
String Matching
with Inversions and Translocations

in Linear Average Time (Most of the Time)

Szymon Grabowski†, Simone Faro‡, and Emanuele Giaquinta‡

† Computer Engineering Department, Technical University of Lódź,
Al. Politechniki 11, 90-924 Lódź, Poland

sgrabow@kis.p.lodz.pl

‡ Università di Catania, Dipartimento di Matematica e Informatica
Viale Andrea Doria 6, I-95125 Catania, Italy

{faro | giaquinta}@dmi.unict.it

Abstract. We present an efficient algorithm for finding all approximate
occurrences of a given pattern p of length m in a text t of length n allow-
ing for translocations of equal length adjacent factors and inversions of
factors. The algorithm is based on an efficient filtering method and has an
O(nmmax(α, β))-time complexity in the worst case and O(max(α, β))-
space complexity, where α and β are respectively the maximum length
of the factors involved in any translocation and inversion. Moreover we
show that under the assumptions of equiprobability and independence of
characters our algorithm has a O(n) average time complexity, whenever
σ = Ω(logm/ log log1−εm), where ε > 0 and σ is the dimension of the
alphabet. Experiments show that the new proposed algorithm achieves
very good results in practical cases.

1 Introduction

Retrieving information and teasing out the meaning of biological sequences are
central problems in modern biology. Generally, basic biological information is
stored in strings of nucleic acids (DNA, RNA) or amino acids (proteins). Align-
ing sequences helps in revealing their shared characteristics, while matching se-
quences can infer useful information from them. With the availability of large
amounts of DNA data, matching of nucleotide sequences has become an impor-
tant application and there is an increasing demand for fast computer methods
for analysis and data retrieval.

Approximate string matching is a fundamental problem in text processing
and consists in finding approximate matches of a pattern in a string. The close-
ness of a match is measured in terms of the sum of the costs of the edit operations
necessary to convert the string into an exact match. Most classical models, e.g.,
Levenshtein or Damerau edit distance (for a survey see [5]) assume that changes
between strings occur locally. However, evidence shows that large scale changes
are possible in chromosomal rearrangment. For example, large pieces of DNA in

ar
X

iv
:1

01
2.

02
80

v1
 [

cs
.D

S]
 1

 D
ec

 2
01

0

Fig. 1. An example of chromosomal inversion.

a chromosomal sequence can be broken and moved from one location to another.
This is known as a chromosomal translocation. Sometimes a mutation can also
flip a stretch of DNA within a chromosome, producing a chromosomal inversion.

In particular a chromosomal inversion is a rearrangement in which a segment
of a chromosome is reversed end to end. An inversion occurs when a single chro-
mosome undergoes breakage and rearrangement within itself. Fig. 1(A) shows
an example of chromosomal inversion.

Differently a chromosomal translocation is a chromosome abnormality caused
by rearrangement of parts of the same chromosome or between nonhomologous
chromosomes. Sometimes a chromosomal translocation could join two separated
genes, the occurrence of which is common in cancer. Fig. 1(B) shows an example
of chromosomal translocation.

Both inversions and translocations do not involve a loss of genetic informa-
tion, but simply rearrange the linear gene sequence.

Recently Cantone et al. [2] presented the first solution for the matching prob-
lem under a string distance whose edit operations are translocations of equal
length adjacent factors and inversions of factors. In particular, they devised
a O(nmmax(α, β))-time and O(m2)-space algorithm, where α and β are the
maximum length of the factors involved in a translocation and in an inver-
sion, respectively. They showed that under the assumption of equiprobability
and independence of characters in the alphabet, on average the algorithm has a
O(n logσm)-time complexity. Moreover they also presented a bit-parallel imple-
mentation of their algorithm, which hasO(nmax(α, β))-time andO(σ+m)-space
complexity, if the pattern length is comparable with the computer word size.

