
September 15, 2010 16:37

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

PATTERN MATCHING WITH SWAPS IN PRACTICE∗

MATTEO CAMPANELLI†

Università di Catania, Scuola Superiore di Catania
Via San Nullo 5/i, I-95123 Catania, Italy

DOMENICO CANTONE‡

SIMONE FARO§

EMANUELE GIAQUINTA¶

Dipartimento di Matematica e Informatica, Università di Catania
Viale A.Doria n.6, I-95125 Catania, Italy

The Pattern Matching problem with Swaps consists in finding all occurrences of a pattern
P in a text T , when disjoint local swaps in the pattern are allowed. In the Approximate
Pattern Matching problem with Swaps one seeks, for every text location with a swapped
match of P , the number of swaps necessary to obtain a match at the location.

In this paper we devise two general algorithms for both Standard and Approxi-
mate Pattern Matching with Swaps, named Cross-Sampling and Backward-Cross-

Sampling, with a O(nm) and O(nm2) worst-case time complexity, respectively. Then
we provide efficient implementations of them, based on bit-parallelism, which achieve
O(n) and O(nm) worst-case time complexity, with patterns whose length is comparable
to the word-size of the target machine.

From an extensive comparison with some of the most effective algorithms for the
swap matching problem, it turns out that our algorithms are very flexible and achieve
very good results in practice.

Keywords: approximate pattern matching with swaps; nonstandard pattern matching;
combinatorial algorithms on words; design and analysis of algorithms.

1. Introduction

The Pattern Matching problem with Swaps (Swap Matching problem, for short) is a

well-studied variant of the classic Pattern Matching problem. It consists in finding

all occurrences, up to character swaps, of a pattern P of length m in a text T of

length n, with P and T sequences of characters drawn from a same finite alphabet

Σ of size σ. More precisely, the pattern is said to swap-match the text at a given

location j if adjacent pattern characters can be swapped, if necessary, so as to make

∗The paper presents results appeared in a preliminary form in [10], [8], and [9].
†macampanelli@ssc.unict.it
‡cantone@dmi.unict.it
§faro@dmi.unict.it
¶giaquinta@dmi.unict.it

1

September 15, 2010 16:37

2 M. Campanelli, D. Cantone, S. Faro and E. Giaquinta

it identical to the substring of the text ending (or, equivalently, starting) at location

j. All swaps are constrained to be disjoint, i.e., each character can be involved in at

most one swap. Moreover, we make the agreement that identical adjacent characters

are not allowed to be swapped.

This problem is of relevance in practical applications such as text and music

retrieval, data mining, network security, and many others. Following [6], we also

mention a particularly important application of the swap matching problem in

biological computing, specifically in the process of translation in molecular biology,

with the genetic triplets (otherwise called codons). In such application one wants

to detect the possible positions of the start and stop codons of a mRNA in a

biological sequence and find hints as to where the flanking regions are, relative to

the translated mRNA region.

The swap matching problem was introduced in 1995 as one of the open problems

in nonstandard string matching [13]. The first nontrivial result was reported by Amir

et al. [1], who provided a O(nm
1
3 log m)-time algorithm in the case of alphabet sets

of size 2, showing also that the case of alphabets of size exceeding 2 can be reduced

to that of size 2 with a O(log2 σ)-time overhead, subsequently reduced to O(log σ)

in the journal version [2]. Amir et al. [4] studied some rather restrictive cases in

which a O(m log2 m)-time algorithm can be obtained. More recently, Amir et al. [3]

solved the swap matching problem in O(n log m log σ)-time. We observe that the

above solutions are all based on the fast Fourier transform (FFT) technique.

In 2008 the first attempt to provide an efficient solution to the swap match-

ing problem without using the FFT technique has been presented by Iliopoulos

and Rahman in [12]. They introduced a new graph-theoretic approach to model

the problem and devised an efficient algorithm, based on the bit-parallelism tech-

nique [7], which runs in O((n + m) log m)-time, provided that the pattern size is

comparable to the word size in the target machine.

The Approximate Pattern Matching problem with Swaps seeks to compute, for

each text location j, the number of swaps necessary to convert the pattern to the

substring of length m ending at j.

