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In this paper we propose an efficient approach to the compressed string matching prob-
lem on Huffman encoded texts, based on the Boyer-Moore strategy. Once a candidate
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1. Introduction

The compressed string matching problem is a variant of the classical string matching

problem. It consists in searching for all the occurrences of a given pattern P in a

text T stored in compressed form.

A straightforward solution is the so-called decompress-and-search strategy, which

consists in decompressing the text and then using any classical string matching

algorithm for searching. However, recent results show that in many cases searching

directly in compressed texts can be more efficient.

Here we are interested in the string matching problem on Huffman compressed

texts. The Huffman data compression method [7] is an optimal statistical coding.

More precisely, the Huffman algorithm computes an optimal prefix code, relative

to given frequencies of the alphabet characters. A prefix code is a set of (binary)

words containing no word which is a prefix of another word in the set. Thanks to

such a property, decoding is particularly simple. Indeed, a binary prefix code can be

represented by an ordered binary tree, whose leaves are labeled with the alphabet

characters and whose edges are labeled by 0 (left edges) and 1 (right edges) in such
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t : 00

e : 01

w : 100

a : 101

n : 110

y : 1110

b : 1111

t e

w a

y b

n

0 1

0 1

0 1

0 1

0 1

0 1

twenty 0̄01̄000̄11̄100̄01̄110

ten 0̄00̄11̄10

ten 0̄00̄11̄10

Fig. 1. A Huffman code for the set of symbols {t, e, w, a, n, y, b}. The binary string
0̄01̄000̄11̄100̄01̄110 is the encoding of the string twenty, where a “bar” indicates the starting
bit of each codeword. Two occurrences of the binary string ten start at the 4-th and 10-th bit of
the encoded version of the string twenty. Both of them are false matches.

a way that the codeword of an alphabet character is the word labeling the branch

from the root to the leaf labeled by the same character.

Prefix code trees, as computed by the Huffman algorithm, are called Huffman

trees. These are not unique, by any means. The usually preferred tree for a given

set of frequencies, out of the various possible Huffman trees, is the one induced by

canonical Huffman codes [14]. This tree has the property that, when scanning its

leaves from left to right, the sequence of their depths is nondecreasing.

When performing a search on the bitstream of a Huffman encoded text by a

classical string matching algorithm, one faces the problem of false matches, i.e.,

occurrences of the encoded pattern in the encoded text which do not correspond to

occurrences of the pattern in the original text. Indeed, the only valid occurrences

of the pattern are those correctly aligned with codeword boundaries, or, otherwise

said, valid matches must start on the first bit of a codeword. Consider, for example,

the Huffman code presented in Figure 1. Note that there are two false occurrences of

the string ten starting at the 4-th and at the 10-th bit, respectively, of the encoded

string twenty. Thus a verification that the occurrences detected by the pattern

matching algorithm are correctly aligned on codeword boundaries is in order.

False matches could be avoided by using codes in which no codeword is a prefix

or a suffix of any other codeword. However, such codes, which are called affix or

fix-free, are extremely infrequent [5].

Klein and Shapira [11] showed that, for long enough patterns, the probability of

finding a false match is often very low, independently of the algorithm. They then

proposed a probabilistic algorithm which works on the assumption that Huffman

codes tend to realign quickly after an error.

More recently, Shapira and Daptardar [15] proposed a modification of the

Knuth-Morris-Pratt algorithm [12], in this paper referred to as Huffman-

Kmp, which makes use of a data structure, called skeleton tree [9], suitably de-

signed for efficient decoding of Huffman encoded sequences. The resulting algorithm

is characterized by fast search times, if compared with the decompress-and-search

method.
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Algorithms based on the Boyer-Moore algorithm [2] have been considered

unsuitable for searching Huffman encoded texts because the right to left scan does

not allow one to determine the codeword boundaries in the compressed text, unless

the text is decoded from left to right. In addition, Boyer-Moore-like algorithms

are generally considered unsuitable for binary alphabets.

In this paper we present a new way to exploit skeleton trees for adapting Boyer-

Moore-like algorithms to the compressed string matching problem in Huffman

encoded texts. Specifically, we use skeleton trees to verify codeword alignments

rather than for decoding. This allows one to skip up to 70% of bits during the

processing of the encoded text. Futhermore, we make use of algorithms based on

the Boyer-Moore strategy, suitably adapted for searching on binary strings by

regarding texts and patterns as sequences of q-grams rather than as sequences of

bits.