In this paper we present a new algorithm for the same problem based on
an efficient permutation filtering method and on a dynamic programming ap-
proach for testing candidate positions. In particular our algorithm achieves a
O(nmmax(α, β))-worst case time complexity, as the M-Sampling algorithm,
and requires only O(max(α, β)) space. Moreover we show that under the as-
sumption of equiprobability and independence of characters in the alphabet, on
the average our filter based algorithm achieves a O(n)-time complexity, when
σ = Ω(logm/ log log1−εm), where ε > 0 and σ is the dimension of the alphabet.

A slightly shorter version of this manuscript was submitted to Information
Processing Letters.

2 Basic notions and definitions

Let p be a string of length m ≥ 0, over an integer alphabet Σ of size σ. We
represent it as a finite array p[0 . . . m−1] of characters fromΣ and write len(p) =
m. In particular, for m = 0 we obtain the empty string ε. We denote by p[i] the
(i+1)th character of p, for 0 ≤ i < m. Likewise, the substring (also called factor)
of p contained between the (i+1)th and the (j+1)th characters of p is indicated
with p[i . . . j], for 0 ≤ i ≤ j < m. An m-substring (or m-factor) is a substring
of length m. We also put pi =Def p[0 . . . i], for 0 ≤ i < m. In addition, we write
pp′ to denote the concatenation of p and p′, and pr for the reverse of the string
p, i.e., pr =Def p[m− 1]p[m− 2] . . . p[0]. Given a string p and a character c ∈ Σ,
we define occp(c) as the number of times the character c occurs in p (observe
that 0 ≤ occp(c) ≤ len(p)).

A distance d : Σ∗ × Σ∗ → R is a function which associates to any pair of
strings X and Y the minimal cost of any finite sequence of edit operations which
transforms X into Y , if such a sequence exists, ∞ otherwise.

Definition 1. Given two strings X and Y , the mutation distance md(X,Y) is
based on the following edit operations:

(1) Translocation: a factor of the form ZW is transformed into WZ, provided
that len(Z) = len(W) > 0.

(2) Inversion: a factor Z is tranformed into Zr.

Both operations are assigned unit cost. ut

We indicate with α and β the maximum length of factors involved translo-
cations and inversions, respectively. By definition, α ≤ blen(X)/2c and β ≤
len(X). When md(X,Y) <∞, we say that X and Y have an md-match. Addi-
tionally, if X has an md-match with a suffix of Y , we write X wmd Y .

3 Proposed Algorithm

In this section we present a new efficient algorithm for the approximate string
matching problem allowing for inversions of factors and translocations of equal
length adjacent factors. In the following we assume that p and t are strings of
length m and n respectively, over a common alphabet Σ = {c0, . . . , cσ−1}, where
σ = O(n). (The case of even larger alphabets is rather theoretical and can be
handled with standard solutions, e.g., using a minimal perfect hash function.)

The new algorithm, named GFG algorithm, searches for all occurrences of
p in t by making use of an efficient filter method. This technique, usually called
as the counting filter, is known in the literature [3, 4, 1] and has been used for
k-mismatches and k-differences. The idea behind the filter is straightforward
and is based upon the observation that (in our problem) if the pattern p has
an approximate occurrence (possibly involving inversions and translocations)
starting at position s of the text then the m-substring of the text t[s . . . s+m−1]
is a permutation of the pattern.

Then the GFG algorithm identifies the set Γp,t of all candidate positions
s in the text such that the substring t[s . . . s + m − 1] is a permutation of the
characters in p and, for each s ∈ Γp,t, executes a verification procedure in order
to check the approximate occurrence.

Before entering into details we need to introduce some additional notations.
Given two strings w and z, we define a distance function δ(w, z) as

δ(w, z) =
∑
c∈Σ

abs
(
occw(c)− occz(c)

)
.