A straightforward solution to the approximate swap matching problem consists

in searching for all occurrences (with swap) of the input pattern P , using any

algorithm for the standard swap matching problem. Once a swap match is found,

to get the number of swaps, it is sufficient to count the number of mismatches

between the pattern and its swap occurrence in the text and then divide it by 2.

In [5], Amir et al. presented an algorithm that counts in time O(log m log σ) the

number of swaps at every location containing a swapped matching, thus solving the

approximate pattern matching problem with swaps in O(n log m log σ)-time.

In this paper, we present two algorithms for the Swap Matching problem and

the Approximate Swap Matching problem, having linear worst-case time complex-

ity for short patterns. More precisely, the two algorithms presented, named Cross-

Sampling and Backward-Cross-Sampling, have a O(nm) and O(nm2) worst-

September 15, 2010 16:37

Pattern Matching with Swaps in Practice 3

case time complexity, respectively. We also show how to obtain efficient implementa-

tions of them, based on bit-parallelism, which achieve O(n) and O(nm) worst-case

time, respectively, and O(σ)-space complexity for patterns having length similar to

the word-size of the target machine.

The rest of the paper is organized as follows. In Section 2 we recall some pre-

liminary definitions. In Section 3 we present the Cross-Sampling algorithm for

the swap matching and approximate swap matching problem and apply the bit-

parallelism technique to obtain efficient implementations. Then in Section 4 we

present the Backward-Cross-Sampling algorithm for the swap matching prob-

lem and illustrate efficient implementations based on bit-parallelism. In Section 6,

we compare our newly proposed algorithms against the most effective algorithms

present in literature and, finally, we briefly draw our conclusions in Section 7.

2. Notions and Basic Definitions

Given a string P of length m ≥ 0, we represent it as a finite array P [0 .. m− 1] and

write length(P) = m. In particular, for m = 0 we obtain the empty string ε. We

denote by P [i] the (i + 1)-st character of P , for 0 ≤ i < length(P), and by P [i .. j]

the substring of P contained between the (i + 1)-st and the (j + 1)-st characters

of P , for 0 ≤ i ≤ j < length(P). A k-substring of a string S is a substring of

S of length k. For any two strings P and P ′, we say that P ′ is a suffix of P if

P ′ = P [i .. length(P) − 1], for some 0 ≤ i < length(P). Similarly, we say that P ′

is a prefix of P if P ′ = P [0 .. i− 1], for some 0 ≤ i ≤ length(P). We denote by Pi

the nonempty prefix P [0 .. i] of P of length i + 1, for 0 ≤ i < m, whereas, if i < 0,

we agree that Pi is the empty string ε. Moreover, we say that P ′ is a proper prefix

(suffix) of P if P ′ is a prefix (suffix) of P and |P ′| < |P |. Finally, we write P.P ′ to

denote the concatenation of P and P ′.

Definition 1. A swap permutation for a string P of length m is a permutation

π : {0, ..., m− 1} → {0, ..., m− 1} such that:

(a) if π(i) = j then π(j) = i (characters at positions i and j are swapped);

(b) for all i, π(i) ∈ {i− 1, i, i + 1} (only adjacent characters can be swapped);

(c) if π(i) 6= i then P [π(i)] 6= P [i] (identical characters can not be swapped).

For a given string P and a swap permutation π for P , we write π(P) to denote

the swapped version of P , namely π(P) = P [π(0)].P [π(1)]. · · · .P [π(m− 1)].

Definition 2. Given a text T of length n and a pattern P of length m, P is said

to swap-match (or to have a swapped occurrence) at location j ≥ m − 1 of T if

there exists a swap permutation π of P such that π(P) matches T at location j, i.e.,

π(P) = T [j −m + 1 .. j]. In such a case we write P ∝ Tj.

As already observed, if a pattern P of length m has a swap match ending at

location j of a text T , then the number k of swaps needed to transform P into its

September 15, 2010 16:37

4 M. Campanelli, D. Cantone, S. Faro and E. Giaquinta

swapped version π(P) = T [j−m + 1 .. j] is equal to half the number of mismatches

of P at location j. Thus the value of k lies between 0 and ⌊m/2⌋.

