
The .NET Framework

Short Introduction of the
Microsoft .NET Framework

Dott. Mario Di Raimondo
Dipartimento di Matematica e Informatica

Università degli Studi di Catania

contents from
Microsoft Research Academic Days 2003

“.NET Mobile and Distributed Technologies”
(Turin, 29-30 September, 1st October)

Overview

● Motivations and Targets
● A look at the .NET Framework
● The supported languages
● Mention about C#
● Microsoft and the standards
● Conclusions

comparison
with JAVA

.NET

● it's a “software platform” on which develop
applications

● characteristics:
– projected for the applications distributed

through the net
– multi-language
– multi-platform (?!?)
– semi-standardized

Motivations

● we can't define it as a clone of Java...

● ... but we can certainly consider it as the answer of Microsoft
to Java! (or more precisely, to the J2EE infrastructure of Sun)

– insinuations...
● simplify the life of people that develop complex applications

– Visual-Basic: little expressive

– Visual-C: too complex
● make the applications portable (as in Java)

● rearrange the immense (and untidy) MS libraries

Architecture

User Applications

Base Class Library (BCL)

Enterprise Services Common Language Runtime
(CLR)

Host OS

Hardware

Common Language Runtime (CLR)

● the core of the .NET architecture

● environment independent from the platform for the execution of the applications

● the equivalent of the Java Virtual Machine (JVM) in the Java architecture

● offers a series of basic functionalities:

– memory management (Garbage collection)

– concurrency management

– verification on the types of the data

– security controls during the loading and the execution of the modules (can be disabled)

– controls of reading/writing rights on the memory areas (can be disabled or managed
with a careful right management)

– multi-versioning management... end of the DLL hell?!

● unlike Java, it doesn't depend on a specific language

User Applications

Base Class Library (BCL)

Enterprise Services Common Language Runtime
(CLR)

Host OS

Hardware

Microsoft Intermediate Language (MSIL) and JIT

● the intermediate language in which the .NET applications are compiled

● the equivalent of the byte-code of the JVM

● it has an higher level than the byte-code (for example: operations without types), then:

– the interpretation isn't provided by the system

– it's compiled in native code at execution time (JIT)

● “normal” JIT: translates the MSIL code in native code applying several optimizations; requires
many resources (computational and memory)

● EconoJIT: translates the MSIL code in native code using basic and fast techniques, without any
optimizations; useful for embedded systems or with few resources

● PreJIT (or NGen = “Native [code] GENeration”): stores, next to the copy in MSIL code, a
copy in native code already optimized; at the moment, it's a technique only partially used in the
BCL

● OptJIT (just an idea for the future): optimizes the on-the-fly compilation phase using some
additional information embedded in the MSIL; speeds-up this process using some precomputed
information

– at the moment the technologies used in the JIT of Java are more advanced

● profiling JVM and incremental optimizations

Execution of the code in .NET

Compilation Execution

Language Compiler

Source Code Native Code

MSIL Code

JIT Compiler

Base Class Library (BCL)

● the set of the base classes of the platform

– analogue to the Standard Library of C/C++ and to the packages java.* of
Java

● encapsulates the main functions of a system:

– complex data type (collection)

– networking

– access to File System

– user interface

– security

– concurrent programming

– XML

– etc...

User Applications

Base Class Library (BCL)

Enterprise Services Common Language Runtime
(CLR)

Host OS

Hardware

Base Class Library (BCL)

● the BCL is organized in namespace (like Java) starting
from the namespace System

● moreover, there are some typical functions of Windows:

– access to the system register

– interoperability with COM (reuse of old components)

– functionalities of low level
● Positive aspect: in this way we have a rearrangement of

the whole library set of Windows, providing an
homogeneous and coherent way to access to them

User Applications

Base Class Library (BCL)

Enterprise Services Common Language Runtime
(CLR)

Host OS

Hardware

Enterprise Services

● they consist of base services for the realization of .NET applications

● they don't belong to the standard, but they are essential for the
development of enterprise applications

● they correspond to MS server applications(SQL server, IIS, BizTalk,
etc...) and they aren't .NET applications (so not portable)

– GUI (WinForms)

– Web Applications (WebForms and ASP.NET)

– Access to DB (ADO.NET)

– Transactions (MTS)

– Scripting (VBScript and Jscript)

– Web Services

User Applications

Base Class Library (BCL)

Enterprise Services Common Language Runtime
(CLR)

Host OS

Hardware

.NET and the languages

● the .NET architecture, dislike J2EE, isn't related to a specific
language: it's multi-language

● we can write an application in any supported language,
compile it in MSIL and then execute it on any .NET platform

● objects written in one language can be compiled and reused as
modules in programs written in a different (but supported)
language

– there are many limitations:

● unmanaged code
● dependency on specific Windows libraries
●

Common Type System (CTS)

● to obtain a multi-language environment we need to establish a maximum common divisor
among all the supported languages:

– Common Type System (CTS)

● specifies details as:

– the primitive types

– what a class is (or “type” in the .NET slang) and which are their characteristics:

● methods

● data fields

● properties

– visibility policy

– inheritance

● the multi-inheritance is not provided....

● the interfaces can be used

Supported languages

Microsoft directly supports:

– C# (a new language...)

– C

– C++

– Visual-Basic

– JScript

Third-parts provide .NET
compilers for:

– APL, CAML, Cobol

– Haskell, Mercury

– ML, Oberon, Oz

– Pascal, Perl, Python

– Scheme, Smaltak

– ... and may be Java!

But do we need all these languages?

● POSITIVE:

– in this way many matured competence may be “recycled”

● NEGATIVE:

– too many compromises and limitations (for example: all becomes case-insensitive)

– they radically changed some languages:

● C++.... WAS a standard (goodbye multi-inheritance)!

● Visual-Basic... has practically become another language... it's better to use C#!

● also in Java we can use other languages to produce bytecode, but this isn't a basic
functionality as introduced in .NET

● Java is a lone language that you can use in many spheres

– desktop applications, server applications, web (applet)

– desktop, server, embedded devices

C# languages

Java:JVM = C#:CLR

– it's the main language of the .NET architecture

– object-oriented language

– derived from C++ (simplified)

– there are much “syntactic sugar”

– the specification regards only the grammar of the language

– it doesn't got any library but it lean against the BCL of .NET

– .NET is independent on C#, but C# doesn't have any utility without .
NET

Standardization of .NET

● .NET is a technology entirely developed by Microsoft

● the ECMA has standardized the Common Language Infrastructure
(CLI) which:

– can be considered a “subset” of the CLR specifications

– contains only a minimum set (a core) of the system libraries

● it seams that other parts of the architecture are in a standardization phase
in a near future

● is .NET an open standard?!

– No, it isn't!

– .NET is an implementation of some open standards

– many parts of the framework (as the major part of BCL) are
proprietary and not standardized

Conclusions

● .NET is a project with great ambitions

● Microsoft will use its monopolistic position to impose this
technology on the market

● the similarity between Java and .NET can't be unobserved

– there are some differences

– but they aren't substantial and prevalent
● there are many doubts about the portability of .NET applications on

platforms different from Windows (although there are some brave
projects as Mono on Linux/Unix systems...)

● let's see if the field experts will reject or accept these deep changes of
their development tools/environment

