
Efficient Algorithms for the
Order Preserving Pattern Matching Problem?

Simone Faro† and M. Oğuzhan Külekci‡

†Università di Catania, Department of Mathematics and Computer Science, Italy
‡Istanbul Medipol University, Department of Biomedical Engineering, Turkey

faro@dmi.unict.it, okulekci@medipol.edu.tr

Abstract. Given a pattern x of length m and a text y of length n, both
over an ordered alphabet, the order-preserving pattern matching problem
consists in finding all substrings of the text with the same relative order
as the pattern. It is an approximate variant of the well known exact
pattern matching problem which has gained attention in recent years.
This interesting problem finds applications in a lot of fields as time series
analysis, like share prices on stock markets, weather data analysis or to
musical melody matching. In this paper we present two new filtering
approaches which turn out to be much more effective in practice than
the previously presented methods. From our experimental results it turns
out that our proposed solutions are up to 2 times faster than the previous
solutions reducing the number of false positives up to 99%.

1 Introduction

Given a pattern x of length m and a text y of length n, both over a common
alphabet Σ, the exact string matching problem consists in finding all occur-
rences of the string x in y. String matching is a very important subject in the
wider domain of text processing and algorithms for the problem are also basic
components used in the implementations of practical softwares existing under
most operating systems. Moreover, they emphasize programming methods that
serve as paradigms in other fields of computer science. Finally they also play an
important role in theoretical computer science by providing challenging prob-
lems. The worst case lower bound of the string matching problem is O(n) and
was achieved the first time by the well known algorithm by Knuth, Morris and
Pratt [8]. However many string matching algorithms have been also developed to
obtain sublinear O(n logm/m) performance on average. Among them the Boyer-
Moore algorithm [1] deserves a special mention, since it has been particularly
successful and has inspired much work.

The order-preserving pattern matching problem [2, 3, 8, 9] (OPPM in short)
is an approximate variant of the exact pattern matching problem which has

? This work has been supported by the Scientific & Technological Research Council
Of Turkey (TUBITAK), the Department Of Science Fellowships & Grant Programs
(BIDEB), 2221 Fellowship Program, and by G.N.C.S., Istituto Nazionale di Alta
Matematica “Francesco Severi”.

ar
X

iv
:1

50
1.

04
00

1v
1

 [
cs

.D
S]

 1
6

Ja
n

20
15

y = 8 11 10 16 15 20 13 17 14 18 20 18 25 17 24 25 26

x = 6 5 8 4 7

Fig. 1. Example of a pattern x of length 5 over an integer alphabet with two order
preserving occurrences in a text y of length 17, at positions 3 and 10.

gained attention in recent years. In this variant the characters of x and y are
drawn from an ordered alphabet Σ with a total order relation defined on it. The
task of the problem is to find all substrings of the text with the same relative
order as the pattern.

For instance the relative order of the sequence x = 〈6, 5, 8, 4, 7〉 is the sequence
〈3, 1, 0, 4, 2〉 since 6 has rank 3, 5 as rank 1, and so on. Thus x occurs in the string
y = 〈8, 11, 10, 16, 15, 20, 13, 17, 14, 18, 20, 18, 25, 17, 20, 25, 26〉 at position 3, since
x and the subsequence 〈16, 15, 20, 13, 17〉 share the same relative order. An other
occurrence of x in y is at position 10 (see Fig.1).

The OPPM problem finds applications in the fields where we are interested
in finding patterns affected by relative orders, not by their absolute values. For
example, it can be applied to time series analysis like share prices on stock
markets, weather data or to musical melody matching of two musical scores.

In the last few years some solutions have been proposed for the order-
preserving pattern matching problem. The first solution was presented by Ku-
bica et al. [7] in 2013. They proposed a O(n + m logm) solution over generic
ordered alphabets based on the Knuth-Morris-Pratt algorithm [8] and aO(n+m)
solution in the case of integer alphabets. Some months later Kim et al. [6] pre-
sented a similar solution running in O(n + m logm) time based on the KMP
approach. Although Kim et al. stressed some doubts about the applicability of
the Boyer-Moore approach [1] to order-preserving matching problem, in 2013
Cho et al. [3] presented a method for deciding the order-isomorphism between
two sequences showing that the Boyer-Moore approach can be applied also to
the order-preserving variant of the pattern matching problem. More recently
Chhabra and Tarhio [2] presented a more practical solution based on approx-
imate string matching. Their technique is based on a conversion of the input
sequences in binary sequences and on the application of any standard algorithm
for exact string matching as a filtration method.

In this paper we present two new families of filtering approaches which turn
out to be much more effective in practice than the previously presented methods.
While the technique proposed by Chhabra and Tarhio translates the input strings

in binary sequences, our methods work on sequences over larger alphabets in
order to speed up the searching process and reduce the number of false positives.
From our experimental results it turns out that our proposed solutions are up to
2 times faster than the previous solutions reducing the number of false positives
up to 99% under suitable conditions.

The paper is organized as follows. In Section 2 we give preliminary notions
and definitions relative to the order-preserving pattern matching problem while
in Section 3 we briefly describe the previous solutions to the problem. Then we
present our new solutions in Section 4 and evaluate their performances against
the previous algorithms in Section 5. Conclusions are drawn in Section 6.

2 Notions and Basic Definitions

A string x over an ordered alphabet Σ, of size σ, is defined as a sequence of
elements in Σ. We suppose that a total order relation “≤” is defined on it, so
that we could establish if a ≤ b for each a, b ∈ Σ.