Definition 3. Given a text T of length n and a pattern P of length m, P is said

to swap-match (or to have a swapped occurrence) at location j of T with k swaps

if there exists a swap permutation π of P such that π(P) matches T at location j

and k = |{i : P [i] 6= P [π(i)]}|/2. In such a case we write P ∝
k

Tj.

Definition 4 (Pattern Matching Problem with Swaps) Given a text T of

length n and a pattern P of length m, find all locations j ∈ {m − 1, ..., n − 1}

such that P swap-matches with T at location j, i.e., P ∝ Tj.

Definition 5 (Approximate Pattern Matching Problem with Swaps)

Given a text T of length n and a pattern P of length m, find all pairs (j, k), with

j ∈ {m − 1...n− 1} and 0 ≤ k ≤ ⌊m/2⌋, such that P has a swapped occurrence in

T at location j with k swaps, i.e., P ∝
k

Tj.

The following elementary result will be used later (its proof is given in [10]).

Lemma 6 ([10]) Let P and R be strings of length m over an alphabet Σ and

suppose that there exists a swap permutation π such that π(P) = R. Then π is

unique.

Corollary 7. Given a text T of length n and a pattern P of length m, if P ∝ Tj,

for a given position j ∈ {m − 1, . . . , n − 1}, then there exists a unique swapped

occurrence of P in T ending at position j.

3. Cross-Sampling Algorithms

In this section we present a new algorithm for solving the swap matching problem.

Our algorithm is characterized by a O(mn)-time and a O(m)-space complexity,

where m and n are the lengths of the pattern and text, respectively. We will also

show how to extend our algorithm to the case of the approximate swap matching

problem, maintaining the same time and space complexity.

3.1. Standard Swap Matching Problem

As above, let T be a text of length n and let P be a pattern of length m. Our

algorithm solves the swap matching problem by computing the swap occurrences

of all prefixes of the pattern in continuously increasing prefixes of the text using

a dynamic programming approach. That is, during its (j + 1)-st iteration, for j =

0, 1, . . . , n−1, our algorithm establishes whether Pi ∝ Tj , for each i = 0, 1, . . . , m−1,

exploiting information gathered during previous iterations.

Each row of the matrix is labeled with a prefix P i of the pattern, whereas

columns are labeled with the locations of the text T . A value k in row P i and

column j means that P i ∝k
T j , whereas a symbol - means that P i 6∝ T j . Thus,

September 15, 2010 16:37

Pattern Matching with Swaps in Practice 5

to look for the swap occurrences of P in T it is enough to inspect the row labelled

P 6, as P = P 6: by doing so, we find that there is a swapped occurrence of P at

location 9 of T .

More generally, if we denote by Sj the set of the integral values in the j-th

column of the m× n matrix of the swap occurrences of the prefixes for our generic

pattern P and text T , where j = 0, 1, . . . , n − 1, we plainly have that P has a

swapped occurrence at location j of T if and only if (m − 1) ∈ Sj . In fact, by

definition, we have Sj = {0 ≤ i ≤ m− 1 | Pi ∝ Tj} .

The sets Sj can be computed efficiently by a dynamic programming algorithm,

by exploiting the following very elementary property.

Lemma 8. Let T and P be a text of length n and a pattern of length m, respectively.

Then, for each 0 ≤ j < n and 0 ≤ i < m, we have that Pi ∝ Tj if and only if one

of the following two facts holds

• P [i] = T [j] and Pi−1 ∝ Tj−1;

• P [i] = T [j − 1], P [i− 1] = T [j], and Pi−2 ∝ Tj−2.

To this end, let us denote by S′j , for 0 ≤ j < n − 1, the collection of all values

i such that the prefix Pi−1 of P has a swapped occurrence ending at location j − 1

of the text T and P [i] = T [j + 1]. Or, more formally, let

S′j = {i | Pi−1 ∝ Tj−1 and P [i] = T [j + 1]} and λj =

{

{0} if P [0] = T [j]

∅ otherwise .