Obviously, if len(w) = len(z), then δ(w, z) = 0 iff w is a permutation of z.
For each position s in the text, with 0 ≤ s ≤ n − m, we define a function

Gs : Σ → N , as
Gs(c) = occp(c)− occt(s,m)(c)

for c ∈ Σ, and where we set t(s,m) = t[s . . . s+m− 1].
Finally we define, for each position s, the distance value δs as follows

δs = δ(p, ts) =
∑
c∈Σ

abs
(
occp(c)− occt(s,m)(c)

)
=
∑
c∈Σ

abs
(
Gs(c)

)
.

Then the set Γp,t of all candidate positions in the text can be defined as

Γp,t = {s | 0 ≤ s ≤ n−m and δs = 0}.

Observe that values δs+1 and δs can differ only in the number of occur-
rences of characters t[s] and t[s + m]. Specifically we have occt(s+1,m)(t[s]) ≥
occt(s,m)(t[s])−1 and occt(s+1,m)(t[s+m]) ≤ occt(s,m)(t[s+m])+1. Moreover, if
t[s] = t[s+m], the two functions occt(s+1,m) and occt(s,m) do not differ for any
value.

Therefore, for each character c ∈ Σ, the value of Gs+1(c) can be computed
in constant time from Gs(c) by using the following relation

Gs+1(c) =

Gs(c)− 1 if c = t[s+m] 6= t[s]
Gs(c) + 1 if c = t[s] 6= t[s+m]
Gs(c) otherwise

which gives the following relation for computing δs+1 from δs in constant time

δs+1 = δs − abs
(
Gs(t[s])

)
− abs

(
Gs(t[s+m])

)
+

+abs
(
Gs+1(t[s])

)
+ abs

(
Gs+1(t[s+m])

)
.

Fig.2 shows the pseudocode of the GFG algorithm (on the left) and the
verification procedure (on the right). Note that the main loop of GFG has only
one conditional and the integer abs function is translated by modern compilers
(including GNU C Compiler) into branchless code.

The verification procedure is based on dynamic programming. The algorithm
uses two matrices, F and I, both of size m2, in order to compute occurrences of

GFG (p,m, t, n, α, β)
1. for c ∈ Σ do G[c]← 0
2. for s← 0 to m− 1 do
3. G[p[s]]← G[p[s]] + 1
4. G[t[s]]← G[t[s]]− 1
5. δ ← 0
6. for c ∈ Σ do δ ← δ + abs(G[c])
7. for s← 0 to n−m do
8. if δ = 0 then
9. Verify(p,m, t, s, α, β)

10. a← t[s]
11. b← t[s+m]
12. δ ← δ − abs(G[a])− abs(G[b])
13. G[a]← G[a] + 1
14. G[b]← G[b]− 1
15. δ ← δ + abs(G[a]) + abs(G[b])
16. if δ = 0 then
17. Verify(p,m, t, n−m,α, β)

Verify(p,m, t, s, α, β)
1. γ = min(α, β)
2. for i← 0 to m− 1 do
3. for j ← max(0, i− γ) to min(m− 1, i+ γ) do
4. F [i, j]← I[i,m− j − 1]← 0
5. if (p[i] = t[s+ j]) then
6. if (i = 0 or j = 0) then F [i, j]← 1
7. else F [i, j]← F [i− 1, j − 1] + 1
8. if (p[i] = t[s+m− j − 1]) then
9. if (i = 0 or j = 0) then I[i,m− j − 1]← 1

10. else I[i,m− j − 1]← I[i− 1,m− j] + 1
11. if (p[i] = t[s+ i] and (i = 0 or S[i− 1] = 1))
12. then S[i]← 1 else S[i]← 0

13. for k ← 1 to min(α, b i+1
2 c) do

14. if (F [i, i− k] ≥ k and F [i− k, i] ≥ k) then
15. if (i < 2k or S[i− 2k] = 1) then S[i]← 1
16. for k ← 2 to min(β, i+ 1) do
17. if (I[i, i− k + 1] ≥ k) then
18. if (i < k or S[i− k] = 1) then S[i]← 1
19. if (S[m− 1] = 1) then Output(s)