We indicate the length of a string x with the symbol |x|. We refer to the
elements in x with the symbol x[i], for 0 ≤ i < |x|. Moreover we indicate with
x[i . . . j] the subsequence of x from the element of position i to the element of
position j (including the extremes), for 0 ≤ i ≤ j < |x|.

We say that two sequences x, y ∈ Σ∗ are order isomorphic if the relative order
of their elements is the same. More formally we give the following definition.

Definition 1 (order isomorphism). Given an ordered alphabet Σ and two
sequences x, y ∈ Σ∗ of the same length, we say that x and y are order-isomorphic,
and write x ≈ y, if the following conditions hold

1. |x| = |y|
2. x[i] ≤ x[j] if and only if y[i] ≤ y[j], for 0 ≤ i, j < |x|

Definition 2 (rank function). Let x be a sequence of length m over an or-
dered alphabet Σ. The rank function of x if a mapping r : {0, 1, . . . ,m − 1} →
{0, 1, . . . ,m − 1} such that x[r(i)] ≤ x[r(j)] holds for each pair 0 ≤ i < j < m.
Formally we define

r(i) = |{j : x[j] < x[i] or (x[j] = x[i] and j < i)}|

for 0 ≤ i < m.

We will refer to the value r(i) as the rank of x[i] in x, while we will refer to the
sequence 〈r(0), r(1), . . . r(m− 1)〉 as the relative order of x.

According to Definition 2 we have that x[r(0)] is the smallest number while
x[r(m − 1)] is the greater number in x. If we assume that sort(x) is the time
required to sort all the elements of x, then it is easy to observe that the relative
order of x can be computed in O(sort(x)) time.

In addition, we define the equality function of x which indicates which ele-
ments of the sequence are equal (if any). More formally we have the following
definition.

Noder-Isomorphism(r, eq, y, i)
1. for i← 0 to |x| − 1 do
2. if (y[r(i)] > y[r(j + i+ 1)]) then return false
3. if (y[r(i)] < y[r(j + i+ 1)] and eq(i) = 1) then return false
4. if (y[r(i)] = y[r(j + i+ 1)] and eq(i) = 0) then return false
5. return true

Fig. 2. The function used to verify if two sequences x and y[i . . . i+ |x| − 1] are order
isomorphic. We assume that the function receives as input the parameter r and eq
which represent the rank function and the equality function of x, respectively.

Definition 3 (equality function). Let x be a sequence of length m over an
ordered alphabet Σ and let r be the rank function of x. The equality function of
x if a mapping eq : {0, 1, . . . ,m− 2} → {0, 1} such that, for each 0 ≤ i < m

eq(i) =

{
1 if x[r(i)] = x[r(i+ 1)]
0 otherwise

Let r be the rank function of a string x, such that m = |x|, and let q be its
equality function. It is easy to prove that x and y are order isomorphic if and
only if they share the same rank and equality function, i.e. if and only if the
following two conditions hold

1. y[r(i)] ≤ y[r(i+ 1)], for 0 ≤ i < m− 1
2. y[r(i)] = y[r(i+ 1)] if and only if q(i) = 1, for 0 ≤ i < m− 1

Example 1. Let x = 〈6, 3, 8, 3, 10, 7, 10〉 and y = 〈2, 1, 4, 1, 5, 3, 5〉 two sequences
of size 7. We have that the relative order of x is (1, 3, 0, 5, 2, 4, 6) while its equal-
ity function is eq(x[i]) = (1, 0, 0, 0, 0, 1). The two string are order isomorphic
according to the definition given above, i.e. x ≈ y.

The procedure to verify that two numeric sequences, x and y, are order
isomorphic is shown in Fig.2. It receives as input the functions r and q, computed
on x and returns a boolean value indicating if x ≈ y. The algorithm requires
O(m) time, where m is the length of the sequences. A mismatch occurs when
one of the three conditions of lines 2, 3 and 4, holds.

The OPPM problem consists in finding all substring of the text with the same
relative order as the pattern. Specifically we have the following formal definition.

Definition 4 (order preserving pattern matching). Let x and y be two
sequences of length m and n, respectively (and n > m), both over an ordered
alphabet Σ. The order preserving pattern matching problem consists in finding
all indexes i, with 0 ≤ i < n−m, such that y[i . . . i+m− 1] ≈ x.

If an occurrence of the pattern x starts at portion i of the text y, we say that
x has an order-preserving occurrence at position i.

3 Previous Results

The OPPM problem has drawn particular attention in the last few years, during
which some efficient results have been proposed.

The first algorithm to solve the OPPM problem was presented by Kubica et
al. in [7]. Their solution was an adaptation of the well Known Knuth-Morris-
Pratt algorithm for the exact string matching problem, where the fail function is
adapted to compute the order-borders table. The authors proved that this table
can be computed in linear time in the length of the pattern x, if the relative
order of x is known in advance. The overall time complexity of the algorithm is
O(n + m logm), where m is the length of the pattern while n is the length of
the text. However in [3] Cho et al. proved that the algorithm presented in [7]
can decide incorrectly when there are equal values in the string.