The paper is organized as follows. In Section 2 we introduce basic definitions

and notations. In Section 3 we describe a strategy based on skeleton trees which

is not specific to any algorithm and then in Section 4 we apply it to two string

matching algorithms for binary strings. In Section 5 we present some experimental

results and finally we draw our conclusions in Section 6.

2. Some basic definitions and preliminaries

A string P of length |P | = m ≥ 0 is represented as a finite array P [0 .. m − 1] of

characters from a finite alphabet Σ. In particular, for m = 0 we obtain the empty

string ε. By P [i] we denote the (i + 1)-st character of P , for 0 ≤ i < m. Likewise,

by P [i .. j] we denote the substring of P contained between the (i + 1)-st and the

(j + 1)-st characters of P , for 0 ≤ i ≤ j < m. Moreover, for any i, j ∈ Z, we put

P [i .. j] =

{

ε if i > j

P [max(i, 0) .. min(j, m − 1)] if i ≤ j.

A substring of the form P [0 .. i] is called a prefix of P and a substring of the form

P [i .. m − 1] is called a suffix of P , for 0 ≤ i ≤ m − 1. For any two strings P and

Q, we write Q ⊒ P to indicate that Q is a suffix of P . Similarly, we write Q ⊑ P

to indicate that Q is a prefix of P . In addition, we write Q.P (or more simply QP )

to denote the concatenation of Q and P . Also, if P is a string of length m and

P [i] = b, for i = 0, . . . , m − 1, then we write P = bm.

We will also make use of the following C-like notations to represent some bitwise

operations. In particular, “|” stands for the bitwise Or; “&” denotes the bitwise And;

“≫” and “≪” denote respectively the right shift and the left shift binary operators.

We recall that the right shift operator shifts to the right its first argument by a

number of bits equal to its second argument; similarly for the left shift.
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A compression method for a given text T over an alphabet Σ is characterized

by a system (E ,D) of two complementary functions,

• an encoding function E : Σ → {0, 1}+, and

• an inverse decoding function D,

such that D(E(c)) = c, for each c ∈ Σ. The encoding function E is then recursively

extended over strings of characters by putting

E(ε) = ε

E(T [0 .. ℓ]) = E(T [0 .. ℓ − 1]).E(T [ℓ]), for 0 ≤ ℓ < |T |,

so that E(T ) = E(T [0 .. |T |−1]) is just a binary string, i.e., a string over the alphabet

{0, 1}.

For ease of notation, we usually write t in place of E(T ) and, more generally,

denote binary strings by lowercase letters.

Binary strings are conveniently stored in blocks of k bits, typically bytes (k = 8),

half-words (k = 16), or words (k = 32), which can be processed at the cost of a

single operation. If p is any binary string, we denote by Bp the vector of blocks

whose concatenation gives p, for a given block size k, so that

p[i] = Bp[⌊i/k⌋][i mod k], for i = 0, . . . , |p| − 1

(we assume that the last block, if not complete, is padded with 0’s).

The sequence of k bits starting at position i in p, denoted by Bp,i, can be

computed from Bp by the following bitwise operations:

Bp,i = (Bp[⌊i/k⌋] ≫ (i mod k)) | (Bp[⌊i/k⌋+ 1] ≪ (k − (i mod k))) ,

for i = 0, . . . , |p| − k.

Thus, a genuine solution to the compressed string matching problem consists in

finding all occurrences of a pattern P in a text T , over a common alphabet Σ, by

operating directly on the block vectors Bt and Bp, representing respectively the

binary strings t = E(T ) and p = E(P ) (again relative to a fixed block size k).

The algorithms for the compressed string matching problem in Huffman encoded

texts, to be presented in Section 3, are based on a high-level model to process binary

strings, adopted in [10, 8, 4], which we review next.

2.1. A High-Level Model for Matching on Binary Strings

Let us assume that the block size k is fixed, so that all references to both text and

pattern will only be to entire blocks of k bits. We refer to a k-bit block as a byte,

though larger values than k = 8 could be supported as well.