Then, the base case is given by

S0 = λ0, and S′0 = λ1. (1)

Additionally, Lemma 8 justifies the following recursive definitions of the sets

Sj+1 and S′j+1 in terms of Sj and S′j , for 0 ≤ j < n− 1:

Sj+1 = {i ≤ m− 1 | ((i− 1) ∈ Sj and P [i] = T [j + 1]) or

((i− 1) ∈ S′j and P [i] = T [j]) } ∪ λj+1

S′j+1 = {i < m− 1 | (i− 1) ∈ Sj and P [i] = T [j + 2]} ∪ λj+2 .

(2)

Such relations, coupled with the initial conditions (1), allow one to compute

the sets Sj and S′j in an iterative fashion.Observe that Sj+1 is computed in terms

of both Sj and S′j , whereas S′j+1 needs only Sj for its computation. The resulting

dependency graph has a doubly crossed structure, from which the name of the

algorithm of Fig. 1, Cross-Sampling, for the swap matching problem.

To compute the worst-case time complexity of the Cross-Sampling algorithm,

first observe that the for-cycle of line 4 is executed O(n) times. During the j-

th iteration, the for-cycles of line 6 and line 12 are executed |Sj | and |S′j | times,

respectively. However, according to Lemma 6, for each position j of the text we can

report only a single swapped occurrence of the prefix Pi in Tj , for each 0 ≤ i < m,

which implies |Sj | ≤ m and |S′j | < m. Thus the time complexity of the resulting

algorithm is O(nm).

September 15, 2010 16:37

6 M. Campanelli, D. Cantone, S. Faro and E. Giaquinta

(A) Cross-Sampling (P, m, T, n)

1. S0 ← S
′

0 ← ∅
2. if P [0] = T [0] then S0 ← {0}
3. if P [0] = T [1] then S′

0 ← {0}
4. for j ← 1 to n− 1 do
5. Sj ← S

′

j ← ∅
6. for i ∈ Sj−1 do
7. if i < m− 1 then
8. if P [i + 1] = T [j]
9. then Sj ← Sj ∪ {i + 1}

10. if j < n− 1 and P [i + 1] = T [j + 1]
11. then S′

j ← S
′

j ∪ {i + 1}
12. for i ∈ S′

j−1 do
13. if i < m− 1 and P [i + 1] = T [j − 1]
14. then Sj ← Sj ∪ {i + 1}
15. if P [0] = T [j] then Sj ← Sj ∪ {0}
16. if j < n− 1 and P [0] = T [j + 1]
17. then S′

j ← S
′

j ∪ {0}
18. if m− 1 ∈ Sj then Output(j)

(B) Approximate-Cross-Sampling (P, m, T, n)

1. S̄0 ← S̄′

0 ← ∅
2. if P [0] = T [0] then S̄0 ← {(0, 0)}
3. if P [0] = T [1] then S̄′

0 ← {(0, 0)}
4. for j ← 1 to n − 1 do
5. S̄j ← S̄′

j ← ∅
6. for (i, k) ∈ S̄j−1 do
7. if i < m− 1 then
8. if P [i + 1] = T [j]
9. then S̄j ← S̄j ∪ {(i + 1, k)}
10. if j < n− 1 and P [i + 1] = T [j + 1]
11. then S̄′

j ← S̄′

j ∪ {(i + 1, k)}
12. for (i, k) ∈ S̄′

j−1 do
13. if i < m − 1 and P [i + 1] = T [j − 1]
14. then S̄j ← S̄j ∪ {(i + 1, k + 1)}
15. if P [0] = T [j] then S̄j ← S̄j ∪ {(0, 0)}
16. if j < n− 1 and P [0] = T [j + 1]
17. then S̄′

j ← S̄′

j ∪ {(0, 0)}
18. for (i, k) ∈ S̄j do
19. if i = m− 1 then Output(j, k)

Fig. 1. (A) The Cross-Sampling algorithm for solving the swap matching problem. (B) The
Approximate-Cross-Sampling algorithm for solving the approximate swap matching problem.

3.2. Approximate Swap Matching Problem

Next we show how to extend the Cross-Sampling algorithm to solve the approx-

imate swap matching problem. To begin with, we extend Lemma 8 as follows.