The second algorithm based on Knuth-Morris-Pratt was presented later by
Kim et al. [6]. Their algorithm is based on the prefix representation and it is
further optimized according to the nearest neighbor representation. The prefix
representation is based on finding the rank of each integer in the prefix. It can be
computed easily by inserting each character to the dynamic order statistic tree
and then computing the rank of each character in the prefix. The time complexity
of computing such prefix representation is O(m logm). The failure function is
then computed as in the Knuth-Morris-Pratt algorithm in O(m logm) time. The
overall time complexity of this algorithm is O(n+m logm). Again, this solution
does not work properly when there are equal values in the pattern.

The first sublinear solution for the OPPM problem was presented by Cho et
al. in [3]. Their algorithm is an adaptation to OPPM of the well known Boyer-
Moore approach. They apply a q-grams technique, i.e. groups of q consecutive
characters are treated as a single condensed character, in order to make the shifts
longer. In this way, a large amount of text can be skipped for long patterns.

More recently Chhabra and Tarhio presented a new practical solution [2]
based on a filtration technique. Their algorithm translates the input sequences
in two binary sequences and then use any standard exact pattern matching
algorithm as a filtration procedure. In particular in their approach a sequence s
is translated in a binary sequence β of length |s| − 1 according to the following
position

β[i] =

{
1 if s[i] ≥ s[i+ 1]
0 otherwise

(1)

for each 0 ≤ i < |s|−1. This translation is unique for a given sequence s and can
be performed on line on the text, requiring constant time for each text character.

Thus when a candidate occurrence is found during the filtration phase an ad-
ditional verification procedure is run in order to check for the order-isomorphism
of the candidate substring and the pattern. Despite its quadratic time complex-
ity, this approach turns out to be simpler and more effective in practice than
earlier solutions. It is important to notice that any algorithm for exact string
matching can be used as a filtration method. The authors also proved that if the
underlying filtration algorithm is sublinear and the text is translated on line, the

overall complexity of the algorithm is sublinear on average. Experimental results
conducted in [2] show that the filter approach was considerably faster than the
algorithm by Cho et al.

For the sake of completeness we notice that Crochemore et al. presented in [4]
a solution for the offline version of the OPPM problem based on a new data
structure called order-preserving suffix tree. Their solution finds all occurrences
of x in y in O((m log n)/ log logm+z) where z is the number of occurrences of x
in y. In this paper we concentrate on the online version of the OPPM problem.

4 New Efficient Filter Based Algorithms

In this section we present two new general approaches for the OPPM problem.
Both of them are based on a filtration technique, as in [2], but we use information
extracted from groups of integers in the input string, as in [3], in order to make
the filtration phase more effective in terms of efficiency and accuracy, as discussed
below.

Text filtration is a largely used technique in the field of exact and approximate
string matching. Specifically, instead of checking at each position of the text if the
pattern occurs, it seems to be more efficient to filter text positions and check only
when a substring looks like the pattern. When a resemblance has been detected
a naive check of the occurrence is performed. In literature filtration techniques
are generally improved by using q-grams, i.e. groups of adjacent characters of
the string which are considered as a single character of a condensed alphabet.

It is always convenient to use a filtration method which better and faster lo-
calize candidate occurrences, which imply accuracy and efficiency of the method,
respectively.

The accuracy of a filtration method is a value indicating how many false
positives are detected during the filtration phase, i.e. the number of candidate
occurrences detected by the filtration algorithm which are not real occurrences
of the pattern. The efficiency is instead related with the time complexity of the
procedure we use for managing q-grams and with the time efficiency of the overall
searching algorithm. It is clear that these two values are strongly related since
a low accuracy implies an high number of false positives and, as a consequence,
a decrease in the performance of the searching algorithm.

When using q-grams, a great accuracy translates in involving greater values
of q. However, in this context, the value of q represents a trade-off between the
computational time required for computing the q-grams for each window of the
text and the computational time needed for checking false positive candidate
occurrences. The larger is the value of q, the more time is needed to compute
each q-gram. On the other hand, the larger is the value of q, the smaller is the
number of false positives the algorithm finds along the text during the filtration.

In our approaches we make use of the following definition of q-neighborhood
of an element in an integer string.

Definition 5 (q-neighborhood). Given a string x of length m, we define the
q-neighborhood of the element x[i], with 0 ≤ i < m− q, as the sequence of q + 1
elements from position i to i+q in x, i.e. the sequence 〈x[i], x[i+1], . . . , x[i+q]〉.

Both the filtration methods presented below translate the input sequence
in a target numeric sequence which is used for the filtration. Specifically each
position i of the sequence is associated with a numeric value computed from the
structure of the q-neighborhood of the element x[i].

4.1 The Neighborhood Ranking Approach

Given a string x of length m, we can compute the relative position of the element
x[i] compared with the element x[j] by querying the inequality x[i] ≥ x[j]. For
brevity we will write in symbol βx(i, j) to indicate the boolean value resulting
from the above inequality, extending the formal definition given in Equation (1).
Formally we have

βx(i, j) =

{
1 if x[i] ≥ x[j]
0 otherwise

(2)

It is easy to observe that if βx(i, j) = 1 we have that r(i) ≥ r(j) (x[j] precedes
x[i] in the ordering of the elements of x), otherwise r(i) < r(j).

The neighborhood ranking (nr) approach associates each position i of the
string x (where 0 ≤ i < m − q) with the sequence of the relative positions
between x[i] and x[i+ j], for j = 1, . . . , q. In other words we compute the binary
sequence 〈βx(i, i+1), βx(i, i+2), . . . , βx(i, i+q)〉 of length q indicating the relative
positions of the element x[i] compared with other values in its q-neighborhood.
Of course, we do not include in the sequence the relative position of β(i, i), since
it doesn’t give any additional information.