We first define a matrix of bytes Patt , of size k×(⌈m/k⌉+1), consisting in several

copies of the pattern P stored in the form of a vector Bp of bytes, where p = E(P )

and m = |p|. More precisely, the i-th row of the matrix Patt , for i = 0, 1, . . . , k − 1,

contains a copy of p shifted by i position to the right, whose length in bytes is
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(A) Patt 0 1 2 3
0 11001011 00101100 10110000

1 01100101 10010110 01011000

2 00110010 11001011 00101100

3 00011001 01100101 10010110

4 00001100 10110010 11001011 00000000

5 00000110 01011001 01100101 10000000

6 00000011 00101100 10110010 11000000

7 00000001 10010110 01011001 01100000

(C) Last

2
2
2
2
3
3
3
3

(B) Mask 0 1 2 3
0 11111111 11111111 11111000

1 01111111 11111111 11111100

2 00111111 11111111 11111110

3 00011111 11111111 11111111

4 00001111 11111111 11111111 10000000

5 00000111 11111111 11111111 11000000

6 00000011 11111111 11111111 11100000

7 00000001 11111111 11111111 11110000

Fig. 2. Let P =110010110010110010110 and k = 8. (A) The matrix Patt . (B) The matrix Mask .
(C) The array Last . In the tables Patt and Mask , bits belonging to P are underlined. Blocks
containing a factor of P of length 8 have a shaded background.

mi = ⌈(m+ i)/k⌉. The i leftmost bits of the first byte remain undefined and are set

to 0. Similarly, the rightmost ((k − ((m + i) mod k)) mod k) bits of the last byte

are set to 0.

Observe that each factor of p of length k appears exactly once in the table

Patt . For instance, the factor of length k starting at position j of p is stored in

Patt [k − (j mod k), ⌈j/k⌉].

The matrix Patt is paired with a matrix of bytes Mask , of size k× (⌈m/k⌉+1),

containing binary masks of length k, which allow to distinguish between significant

and padding bits in Patt . In particular, a bit in the mask Mask [i, h] is set to 1 if

and only if the corresponding bit of Patt [i, h] belongs to p.

Finally, we define a vector Last , of size k, where Last [i] is the index of the last

byte in the row Patt [i], i.e., Last [i] = mi − 1, for 0 ≤ i < k.

The procedure Preprocess used to precompute the above tables requires O(k×

⌈m/k⌉) = O(m) time and O(m) extra-space. Figure 2 shows the tables Patt , Mask ,

and Last relative to the pattern P =110010110010110010110, for a block size

k = 8.

When the pattern is aligned with the s-th bit of the text, a match is reported if

Patt [i, h] = Bt[j + h] & Mask [i, h] ,

for h = 0, 1, ...,Last[i], where

• Bt is the block representation of the text encoding t = E(T ),

• j = ⌊s/k⌋ is the starting byte position in t, and

• i = (s mod k).
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b : 00

i : 01

d : 1000

t : 1001

a : 1010

r : 1011

l : 1100

c : 1101

g : 11100

k : 11101

u : 11110

e : 11111

b i

d t a r l c

g k u e

0

2 0

4 0

4 5

0 1

0 1

0 1 0 1 0 1 0 1

0 1 0 1

0 1

0 1

0 1

Fig. 3. The Huffman tree induced by a Huffman code for the set of symbols Σ =
{a, b, c, d, e, g, i, k, l, r, t, u}. The skeleton tree is in bold.

3. Skeleton tree based verification

The skeleton tree [9] is a pruned canonical Huffman tree, whose leaves corre-

spond to minimal depth nodes in the Huffman tree which are roots of complete

subtrees. It is useful to maintain at each leaf of a skeleton tree the common length

of the codeword(s) sharing the prefix which labels the path from the root to it.

A fast algorithm for building skeleton trees is described in [9]. Figure 3 shows a

canonical Huffman tree and its corresponding skeleton tree, for the set of symbols

Σ = {a, b, c, d, e, g, i, k, l, r, t, u}, relative to suitable character frequencies.

Skeleton trees allow a faster Huffman decoding because, once the codeword

length has been retrieved at its leaves, it is possible to read a burst of bits to

complete the codeword, or just to skip them, if one is only interested in finding

codeword boundaries.

Our approach consists in searching for the candidate occurrences of Bp in Bt,

where we recall that Bp and Bt are respectively the block vectors associated to given

Huffman encoded pattern and text, using Boyer-Moore-like algorithms and then

taking advantage of the skeleton tree to verify whether the candidate matches are

codeword aligned. In this way we obtain a substantial speedup, especially when the

frequency of the pattern is low or when the length of the pattern increases.