Fig. 2. (on the left) The GFG algorithm for the approximate string matching problem
with inversions and translocations and (on the right) the verification procedure.

factors and inverted factors of p, respectively, in the substring t[s . . . s+m− 1].
More formally we define

F [i, j] = max{k | p[i− k + 1 . . . i] = t[s+ j − k + 1 . . . s+ j]}, and
I[i, j] = max{k | p[i− k + 1 . . . i] = (t[s+ j . . . s+ j + k − 1])r}

for 0 ≤ i < m and max(0, i− γ) ≤ j ≤ min(m− 1, i+ γ), where γ = min(α, β).
Moreover a vector S, of size m, is maintained in order to compute the md-
matches of all prefixes of the pattern in t[s . . . s + m − 1]. More formally, for
0 ≤ i < m, we have S[i] = 1 if pi wmd t[s . . . s+ i] and S[i] = 0 otherwise.

The following recursive relations are used for computing F and I.

F [i, j] =

0 if p[i] 6= t[s+ j]
F [i− 1, j − 1] + 1 if i > 0, j > max(0, i− α) and p[i] = t[s+ j]
1 otherwise

I[i, j] =

0 if p[i] 6= t[s+ j]
I[i− 1, j + 1] + 1 if i > 0, j < min(m− 1, i+ β) and p[i] = t[s+ j]
1 otherwise

Finally the vector S is computed, for increasing i = 1 . . .m− 1 (S[i] is set to
0) according to the following (recursive) formula. The value of S[i] is set to 1 iff
one of the following conditions holds:

- p[i] = t[s+ i] and (i = 0 or S[i− 1] = 1);
- F [i, i − k] ≥ k, F [i − k, i] ≥ k and (i < 2k or S[i − 2k] = 1), for 1 ≤ k ≤

min(α, b i+1
2 c);

- I[i, i− k + 1] ≥ k and (i < k or S[i− k] = 1), for 1 ≤ k ≤ min(β, i+ 1).

Then p has an md-match starting at position s of the text if S[m− 1] = 1 at
the end of the verification procedure with parameter p, t and s.

Observe that for computing the entry of position i in S only the last β
entries of the (i− 1)th row of I are needed, while only the last α entries of the
(i − 1)th row of F and of the (i − 1)th column of F are needed. Similarly only
the last max(2α, β) entries of the vector S are needed for computing the value
S[i]. Moreover, both for I and F , the computation of the ith row (column) needs
only the values in the (i− 1)th row (column) of the matrix.

It is thus straightforward to reduce the space requirements of the verification
phase to O(max(α, β)). This is done by maintaining, for each iteration, only two
rows of I and only two rows and two columns of F , each of size max(α, β).

The verification time and space costs are thusO(mmax(α, β)) andO(max(α, β)),
respectively, leading to overall O(nmmax(α, β)) worst case time complexity and
O(max(α, β, σ)) space complexity for the GFG algorithm.

4 Average Case Time Analysis

Next, we evaluate the average time complexity of the GFG algorithm. In our
analysis we assume the uniform distribution and independence of characters.
We first assume that m = ω(σO(1)), Then we prove the more simple case when
m ≤ σ.

Our verification procedure takes O(m2) (worst-case) time per location. To
obtain linear average time, we must thus bound the probability of having per-
muted subsequences of length m with O(1/m2). We will find conditions upon
which this happens.1

Suppose m = ω(σO(1)), we define k = m/σ and, without loss of generality,
we assume that σ divides m. For each text position s, with 0 ≤ s ≤ n − m,
the probability that the m-substring of the text, beginning at position s, is a
permutation of the pattern p is exactly

Pr{s ∈ Γp,t} =

(
m

occ(c0)

)(
m−occ(c0)
occ(c1)

)(
m−occ(c0)−occ(c1)

occ(c2)

)
. . .
(occ(cσ−1)
occ(cσ−1)

)
σm

. (1)

Now, it is easy to notice that the probability given in (1) is maximized when
occ(ci) = k for all i. We can thus write:

Pr{s ∈ Γp,t} ≤
(
m
k

)(
m−k
k

)(
m−2k
k

)
. . .
(
k
k

)
σm

=
m!