Lemma 9. Let T and P be a text of length n and a pattern of length m, respectively.

Then, for each 0 ≤ i < n and 0 ≤ k < m, we have that Pi ∝k
Tj if and only if one

of the following two facts hold

- P [i] = T [j] and either (i = 0 ∧ k = 0) or Pi−1 ∝k
Tj−1;

- P [i] = T [j−1], P [i−1] = T [j], and either (i = 1∧k = 1) or Pi−2 ∝k−1
Tj−2.

Next we define the sets Sj and S
′
j which denote, respectively, the collection

of all pairs (i, k) such that the prefix Pi of P has a k-swapped occurrence ending

at position j of the text and the collection of all pairs (i, k) such that the prefix

Pi−1 of P has a k-swapped occurrence ending at position j − 1 of the text and

P [i] = T [j + 1], for 0 ≤ j ≤ n. More formally,

S̄j = {(i, k) | 0 ≤ i ≤ m− 1 and Pi ∝k
Tj}

S̄′j = {(i, k) | 0 ≤ i < m− 1 and (Pi−1 ∝k
Tj−1 ∨ i = 0) and P [i] = T [j + 1]}.

In view of such definitions, the approximate swap matching problem translates

into the problem of finding all pairs (j, k) such that (m− 1, k) ∈ S̄j , where 0 ≤ k <

⌊m/2⌋.

Sets S̄0 and S̄′0 can be defined as follows

λ̄j =

{

{(0, 0)} if P [0] = T [j]

∅ otherwise
, S̄0 = λ̄0, and S̄′0 = λ̄1.

September 15, 2010 16:37

Pattern Matching with Swaps in Practice 7

Lemma 9 justifies the following recursive definition of the sets S̄j+1 and S̄′j+1 in

terms of S̄j and S̄′j , for j < n:

S̄j+1 = {(i, k) | i ≤ m− 1 and ((i− 1, k) ∈ S̄j and P [i] = T [j + 1]) or

((i− 1, k − 1) ∈ S̄′j and P [i] = T [j]) } ∪ λ̄j+1

S̄′j+1 = {(i, k) | i < m− 1 and (i− 1, k) ∈ S̄j and P [i] = T [j + 2]} ∪ λ̄j+2.

Fig. 1(B) shows the Approximate-Cross-Sampling algorithm for solving the

approximate swap matching problem. It can easily be checked that its worst-case

time complexity is O(nm).

3.3. Bit-Parallel Implementation

In this section we present two efficient algorithms based on the bit-parallelism

techique [7] to search for swapped occurrences of short patterns in texts. The bit-

parallelism technique takes advantage of the intrinsic parallelism of the bit opera-

tions inside a computer word, allowing to cut down the number of operations that

an algorithm performs by a factor of at most w, where w is the number of bits in

the computer word.

The simulation of the Cross-Sampling algorithm with bit-parallelism is per-

formed by representing the sets Sj and S′j as lists of m bits, Dj and D′j respectively,

where m is the length of the pattern. The i-th bit of Dj is set to 1 if i ∈ Sj , i.e.

if Pi ∝ Tj, whereas the i-th bit of D′j is set to 1 if i ∈ S′j , i.e. if Pi−1 ∝ Tj−1

and P [i] = T [j + 1]. All remaining bits in the bit vectors are set to 0. Note that if

m ≤ w, the entire list fits in a single computer word, whereas if m > w we need

⌈m/w⌉ computer words to represent the sets Sj and S′j .

For each character c of the alphabet Σ, the algorithm maintains a bit mask M [c],

where the i-th bit is set to 1 if P [i] = c.

The bit vectors D0 and D′0 are initialized to 0m. Then the algorithm scans the

text from the first character to the last one and, for each position j ≥ 0, it computes

the bit vector Dj in terms of Dj−1 and D′j−1, by performing the following bitwise

operations:

Dj ← Dj−1 ≪ 1 Sj = {i : (i− 1) ∈ Sj−1}

Dj ← Dj | 1 Sj = Sj ∪ {0}

Dj ← Dj & M [T [j]] Sj = Sj \ {i : P [i] 6= T [j]}

Dj ← Dj | H1 Sj = Sj ∪ {i : (i− 1) ∈ S′j−1 ∧ P [i] = T [j − 1]},

where H1 =
(

(D′j−1 ≪ 1) & M [T [j − 1]]
)

.