For every candidate valid shift s found by the binary pattern matching algo-

rithm, one must verify whether s is codeword aligned. For this purpose, we maintain

an offset ρ pointing at the start of the last window where a skeleton tree verifica-

tion took place. The offset ρ is then updated, with the aid of the skeleton tree, to

a minimal position ρ∗ ≥ s which is codeword aligned. Only if ρ∗ = s the current

window is codeword aligned and s is a valid shift. Plainly, the performance of the

algorithm depends on the number of skeleton tree verifications and on the relative

distance between candidate valid shifts.
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Sk-Align (root , t , ρ, b)
1. x← root , ℓ← 0
2. while true do
3. B = Bt[⌊ρ / k⌋]≪ (ρ mod k)
4. if B < 2k−1 then x← Left(x) else x← Right(x)
5. if Key(x) 6= 0 then
6. ρ← ρ + Key(x)− ℓ, ℓ← 0, x← root

7. if ρ ≥ b then break
8. else ρ← ρ + 1, ℓ← ℓ + 1
9. return ρ

Fig. 4. Procedure Sk-Align(root , t , ρ, b) which computes the next codeword alignment starting
from position ρ, where root is the root of the skeleton tree, t is the encoded text in binary form,
b is a codeword boundary, and k is the block size.

Figure 4 shows the pseudocode for the procedure Sk-Align used to update ρ.

In the pseudocode we assume that the starting value of ρ is codeword aligned and

that a node x in the skeleton tree is a leaf if the corresponding key is nonzero,

i.e., if Key(x) > 0. If Key(x) = ℓ > 0 and cx is the bit code which labels the path

from the root to x, then all codewords c such that cx ⊑ c have a length equal to ℓ.

Thus, if we are interested only in the codeword boundaries, we can skip the ℓ− |cx|

following bits and restore the skeleton-tree verification from the first bit of the next

codeword.

Consider as an example the search of the pattern P = “bit” in the text T =

“abigblackbugbitabigblackbear”. Suppose moreover that codewords are defined

by the Huffman tree of Figure 3, so that p = E(P ) =“00011001”.

A first candidate valid shift is encountered at position 12 in t, as shown below

t 101000011110000110010101101111010011110111000001100110100001[· · · ]

p 0̄00̄11̄001

verif. 1̄0--0̄-0̄-1̄11--0̄

The skeleton tree verification starts at position 0 and stops at position 13, skipping

6 bits over 14 (unprocessed bits are represented by the symbol “-”), showing that

the occurrence at position 12 is not codeword aligned.

A second occurrence is found at the 45-th bit of t, as shown below

t [· · · ]000110010101101111010011110111000001100110100001111000[· · · ]

p 0̄00̄11̄001

verif. 0̄-1̄10-1̄0--1̄10-1̄11--0̄-1̄11--1̄11--0̄

The skeleton tree verification restarts from position 14 and finds a codeword align-

ment at position 45. Thus the occurrence is codeword aligned and the shift is valid.

The verification skips 12 bits over 32.
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Finally, a third candidate valid shift is found at the 65-th bit of t. This time,

the skeleton tree verification skips 10 bits over 22.

t [· · · ]0001100110100001111000011001010110111101001111110101011

p 0̄00̄11̄001

verif. 0̄-0̄-1̄0--1̄0--0̄-0̄-1̄11--0̄

The strategy presented above for verifying codeword alignment is general and

not specific to any algorithm.

4. Adapting two Boyer-Moore-like algorithms for searching

Huffman encoded texts

Next we deal with the problem of searching for all candidate valid shifts. For this

purpose, we present two algorithms which are adaptations to the case of Huffman

encoded texts, along the lines of the high-level model outlined in Section 2.1, of the

Fed algorithm [8] and the Binary-Hash-Matching algorithm [4].

4.1. The Huffman-Hash-Matching algorithm

Algorithms in the q-Hash family for exact pattern matching have been introduced

in [13], by adapting the Wu and Manber multiple string matching algorithm [17]

to the single string matching problem. Recently, variants of the q-Hash algorithms

have been proposed for searching on binary strings [4].

The first algorithm which we present, called Huffman-Hash-Matching, asso-

ciates directly each binary substring of length q with its numeric value in the range

[0, 2q − 1], without using any hash function. To exploit the block structure of the

text, the algorithm considers substrings of length q = k.

