the approach with the proof
assistant assistant IsabelleIsabelle

•• Verified presence of many inconsistence in Verified presence of many inconsistence in
the example policy: proof script of 500 linesthe example policy: proof script of 500 lines

Next steps…

•• To simplify proof demonstration strategy To simplify proof demonstration strategy

•• Search of alternative formalization, Search of alternative formalization,
if possible without traceif possible without trace

•• Application to widest study caseApplication to widest study case

•• Extension to union of more policyExtension to union of more policy

ThanksThanks!!!!!!