(k!)σσm
.

We make use of Stirling’s approximation for both m! and k!, recalling that
k = m/σ:

m!

(k!)σσm
= Θ

(√
2πm(m/e)m

(
√

2π(m/σ)(m/(eσ))m/σ)σσm

)
= Θ

 √
2πm(√

2π(m/σ)
)σ
 .

1 The paper [1] contains an analysis of the counting filter, in the k-differences problem.
Unfortunately, the analysis seems to be flawed, which was admitted in discussion by
the second author of the cited paper (G. Navarro).

Let us upper-bound
√

2π/(
√

2π)σ with 1 and remove it. We have:

Θ

 √
m(√

m/σ
)σ
 = Θ

(
σσ/2

m(σ−1)/2

)
.

Let us assume m ≥ σ4 (we recall that m = ω(σO(1))). Then σσ/2/m(σ−1)/2

is less than or equal to 1/σ1.5σ−2. Note that if we take a larger lower bound on
m, e.g., σ8, then our upper bound gets even smaller, namely 1/σ3.5σ−4 in this
example. All in all, we have

Pr{s ∈ Γp,t} = O(1/σO(σ)) = O(1/m2)

for any σ = Ω(logm/ log log1−εm), where ε > 0.
Suppose now that m ≤ σ.2 Then the probability that the m-substring of the

text, beginning at position s, is a permutation of the pattern p is

Pr{s ∈ Γp,t} ≤
m!

σm
≤ m!

mm

If we make use again of Stirling’s approximation for m!, we obtain

Pr{s ∈ Γp,t} <
√

2π
mm+1

emmm
=
√

2π
m

em
= O(1/m2).

Thus the overall average time complexity of the GFG algorithm, assuming
σ = Ω(logm/ log log1−εm), is given by the following relation:

T (n,m, σ) = O(σ +m) +

n−m∑
s=0

Pr{s ∈ Γp,t} · O(m2)

= O(σ +m) + (n−m+ 1) · O(1/m2) · O(m2) = O(n).

5 Experimental results

In this section we evaluate the performance of the following algorithms:

– The M-Sampling algorithm [2] (MS)
– The GFG algorithm using the M-Sampling algorithm for verification (GFG1)
– The GFG algorithm as shown in Fig.2 (GFG2)

All algorithms have been implemented in C and compiled with the GNU C Compiler

4.2, using the options -O2 -fno-guess-branch-probability. All tests have
been performed on a 2 GHz Intel Core 2 Duo and running times have been mea-
sured with a hardware cycle counter, available on modern CPUs. We used the
following input files:

2 Note that for the more general case of m = σO(1) there exists already an average-
case linear algorithm [2], so this part of the analysis is only to find properties of the
currently presented algorithm.

(i) four random texts of 2, 000, 000 characters with a uniform distribution over
alphabets of dimension σ, with σ ∈ {4, 8, 16, 32} respectively,

(ii) a protein sequence of 2, 900, 352 characters from the Saccharomyces cere-
visiae genome (with σ = 20),3

(iii) a genome sequence of 4, 638, 690 base pairs of Escherichia coli (with σ =
4).4

For each input file, we have generated seven sets of 200 patterns of fixed length
m randomly extracted from the text (with at least one occurrence in the text),
for m ranging over the values 8, 16, 32, 64, 128, 256, 512. For each set of patterns
we reported the mean time over 200 runs, expressed in milliseconds.