To begin with, a function Hs : {0, 1, . . . , 2k − 1},→ {0, 1, . . . , m}, defined by

Hs(B) = min
(

{0 ≤ u < m | p[m − u − k .. m − u − 1] ⊒ B} ∪ {m}
)

,

for each byte 0 ≤ B < 2k, is computed during the preprocessing phase. Observe

that if B = p[m − k .. m − 1], then Hs [B] = 0.

For example, in the case of the pattern P = 110010110010110010110 presented

in Figure 2, we have Hs [01100101] = 2, Hs [11001011] = 1, and Hs[10010110] = 0.

In contrast with algorithms in the q-Hash family, where the maximum shift is

m − q, in this case maximum shifts can reach the value m. Since we do not use a

hash function but rather map directly the binary substrings of the pattern, the shift

table can be modified by taking into account the prefixes of the patterns Patt[i] of

length k − i, with 1 ≤ i ≤ k − 1. Thus Hs can be conveniently computed by setting

Hs[B] = m − k + i, where i is the minimum index such that Patt [i][0] is a suffix of

B, if it exists; otherwise Hs[B] is set to m.

The code of the Huffman-Hash-Matching algorithm is presented in Figure 5.
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Huffman-Hash-Matching (p, m, t, n)

1. root← Build-Sk-Tree(φ)
2. (Patt , Last , Mask)← Preprocess (p, m)
3. Hs ← compute-hash(Patt , Last , Mask , m)
4. ρ← 0
5. i← (k − (m mod k)) mod k
6. B ← Patt [i][Last [i]]
7. shift ← Hs[B], Hs[B]← 0
8. gap← i + 1, j ← m− 1
9. while j < n do
10. s← j/k, sℓ← j mod k
11. B ← Bt,j−k+1

12. if Hs[B] = 0 then
13. i← (sℓ + gap) mod k
14. h← Last [i], q ← s
15. while h ≥ 0 and
16. Patt[i, h] = (Bt[q] & Mask [i, h]) do
17. h← h− 1, q ← q − 1
18. if h < 0 then
19. b← (q + 1)× k + i
20. ρ← Sk-Align(root, t, ρ, b)
21. if ρ = b then Print(b)
22. j ← j + shift

23. else j ← j + Hs[B]

Fig. 5. The Huffman-Hash-Matching algorithm for the compressed string matching problem
on Huffman encoded texts. Parameters p and t stand for the Huffman compressed version of the
pattern and text, respectively.

The preprocessing phase of the algorithm just consists in computing the function

Hs defined above and requires O(m+k2k+1)-time complexity and O(m+2k) extra

space.

During the search phase, the algorithm reads, for each shift position s of the

pattern in the text, the block B = t[s + m − k .. s + m − 1] of k bits (line 11).

If Hs(B) > 0, then a shift of length Hs(B) takes place (line 23). Otherwise, if

Hs(B) = 0, the pattern p is naively checked in the text block by block (lines 13-17).

The verification step is performed using the procedure Sk-Align described before

(lines 18-21).

After the test, an advancement of length shift takes place (line 22), where

shift = min
(

{0 < u < m | p[m − u − k .. m − u − 1] ⊐ p[m − k .. m − 1]} ∪ {m}
)

.

The Huffman-Hash-Matching algorithm has an overall O(⌊m/k⌋n)-time

complexity and requires O(m + 2k) extra space.

For blocks of length k, the size of the Hs table is 2k, which seems reasonable for

k = 8 or even 16. For greater values of k, in order to choose the desired time/space

tradeoff it is possible to adapt the algorithm by introducing a new parameter K ≤ k,
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representing the number of bits taken into account for computing the shift advance-

ment. Roughly speaking, only the K rightmost bits of the current window of the

text are taken into account, reducing the total size of the tables to 2K , at the price of

possibly getting shorter shift advancements of the pattern than the ones that would

have been obtained if the full length of blocks had been taken into consideration.

4.2. The Huffman-Fed algorithm

The Fed algorithm [8] (Fast matching with Encoded DNA sequences) is a string

matching algorithm specifically designed for matching DNA sequences compressed

with a fixed-length encoding, requiring two bits for each character of the alphabet

{A, C, G, T}. It combines a multi-pattern version of the Quick-Search algorithm [16]

and a simplified version of the Commentz-Walter algorithm [3]. However, its

strategy is general enough to be adapted to different encodings, including the Huff-

man one.

The resulting algorithm, which we call Huffman-Fed, makes use of a shift

table δ and a hash table λ, both of size 2k.