Since there are 2q possible configurations of a binary sequence of length q
the string x is converted in a sequence χq

x of length m− q, where each element
χq
x[i], for 0 ≤ i < m− q, is a value such that 0 ≤ χq

x[i] < 2q.
More formally we have the following definition

Definition 6 (q-NR sequence). Given a string x of length m and an integer
q < m, the q-nr sequence associated with x is a numeric sequence χq

x of length
m− q over the alphabet {0, . . . , 2q} where

χq
x[i] =

q∑
j=1

(
βx(i, i+ j)× 2q−j

)
, for all 0 ≤ i < m− q

Example 2. Let x = 〈5, 6, 3, 8, 10, 7, 1, 9, 10, 8〉 be a sequence of length 10. The 4-
neighborhood of the element x[2] is the subsequence 〈3, 8, 10, 7, 1〉. Observe that
x[2] is greater than x[6] and less than all other values in its 4-neighborhood. Thus
the ranking sequence associated with the element of position 2 is 〈0, 0, 0, 1〉 which
translates in a nr value equal to 1. In a similar way we can observe that the nr
sequence associated with the element of position 3 is 〈0, 1, 1, 0〉 which translates
in a nr value equal to 6. The whole 4-nr sequence of length 6 associated to x is
χ4
x = 〈4, 8, 1, 6, 15, 8〉.

Neighborhood Ranking Example nr seq. �3
x[i]

x[i] x[i + 1], x[i + 2], x[i + 3] h0, 0, 0i 0

x[i + 3] x[i] x[i + 1], x[i + 2] h0, 0, 1i 1

x[i + 2] x[i] x[i + 1], x[i + 3] h0, 1, 0i 2

x[i + 2], x[i + 3] x[i] x[i + 1] h0, 1, 1i 3

x[i + 1] x[i] x[i + 2], x[i + 3] h1, 0, 0i 4

x[i + 1], x[i + 3] x[i] x[i + 2] h1, 0, 1i 5

x[i + 1], x[i + 2] x[i] x[i + 3] h1, 1, 0i 6

x[i + 1], x[i + 2], x[i + 3] x[i] h1, 1, 1i 7

Fig. 3. The 23 possible 3-neighborhood ranking sequences associated with element x[i],
and their corresponding nr value. In the leftmost column we show the ranking position
of x[i] compared with other elements in its neighborhood 〈x[i], x[i+1], x[i+2], x[i+3]〉.

The following Lemma 1 and Corollary 1 prove that the nr approach can be
used to filter a text y in order to search for all order preserving occurrences of a
pattern x. In other words it proves that

{i | x ≈ y[i . . . i+m− 1]} ⊆ {i | χq
x = χq

y[i . . . i+m− k]}.

Lemma 1. Let x and y be two sequences of length m and let χq
x and χq

y the
q-ranking sequences associated to x and y, respectively. If x ≈ y then χq

x = χq
y.

Proof. Let r be the rank function associated to x and suppose by hypothesis
that x ≈ y. Then the following statements hold

1. by Definition 2 we have x[r(i)] ≤ x[r(i+ 1)], for 0 ≤ i < m− 1;
2. by hyphotesis and Def.1, y[r(i)] ≤ y[r(i+ 1)], for 0 ≤ i < m− 1;
3. then by 1 and 2, x[i] ≤ x[j] iff y[i] ≤ y[j], for 0 ≤ i, j < m− 1;
4. the previous statement implies that x[i] ≥ x[i+ j] iff y[i] ≥ y[i+ j]

for 0 ≤ i < m− q and 1 ≤ j < q;
5. by statement 4 we have that βx(i, i+ j) = βy(i, j + j)

for 0 ≤ i < m− q and 1 ≤ j < q;
6. finally, by 5 and Definition 6, we have χq

x[i] = χq
y[i], for 0 ≤ i < m− q.

This last statement proves the thesis. �

The following corollary prices that the nr approach can be used as a filtering.
It trivially follows from Lemma 1.

Compute-NR-Value(x, i, q)
1. δ ← 0
2. for j ← 1 to q do
3. δ = (δ � 1) + βx(i, i+ j)
4. return δ

Fig. 4. The function which computes the q-neighborhood ranking value of the element
of position i in a sequence x. The value id computed in O(q) time.

Corollary 1. Let x and y be two sequences of length m and n, respectively.
Let χq

x and χq
y the q-ranking sequences associated to x and y, respectively. If

x ≈ y[j . . . j +m− 1] then χq
x[i] = χq

y[j + i], for 0 ≤ i < m− q. �

Fig. 4 shows the procedure used for computing the nr value associated with
the element of the string x at position i. The time complexity of the procedure
is O(q). Thus, given a pattern x of length m, a text y of length n and an
integer value q < m, we can solve the OPPM problem by searching χq

y for all
occurrences of χq

x, using any algorithm for the exact string matching problem.
During the preprocessing phase we compute the sequence χq

x and the functions
rx and qx. When an occurrence of χq

x is found at position i the verification
procedure Noder-Isomorphism(r, q, y, i) (shown in Fig.2) is run in order to
check if x ≈ y[i . . . i+m− 1].