Random text with σ = 4
m MS GFG1 GFG2
8 254.78 48.53 73.73
16 350.25 50.05 103.09
32 441.05 44.20 102.04
64 528.35 43.83 140.18
128 645.36 43.20 208.05
256 868.13 41.84 273.47
512 1273.13 44.71 349.57

Random text with σ = 8
m MS GFG1 GFG2
8 155.39 29.57 29.78
16 193.91 29.21 28.98
32 241.54 29.20 28.72
64 309.26 29.33 28.75
128 377.17 29.68 29.16
256 525.96 30.75 30.89
512 770.45 34.14 37.73

Random text with σ = 16
m MS GFG1 GFG2
8 115.27 28.45 28.55
16 137.27 28.48 28.54
32 161.25 28.51 28.57
64 211.75 28.65 28.66
128 273.53 28.94 29.01
256 371.65 29.86 30.34
512 536.40 32.85 35.79

Random text with σ = 32
m MS GFG1 GFG2
8 93.80 28.18 28.52
16 110.64 28.20 28.53
32 128.80 28.25 28.55
64 169.25 28.42 28.61
128 197.24 28.65 28.93
256 259.77 29.45 30.23
512 398.20 32.07 35.11

Escherichia coli
m MS GFG1 GFG2
8 593.49 117.79 184.48
16 781.76 108.53 208.50
32 976.79 99.88 222.19
64 1188.58 94.64 267.01
128 1484.03 84.16 252.17
256 2005.00 80.40 257.70
512 2929.90 83.36 299.49

Saccharomyces cerevisiae
m MS GFG1 GFG2
8 163.25 41.38 41.45
16 192.64 41.39 41.45
32 224.27 41.44 41.48
64 297.01 41.56 41.60
128 376.27 41.88 41.91
256 506.88 42.79 43.25
512 738.19 45.72 48.65

The experimental results show that the filtering strategy is quite effective
and allows to dramatically speed up, by a factor of at most 30, the computation
of the md-matches of a given pattern. It is worth observing that for very small
alphabets the GFG1 algorithm, based on M-Sampling, is faster than the GFG2
algorithm, based on the dynamic programming verification, while in the other
cases the two algorithms have almost the same speed. In the following tables
we report the mean, over the 200 runs, of the number of pattern’s permutations
found per text position.

Random text (σ = 4)
m # candidate
8 0.013621
16 0.006399
32 0.001837
64 0.000720
128 0.000285
256 0.000093
512 0.000029

Random text (σ = 8)
m # candidate
8 0.000410
16 0.000037
32 0.000004
64 0.000001
128 0.000001
256 0.000001
512 0.000001

Random text (σ = 16)
m # candidate
8 0.000004
16 0.000001
32 0.000001
64 0.000001
128 0.000001
256 0.000001
512 0.000001

Average number of candidate positions for each text character on random texts
with σ = 4 (on the left) σ = 8 (in the center) σ = 16 (on the right)

Observe that, while for small alphabets the number is non negligible also for
long patterns, for large enough alphabets it is always insignificant.

3 http://data-compression.info/Corpora/ProteinCorpus/
4 http://corpus.canterbury.ac.nz/

6 Acknowledgement

The work was partially supported (the first author) by the Polish Ministry of
Science and Higher Education under the project N N516 441938.

References

1. R. A. Baeza-Yates and G. Navarro. New and faster filters for multiple approximate
string matching. Random Struct. Algorithms, 20(1):23–49, 2002.

2. D. Cantone, S. Faro, and E. Giaquinta. Approximate string matching allowing for
inversions and translocations. In J. Holub and J. Žďárek, editors, Proceedings of
the Prague Stringology Conference 2010, pages 37–51, Czech Technical University
in Prague, Czech Republic, 2010.

3. R. Grossi and F. Luccio. Simple and efficient string matching with k mismatches.
Inf. Process. Lett., 33(3):113–120, 1989.

4. P. Jokinen, J. Tarhio, and E. Ukkonen. A comparison of approximate string match-
ing algorithms. Softw. Pract. Exp., 26(12):1439–1458, 1996.

5. G. Navarro. A guided tour to approximate string matching. ACM Comput. Surv.,
33(1):31–88, 2001.