More specifically, the shift table δ is defined as follows. For 0 ≤ i < k and c ∈ Σ,

we first define the Quick-Search shift table qs[i][c], by putting

qs[i][c] = min
(

{mi−2+1}∪{mi−2+1−h | Patt[i][h] = c and 1 ≤ h ≤ Last[i]−1}
)

.

Then, we put δ[c] = min{qs[i][c], 0 ≤ i < k}, for c ∈ Σ.

The algorithm maintains also, for each block B ∈ {0 . . . 2k − 1}, a linked

list λ which is used to find candidate patterns. In particular, for each block

B ∈ {0, . . . , 2k − 1}, the entry λ[B] is a set of indexes defined by

λ[B] = {0 ≤ i < k | Patt[i][Last[i]− 1] = B}.

In practical cases, each set in the table can be implemented as a linked list.

The code of the Huffman-Fed algorithm is presented in Figure 6.

The preprocessing phase of the algorithm consists in computing the shift table

δ and the hash table λ defined above and, as in the Huffman-Hash-Matching

algorithm, it requires O(m + k2k+1)-time complexity and O(m + 2k) extra space.

During the searching phase, the algorithm performs a fast loop using the shift

table δ to locate a candidate alignment of the pattern (lines 18-20). In particular,

the algorithm checks whether δ[Bt[s]] 6= 1 and, if this is the case, it advances the

shift by δ[Bt[s + 1]] positions to the right.

If δ[Bt[s]] = 1 then, by definition of δ, we have Bt[s] = Patt[i, Last[i] − 1], for

some 0 ≤ i < k. In such a case the last byte of the current window is used as an

index in the hash table and all patterns Patt[i], such that i ∈ λ[Bt[s]], are checked

naively against the window (line 7). For each alignment i found, the pattern Patt[i]

is compared block by block with the text.

As in the Huffman-Hash-Matching algorithm, one has also to verify that the

window is codeword aligned (line 14-17).
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Huffman-Fed (p, m, t, n)

1. root← Build-Sk-Tree(φ)
2. (Patt , Last , Mask)← Preprocess (p, m)
3. (δ, λ)← compute-Fed(Patt ,Last , m)
4. ρ← 0
5. s = m/k
6. while s < n do
7. for i in λ[Bt[s]] do
8. h← Last[i]
9. q ← s + 1

10. while h ≥ 0 and
11. Patt[i][h] = Bt[q] &Mask [i][h] do
12. h← h− 1
13. q ← q − 1
14. if h < 0 then
15. b← (q + 1)× k + i
16. ρ← Sk-Align(root, t, ρ, b)
17. if ρ = b then Print(b)
18. do
19. s← s + δ[Bt[s + 1]]
20. while s < n and δ[Bt[s]] 6= 1

Fig. 6. The Huffman-Fed algorithm for the compressed string matching problem on Huffman
encoded texts. Parameters p and t stand for the Huffman compressed version of the pattern and
text, respectively.

The Huffman-Fed algorithm has a O(⌈m/k⌉n)-time complexity and requires

O(m + 2k) extra space.

5. Experimental results

In this section we present experimental results which allow to compare, in terms

of running times and percentage of processed bits, the following algorithms:

- the Huffman-Kmp algorithm (Hkmp) [15];

- the Huffman-Hash-Matching algorithm (Hhm), presented in Section 4.1;

- the Huffman-Fed algorithm (Hfed), presented in Section 4.2.

In addition, we also tested an algorithm based on the decompress-and-search method

(D&S for short) that makes use of the 3-Hash algorithm [13] for classical exact

pattern matching, which is considered among the most efficient algorithms for the

problem.

All algorithms have been implemented in the C programming language and

have been compiled with the GNU C Compiler, using the optimization options -O2

-fno-guess-branch-probability. The tests have been performed on a 1.5 GHz

PowerPC G4 and running times have been measured with a hardware cycle counter,
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available on modern CPUs.

We used the following input files:

• the English King James version of the “Bible” (3Mb),

• the English “CIA World Fact Book” (2Mb), and

• the Spanish novel “Don Quixote” by Cervantes (2Mb).

The first two files are from the Canterbury Corpus [1], whereas the third one is

from the Project Gutenberg [6].

For each input file, we have generated sets of 100 patterns of fixed length m, for

m ranging in the set {4, 8, 16, 32, 64, 128, 256}, randomly extracted from the text.