Since in the worst case the algorithm finds a candidate occurrence at each
text position and each verification costs O(m), the worst case time complexity
of the algorithm is O(nm), while the filtration phase can be performed with a
O(nq) worst case time complexity. However, following the same analysis of [2], we
easily prove that verification time approaches zero when the length of the pattern
grows, so that the filtration time dominates. Thus if the filtration algorithm is
sublinear, the total algorithm is sublinear.

4.2 The Neighborhood Ordering Approach

The neighborhood ranking approach described in the previous section gives par-
tial information about the relative ordering of the elements in the q-neighborhood
of an element in x. The q binary sequence used to represent each element x[i] is
not enough to describe the full ordering information of a set of q + 1 elements.

The q-neighborhood ordering (no) approach, which we describe in this sec-
tion, associates each element of the x with a binary sequence which completely
describes the ordering disposition of the elements in the q-neighborhood of x[i].
The number of comparisons we need to order a sequence of q + 1 elements is
between q (the best case) and q(q + 1)/2 (the worst case). In this latter case it
is enough to compare the element x[j], where i ≤ j < i + q, with each element
x[h], where j < h ≤ i+ q.

Thus each element of position i in x, with 0 ≤ i < m−q, is associated with a
binary sequence of length q(q+1)/2 which completely describes the relative order

Neighborhood Ordering Example NO seq. '4
x[i]

hx[i], x[i + 1], x[i + 2]i h0, 0, 0i 0

hx[i], x[i + 2], x[i + 1]i h0, 0, 1i 1

hx[i + 2], x[i], x[i + 1]i h0, 1, 1i 3

hx[i + 1], x[i], x[i + 2]i h1, 0, 0i 4

hx[i + 1], x[i + 2], x[i]i h1, 1, 0i 6

hx[i + 2], x[i + 1], x[i]i h1, 1, 1i 7

Fig. 5. The 3! possible ordering of the sequence 〈x[i], x[i + 1], x[i + 2]〉 and the corre-
sponding binary sequence 〈βx(i, i+ 1), βx(i, i+ 2), βx(i+ 1, i+ 2)〉.

Compute-NO-Value(x, i, q)
1. δ ← 0
2. for k ← q downto 1 do
3. for j ← 1 to k do
4. δ = (δ � 1) + βx(i+ q − k, i+ q − k + j)
5. return δ

Fig. 6. The function which computes the q-neighborhood ranking value of the element
of position i in a sequence x. The value is computed in O(q2) time.

of the susequence x[i, . . . , i + q]. Since there are (q + 1)! possible permutations
of a set of q + 1 elements, the string x is converted in a sequence ϕq

x of length
m− q, where each element ϕq

x[i] is a value such that 0 ≤ ϕq
x[i] < q(q + 1)/2.

More formally we have the following definition

Definition 7 (q-NO sequence). Given a string x of length m and an integer
q < m, the q-no sequence associated with x is a numeric sequence ϕq

x of length
m− q over the alphabet {0, . . . , q(q + 1)/2} where

ϕq
x[i] =

q∑
k=1

(
χk
x[i+ q − k]× 2(k)(k−1)/2

)
, for all 0 ≤ i < m− q (3)

Thus the q-no value associated to x[i] is the combination of q different nr
sequences χq

x[i], χq−1
x [i+ 1], . . . , χ1

x[i+ q − 1].
For instance the 4-no value associated to x[i] is computed as

ϕ4
x[i] = χ4

x[i]× 26 + χ3
x[i+ 1]× 22 + χ2

x[i+ 2]× 2 + χ1
x[i+ 3]

Example 3. As in Example 2, let x = 〈5, 6, 3, 8, 10, 7, 1, 9, 10, 8〉 be a sequence of
length 10. The 3-neighborhood of the element x[3] is the subsequence 〈8, 10, 7, 1〉.
The no sequence of length 6 associated with the element of position 2 is therefore
〈0, 1, 1, 1, 1, 1〉 which translates in a no value equal to ϕx[3] = 31. In a similar
way we can observe that the nr sequence associated with the element of position
2 is 〈0, 0, 0, 0, 1, 1〉 which translates in a no value equal to ϕ4

x[2] = 3. The whole
sequence of length 7 associated to x is ϕ4

x = 〈20, 32, 3, 31, 60, 32, 3〉.

The following Lemma 2 and Corollary 2 prove that the no approach can be
used to filter a text y in order to search for all order preserving occurrences of a
pattern x. In other words they prove that

{i | x ≈ y[i . . . i+m− 1]} ⊆ {i | ϕq
x = ϕq

y[i . . . i+m− k]}.

Lemma 2. Let x and y be two sequences of length m and let ϕq
x and ϕq

y the
q-ranking sequences associated to x and y, respectively. If x ≈ y then ϕq

x = ϕq
y.

Proof. The theorem easily follows from Definition 7 and Lemma 1. �

The following corollary proves that the nr approach can be used as a filtering.
It trivially follows from Lemma 2.

Corollary 2. Let x and y be two sequences of length m and n, respectively.
Let χq

x and χq
y the q-ranking sequences associated to x and y, respectively. If

x ≈ y[j . . . j +m− 1] then χq
x[i] = χq

y[j + i], for 0 ≤ i < m− q. �

Fig. 6 shows the procedure used for computing the no value associated with
the element of the string x at position i. The time complexity of the procedure
is O(q2). Thus, given a pattern x of length m, a text y of length n and an
integer value q < m, we can solve the OPPM problem by searching ϕq

y for all
occurrences of ϕq

x, using any algorithm for the exact string matching problem.
During the preprocessing phase we compute the sequence ϕq

x and the functions
rx and qx. When an occurrence of ϕq

x is found at position i the verification
procedure Noder-Isomorphism(r, q, y, i) (shown in Fig.2) is run in order to
check if x ≈ y[i . . . i+m− 1].