Similarly, the bit vector D′j is computed during the j-th iteration of the algo-

rithm in terms of Dj−1, by performing the following bitwise operations:

D′j ← Dj−1 ≪ 1 S′j = {i : (i− 1) ∈ Sj−1}

D′j ← D′j | 1 S′j = S′j ∪ {0}

D′j ← D′j & M [T [j + 1]] S′j = S′j \ {i : P [i] 6= T [j + 1]}.

September 15, 2010 16:37

8 M. Campanelli, D. Cantone, S. Faro and E. Giaquinta

(A) BP-Cross-Sampling (P, m, T, n)

1. F ← 0m−11
2. for c ∈ Σ do M [c]← 0m

3. for i← 0 to m− 1 do
4. M [P [i]] ←M [P [i]] | F
5. F ← F ≪ 1
6. F ← 10m−1

7. D ← D′ ← 0m

8. for j ← 0 to n− 1 do
9. H ← (D ≪ 1) | 1

10. D ← (H & M [T [j]])
11. D′ ← (D′ ≪ 1) & M [T [j − 1]]
12. D ← D | D′

13. D′ ← H & M [T [j + 1]]
14. if (D & F) 6= 0m then
15. Output(j)

(B)BP-Approximate-Cross-Sampling (P, m, T, n)

1. q ← log(⌊m/2⌋ + 1) + 1

2. F ← 0qm−11

3. G← 0q(m−1)1q

4. for c ∈ Σ do
5. M [c]← 0qm

6. B[c]← 0qm

7. for i← 0 to m− 1 do
8. M [P [i]] ←M [P [i]] | F
9. B[P [i]]← B[P [i]] | G
10. F ← (F ≪ q)
11. G← (G≪ q)

12. F ← 0q−110q(m−1)

13. D̄ ← D̄′ ← 0qm

14. for j ← 0 to n− 1 do
15. H0 ← (D̄ ≪ q) | 1
16. H1 ← (D̄′ ≪ q) & B[T [j − 1]
17. H2 ← (D̄′ ≪ q) & M [T [j − 1]
18. D̄ ← (H0 & B[T [j]]) | H1

19. D̄ ← D̄ + (H2 ≪ 1)
20. D̄′ ← (H0 & B[T [j + 1]]) & ∼ D̄
21. if (D̄ & F) 6= 0qm then
22. k ← (D̄ ≫ (q(m− 1) + 1))
23. Output(j, k)

Fig. 2. (A) The BP-Cross-Sampling algorithm, which solves the swap matching problem in
linear time by using bit-parallelism. (B) The BP-Approximate-Cross-Sampling algorithm, which
solves the approximate swap matching problem in linear time by using bit-parallelism.

During the j-th iteration, we report a swap match at position j, provided that

the leftmost bit of Dj is set to 1, i.e., if (Dj & 10m−1) 6= 0m.

In practice, we can use only two vectors to maintain Dj and D′j , for j = 0, . . . , n−

1. Thus during iteration j of the algorithm, vector Dj−1 is transformed into vector

Dj , whereas vector D′j−1 is transformed into vector D′j . The resulting BP-Cross-

Sampling algorithm is shown in Fig. 2(A). It achieves a O(⌈mn/w⌉) worst-case

time complexity and requiresO(σ⌈m/w⌉) extra-space. If m ≤ w, then the algorithm

reports all swapped matches in O(n)-time and O(σ) extra space.