For each set of patterns we have reported the mean over the running times of the

100 runs. The tables also show the minimum (lmin) and maximum (lmax) length in

bits of the compressed patterns. For each set of patterns we have also computed the

average number of processed bits.

In the following tables, running times are expressed in milliseconds whereas the

number of processed bits is expressed as a percentage of the total number of bits in

the text.

Running times

m [lmin, lmax] Hkmp Hhm Hfed D&S

4 [17, 31] 188.64 134.79 146.34 502.82
8 [36, 53] 185.77 105.59 112.98 491.87

16 [79, 102] 185.99 76.04 81.25 489.03
32 [164, 204] 184.23 65.78 70.31 487.74
64 [336, 378] 185.36 64.71 68.91 489.27

128 [694, 768] 187.73 72.00 77.11 487.31
256 [1383, 1545] 184.09 61.45 65.77 488.46

Processed bits

m Hkmp Hhm Hfed

4 0.75 0.81 0.95
8 0.76 0.68 0.77

16 0.75 0.45 0.53
32 0.75 0.42 0.48
64 0.75 0.38 0.42

128 0.75 0.34 0.37
256 0.76 0.34 0.36

Experimental results on the Huffman encoded version of the King James version of the Bible

Running times

m [lmin, lmax] Hkmp Hhm Hfed D&S

4 [18, 29] 96.35 64.13 74.23 296.69
8 [38, 53] 95.50 49.38 56.47 289.82

16 [77, 108] 95.23 39.26 45.03 287.78
32 [162, 207] 94.74 33.55 38.53 287.34
64 [327, 392] 94.99 34.21 39.39 287.85

128 [662, 761] 94.42 28.54 32.92 287.51
256 [1347, 1610] 94.39 29.67 34.18 287.21

Processed bits

m Hkmp Hhm Hfed

4 0.67 0.74 0.98
8 0.66 0.55 0.68

16 0.66 0.43 0.50
32 0.65 0.35 0.40
64 0.65 0.35 0.38

128 0.64 0.29 0.31
256 0.65 0.30 0.32

Experimental results on the Huffman encoded version of the CIA World Fact Book

Running times

m [lmin, lmax] Hkmp Hhm Hfed D&S

4 [18, 35] 122.25 87.44 95.44 308.56
8 [37, 60] 119.33 73.69 79.74 302.38

16 [83, 140] 120.35 45.99 49.67 300.53
32 [171, 216] 120.12 45.97 49.70 299.81
64 [348, 525] 119.20 41.86 45.26 300.90

128 [712, 1068] 117.55 37.80 40.83 299.78
256 [1439, 1773] 124.10 38.43 41.45 300.36

Processed bits

m Hkmp Hhm Hfed

4 0.75 0.81 0.95
8 0.76 0.68 0.77

16 0.75 0.45 0.53
32 0.75 0.42 0.48
64 0.75 0.38 0.42

128 0.75 0.34 0.37
256 0.76 0.34 0.36

Experimental results on the Huffman encoded version of “Don Quixote”

The experimental results show that the Huffman-Hash-Matching and

Huffman-Fed algorithms always achieve the best running times. In addition,
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the Huffman-Hash-Matching algorithm always obtains better results than the

Huffman-Fed algorithm. In particular the running times of both algorithms de-

crease as the length of the pattern increases, since, as is reasonable to expect, the

frequency of the patterns, and thus the number of skeleton tree verifications, is

inversely proportional to m.

As expected, the Huffman-Kmp algorithm maintains the same performance

independently of the pattern frequency. The gain of our algorithms compared to

Huffman-Kmp is at least around 20% and grows as the pattern frequency decreases

and the pattern length increases.

Observe that, with the exception of very short patterns, the percentage of bits

processed by our newly presented algorithms is always lower than that of the

Huffman-Kmp algorithm and, in many cases, the gain is almost 50%.

6. Conclusions

We have presented a new efficient approach to the compressed string matching

problem on Huffman encoded texts, based on the Boyer-Moore strategy. Code-

word alignment takes advantage of the skeleton tree data structure, which allows

to skip over a significant percentage of the bits. In particular, we have presented

adaptations of the Binary-Hash-Matching and the Fed algorithms for searching

Huffman encoded texts. The experimental results show that our algorithms exhibit

a sublinear behavior on the average and in most cases skip more than 50% of the

total number of bits in the encoded text.
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