Also in this case, if the filtration algorithm is sublinear on average, the no
approach has a sublinear behavior on average.

5 Experimental Evaluations

In this section we present experimental results in order to evaluate the perfor-
mances of our new filter based algorithms presented in this paper. In particu-
lar we tested our filter approaches against the filter approach of Chhabra and
Tarhio [2], which is, to the best of our knowledge, the most effective solution in
practical cases. In the experimental evaluation conducted in [2] the sbndm2 and
sbndm4 algorithms [5] turned out to be the most effective exact string matching
algorithms which can be used in combination with the filter technique. Following

the same line, in our experimental evaluation we use in all cases the sbndm2
algorithm. However any other exact string matching algorithm could be used for
this purpose. In our dataset we use the following names to identify the tested
algorithms

– Fct: the sbndm2 algorithm based on the filter approach by Chhabra and
Jorma Tarhio presented in [2];

– Nrq: the sbndm2 algorithm based on the Neighborhood Ranking approach
presented in Section 4.1

– Noq: the sbndm2 algorithm based on the Neighborhood Ordering approach
presented in Section 4.2

We do not compare our solution with the Boyer-Moor approach by Cho et
al. [3] since it was shown to be less efficient than the algorithm by Chhabra and
Tarhio in all cases. We evaluated our filter based solutions in terms of efficiency,
i.e. the running times, and accuracy, i.e. the percentage of false positives detected
during the filtration phase. In particular for the Fct algorithm we will report the
average running times, in milliseconds, and the average number of false positives
detected every 220 text characters. Instead, for all other algorithms in the set,
we will report the following two values

– the speed up of the running times obtained when compared with the time
used by the Fct algorithm. If time(Fct) is the running time of the Fct
algorithm and t is the running time of our algorithm, then the speed up is
computed as time(Fct)/t.

– the percentage of the gain in the number of false positives detected by the
algorithm when compared with the Fct algorithm. If fp(Fct) is the number
of false positives detected on average by the Fct algorithm and fp is number
of false positives detected by our filter approach, then the gain is computed
as (100× (fp(Fct)− fp)/fp(Fct).

We tested our solutions on sequences of short integer values (each element
is an integer in the range [0 . . . 256]), long integer values (where each element is
an integer in the range [0 . . . 10.000]) and floating point values (each element is
a floating point in the range [0.0 . . . 10000.99]). However we don’t observe sen-
sible differences in the results, thus in the following table we report for brevity
the results obtained on short integer sequences. All texts have 1 million of ele-
ments. In particular we tested our algorithm on the following set of short integer
sequences.

– Rand-δ: a sequence of random integer values ringing around a fixed mean
equal to 100. Each value of the sequence is randomly chosen around the mean
with a variability of δ, so that the text can be seen as a random sequence of
integers between 100− δ and 100 + δ with a uniform distribution.

– Period-δ: a sequence of random integer values ringing around a periodic
function with a period of 10 elements. Each value of the sequence is randomly
chosen around the function with a variability of δ. All values of the sequences
are always in the range {0 . . . 200 + δ}.

m Fct Nr2 Nr3 Nr4 Nr5 Nr6 No2 No3 No4

8 44.29 1.16 1.28 1.25 1.25 1.24 1.89 1.71 1.11
12 28.39 1.16 1.37 1.37 1.33 1.19 1.64 2.00 1.64
16 20.65 1.15 1.30 1.43 1.34 1.14 1.42 2.01 1.83
20 16.29 1.15 1.30 1.45 1.41 1.14 1.39 2.00 1.93
24 13.64 1.16 1.29 1.42 1.44 1.12 1.34 1.91 2.01
28 11.48 1.16 1.28 1.44 1.45 1.11 1.31 1.88 1.96
32 10.34 1.18 1.30 1.40 1.46 1.12 1.30 1.83 2.05

8 15713.46 84.1 92.4 95.1 94.0 90.2 97.5 99.1 99.6
12 1420.78 95.8 99.3 99.7 99.8 97.5 99.8 100.0 100.0
16 123.22 99.4 100.0 100.0 100.0 99.7 100.0 100.0 100.0
20 12.07 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
24 1.01 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
28 0.02 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
32 0.00 - - - - - - - -

Table 1. Experimental results on a Rand-5 short integer sequence.

m Fct Nr2 Nr3 Nr4 Nr5 Nr6 No2 No3 No4

8 42.34 1.13 1.27 1.25 1.26 1.22 1.92 1.68 1.08
12 27.93 1.17 1.40 1.37 1.32 1.21 1.71 2.04 1.63
16 20.05 1.15 1.32 1.41 1.33 1.15 1.48 2.04 1.81
20 15.85 1.15 1.29 1.42 1.37 1.11 1.38 2.00 1.90
24 13.31 1.17 1.31 1.47 1.42 1.12 1.36 1.99 2.02
28 11.38 1.17 1.31 1.42 1.45 1.09 1.35 1.94 2.07
32 9.96 1.16 1.29 1.45 1.46 1.09 1.29 1.87 2.09

8 14326.78 83.6 92.3 95.6 92.9 90.2 97.7 99.3 99.7
12 1295.88 96.4 99.5 99.9 99.9 97.8 99.9 100.0 100.0
16 118.79 99.3 100.0 100.0 100.0 99.7 100.0 100.0 100.0
20 10.43 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
24 0.71 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
28 0.00 - - - - - - - -
32 0.00 - - - - - - - -

Table 2. Experimental results on a Rand-20 short integer sequence.

For each text in the set we randomly select 100 patterns extracted from the
text and compute the average running time over the 100 runs. We also computed
the average number of false positives detected by the algorithms during the
search. All the algorithms have been implemented using the C programming
language and have been compiled on an MacBook Pro using the gcc compiler
Apple LLVM version 5.1 (based on LLVM 3.4svn) with 8Gb Ram. During the
compilation we use the -O3 optimization option.

In the following table running times are expressed in milliseconds. Best results
have been underlined.

Experimental Results on Random Sequences

Experimental results on Rand-δ numeric sequences have been conducted with
values of δ = 5, 20, 40 (see Table 1, Table 2 and Table 3). The results show

m Fct Nr2 Nr3 Nr4 Nr5 Nr6 No2 No3 No4

8 42.62 1.16 1.28 1.28 1.25 1.25 1.94 1.70 1.09
12 28.35 1.19 1.41 1.39 1.36 1.21 1.75 2.06 1.65
16 20.37 1.18 1.32 1.44 1.37 1.17 1.49 2.09 1.83
20 16.12 1.15 1.29 1.46 1.39 1.12 1.39 2.04 1.95
24 13.35 1.18 1.30 1.46 1.44 1.13 1.36 1.97 1.99
28 11.60 1.18 1.32 1.47 1.50 1.14 1.37 1.96 2.06
32 10.06 1.16 1.29 1.45 1.48 1.10 1.33 1.89 2.07

8 15413.57 86.6 93.7 95.9 94.4 91.9 98.1 99.4 99.8
12 1492.39 97.0 99.6 99.9 99.9 98.1 99.9 100.0 100.0
16 114.82 99.3 100.0 100.0 100.0 99.7 100.0 100.0 100.0
20 9.83 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
24 0.83 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
28 0.00 - - - - - - - -
32 0.00 - - - - - - - -

Table 3. Experimental results on a Rand-40 short integer sequence.

m Fct Nr2 Nr3 Nr4 Nr5 Nr6 No2 No3 No4

8 41.08 0.99 1.05 0.88 0.79 0.90 0.88 0.73 0.60
12 36.42 1.06 1.02 0.94 0.86 0.91 0.81 0.67 0.69
16 34.03 1.04 0.86 0.78 0.74 1.00 0.77 0.64 0.60
20 35.31 0.98 0.89 0.88 0.84 0.92 0.73 0.60 0.55
24 37.90 1.34 1.33 1.30 1.18 1.15 0.99 0.82 0.76
28 36.26 1.17 1.09 1.10 1.04 0.97 0.78 0.64 0.56
32 35.38 1.10 1.15 1.05 0.95 0.94 0.82 0.65 0.59

8 48697.90 78.1 78.2 75.0 61.8 83.0 89.1 94.2 95.8
12 45427.73 66.4 72.8 74.6 71.4 67.7 76.3 82.4 84.9
16 32091.18 54.1 63.6 66.0 63.9 55.3 66.3 72.7 74.5
20 26337.31 41.0 49.0 52.6 53.6 43.0 53.4 59.1 61.5
24 23100.22 42.3 56.9 61.6 62.5 44.0 60.5 66.7 69.6
28 23296.19 53.2 63.0 70.7 73.1 55.1 65.8 73.8 76.7
32 17959.33 49.7 66.6 72.0 75.6 50.5 68.9 75.2 79.4

Table 4. Experimental results on a Period-5 short integer sequence.

as the No approach is the best choice in all cases, achieving a speed up of 2.0
if compared with the Fct algorithm. Also the Nr approach achieves always a
good speed up which is between 1.15 and 1.50. The gain in number of detected
false positives is impressive and is in most cases between 90% and 100%. It is
interesting to observe also that the value of δ do not affect the running times and
the number of false positives detected during the search, which are very similar
in the three tables.

Experimental Results on Periodic Sequences

Experimental results on Period-δ problem have been conducted on a periodic
sequence with a period equal to 10 and with δ = 5 (see Table 4). The results
show as the Nr1 approach is the best choice in most of the cases, achieving a
speed up of 1.3 in suitable conditions. However in some cases the Fct algorithm

m Fct Nr2 Nr3 Nr4 Nr5 Nr6 No2 No3 No4

8 42.35 0.98 1.18 0.91 0.81 0.89 1.02 0.83 0.68
12 39.09 1.11 1.14 1.06 0.98 1.00 1.02 0.88 0.93
16 34.25 1.11 1.01 1.02 1.01 1.08 0.96 0.87 0.87
20 35.41 1.10 1.09 1.21 1.21 1.07 0.97 0.89 0.89
24 35.15 1.31 1.51 1.67 1.60 1.14 1.15 1.10 1.18
28 32.23 1.23 1.40 1.56 1.36 1.07 1.04 1.08 1.15
32 30.34 1.43 1.60 1.53 1.43 1.22 1.19 1.11 1.07

8 62122.44 56.9 77.8 71.5 57.1 60.9 84.7 91.8 95.9
12 50264.79 56.5 72.8 77.3 76.7 58.6 77.0 85.0 88.1
16 32026.85 60.0 73.8 79.4 80.5 62.4 78.8 86.3 89.2
20 23138.04 61.1 77.4 83.2 86.3 63.3 81.2 87.8 91.3
24 16535.75 65.1 82.8 88.6 91.0 68.0 85.3 91.3 94.2
28 12181.13 72.7 85.4 92.7 94.9 74.8 88.8 94.8 96.8
32 9276.84 75.2 90.4 94.2 97.0 76.1 91.4 95.4 98.0

Table 5. Experimental results on a Period-20 short integer sequence.

m Fct Nr2 Nr3 Nr4 Nr5 Nr6 No2 No3 No4

8 45.07 0.93 1.18 0.94 0.81 0.89 1.12 0.91 0.78
12 37.91 1.08 1.12 1.03 0.93 1.03 1.13 1.03 1.08
16 32.41 1.11 1.04 1.06 1.13 1.07 1.07 1.02 1.10
20 28.63 1.05 1.09 1.24 1.35 1.08 1.04 1.04 1.15
24 27.25 1.18 1.39 1.59 1.53 1.10 1.12 1.14 1.40
28 24.91 1.20 1.51 1.67 1.41 1.05 1.17 1.30 1.50
32 23.63 1.39 1.63 1.55 1.31 1.20 1.27 1.41 1.41

8 61386.36 50.0 73.3 67.7 50.7 56.3 81.3 89.0 94.9
12 36298.84 59.3 76.3 80.6 82.1 62.4 81.8 89.3 93.2
16 19385.18 70.4 84.0 88.8 90.8 72.8 88.7 94.2 96.5
20 10325.29 74.6 88.3 93.7 96.1 78.8 92.9 97.0 98.5
24 6566.03 82.4 94.9 97.5 98.7 84.9 96.1 98.4 99.4
28 3141.06 82.8 94.4 98.0 99.1 85.2 96.2 98.8 99.5
32 2399.46 88.3 97.1 99.1 99.7 89.6 97.8 99.3 99.8

Table 6. Experimental results on a Period-40 short integer sequence.

turns out to be the best choice especially on short patterns. The No approach
is always less efficient of the Fct algorithm although the gain in number of
detected false positives is always between 65% and 95%. This behavior is due to
the high number of candidate occurrences detected by the algorithm, despite its
gain in number of false positives, and to the relative effort in the construction
of the filters values.

When the size of δ increases (see Table 5 and Table 6) the performances
of the No approach get better achieving a speed up of 1.4 in the best cases.
However the nr approach turns out to be always the best solutions with a speed
up close to 1.7 for long patterns.

The gain in number of false positives is always in the range between 50% and
99.7% for the Nr algorithm, and between 80% and 99.8% in the case of the No
algorithm. The gain of the No4 algorithm is in most cases close the 100%.

6 Conclusions

In this paper we discussed the Order Preserving Pattern Matching Problem
and presented two new families of filtering approaches to solve such problem
which turn out to be much more effective in practice than the previously pre-
sented methods. The presented methods translate the original sequence on new
sequences over large alphabets in order to speed up the searching process and
reduce the number of false positives. From our experimental results it turns out
that our proposed solutions are up to 2 times faster than the previous solutions
reducing the number of false positives up to 99% under suitable conditions.

References

1. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Communications of the
ACM 20(10), 762–772 (1977)

2. Chhabra, T., Tarhio, J.: Order-preserving matching with filtration. In: Proc. SEA
’14, 13th International Symposium on Experimental Algorithms. Lecture Notes in
Computer Science 8504, Springer, 307–314 (2014).

3. Cho, S., Na, J.C., Park, K., Sim, J.S.: Fast order-preserving pattern matching. In:
Widmayer, P., Xu, Y., Zhu, B. (eds.) COCOA 2013. LNCS, vol. 8287, pp. 295–305.
Springer, Chengdu (2013)

4. Crochemore, M, Iliopoulos, C.S., Kociumaka, T., Kubica, M., Langiu, A., Pissis,
S.P., Radoszewski, J., Rytter, W., Walen, T.: Order-preserving incomplete suffix
trees and order-preserving indexes. In: Proc. SPIRE 2013, 20th International Sym-
posium. LNCS, vol. 8214, pp. 84–95. Springer, Jerusalem (2013)

5. Durian, B., Holub, J., Peltola, H., Tarhio, J.: Improving practical exact string match-
ing. Information Processing Letters 110(4): 148–152 (2010)

6. Kim, J., Eades, P., Fleischer, R., Hong, S.-H., Iliopoulos, C.S., Park, K., Puglisi, S.
J., Tokuyama, T.: Order preserving matching. Theoretical Computer Science 525,
68–79 (2014)

7. Kubica, M., Kulczynski, T., Radoszewski, J., Rytter, W., Walen, T.: A linear time
algorithm for consecutive permutation pattern matching. Information Processing
Letters 113(12), 430–433 (2013)

8. Knuth, D.E., Morris, J.M., Pratt, V.R.: Fast pattern matching in strings. SIAM
Journal on Computing 6(2), 323–350 (1977)

9. Navarro, G., Raffinot, M.: Flexible pattern matching in strings. Practical on-line
search algorithms for texts and biological sequences. Cambridge University Press,
New York, NY, 2002

	Efficient Algorithms for theOrder Preserving Pattern Matching Problem