The simulation of the Approximate-Cross-Sampling algorithm can be per-

formed by representing the sets S̄j and S̄′j as a list of q bits, D̄j and D̄′j respectively,

where q = log(⌊m/2⌋+1)+1 and m is the length of the pattern. If the pair (i, k) ∈ S̄j ,

for 0 ≤ i < m and 0 ≤ k ≤ ⌊m/2⌋, then the rightmost bit of the i-th block of D̄j

is set to 1 and the leftmost q − 1 bits of the i-th block are set so as to contain the

value k.a Otherwise, if the pair (i, k) does not belong to S̄j , then the rightmost bit

of the i-th block of D̄j is set to 0. In a similar way we can maintain the current

configuration of the set S̄′j . If m log(⌊m/2⌋+ 1) + m ≤ w, then the entire list fits in

a single computer word, otherwise we need ⌈m(log(⌊m/2⌋+ 1)/w⌉ computer words

to represent the sets S̄j and S̄′j .

aWe need exactly log(⌊m/2⌋ + 1) bits to represent a value between 0 and ⌊m/2⌋.

September 15, 2010 16:37

Pattern Matching with Swaps in Practice 9

For each character c of the alphabet Σ the algorithm maintains a bit mask M [c],

where the rightmost bit of the i-th block is set to 1 if P [i] = c. Moreover, for each

character c ∈ Σ, the algorithm maintains, a bit mask B[c] whose i-th block have all

bits set to 1 if P [i] = c, whereas all remaining bits are set to 0.

Then each block is made up by q bits, with q = log(⌊7/2⌋ + 1) + 1 = 3. The

leftmost two bits of each block contain the number of swaps k, where 0 ≤ k ≤ 3.

Before entering into details, we observe that if (i, k) ∈ S̄j and (i, k) ∈ S̄′j then

we can conclude that T [j] = T [j + 1]. Moreover, if T [j + 1] = P [i + 1] we have

also T [j] = P [i + 1], which would imply a swap between two identical characters

of the pattern. Since the latter condition would violate Definition 1(c), during the

computation of vectors D̄j and D̄′j we maintain the following invariant

if the i-th bit of D̄j is set to 1, then the i-th bit of D̄′j is set to 0. (3)

Initially, all bit vectors are set to 0qm. Then the algorithm scans the text from

the first character to the last one and, for each position j ≥ 0, it computes the vector

D̄j in terms of D̄j−1 and D̄′j−1, by performing the following bitwise operations:

D̄j ← D̄j−1 ≪ q S̄j = {(i, k) : (i− 1, k) ∈ S̄j−1}
D̄j ← D̄j | 1 S̄j = S̄j ∪ {(0, 0)}
D̄j ← D̄j & B[T [j]] S̄j = S̄j \ {(i, k) : P [i] 6= T [j]}

D̄j ← D̄j | H
1 S̄j = S̄j ∪K

D̄j ← D̄j + (H2 ≪ 1) ∀ (i, k) ∈ K change (i, k) with (i, k + 1) in S̄j ,

where we have set

H1 = ((D̄′j−1 ≪ q) & B[T [j − 1]])

H2 = ((D̄′j−1 ≪ q) & M [T [j − 1]]), and

K = {(i, k) : (i− 1, k) ∈ S̄′j−1 ∧ P [i] = T [j − 1]} .

Similarly, D̄′j is computed by performing the following bitwise operations:

D̄′j ← D̄j−1 ≪ q S̄ ′j = {(i, k) : (i− 1, k) ∈ S̄j−1}

D̄′j ← D̄′j | 1 S̄ ′j = S̄ ′j ∪ {(0, 0)}

D̄′j ← D̄′j & B[T [j + 1]] S̄ ′j = S̄ ′j \ {(i, k) : P [i] 6= T [j + 1]}

D̄′j ← D̄′j & ∼ D̄j S̄ ′j = S̄ ′j \ {(i, k) : (i, k) ∈ S̄j}.

During the j-th iteration of the algorithm, if the rightmost bit of the (m− 1)-st

block of D̄j is set to 1, i.e. if (D̄j & 10q(m−1)) 6= 0m, we report a swap match at

position j. Additionally, the number of swaps needed to transform the pattern to

its swapped occurrence in the text is contained in the q − 1 leftmost bits of the

(m − 1)-st block of D̄j which can be extracted by performing a bitwise shift of

(q(m− 1) + 1) positions to the right.

As in the case of the BP-Cross-Sampling algorithm, in practice we can

use only two vectors to maintain D̄j and D̄′j , for j = 0, . . . , n − 1. The

BP-Approximate-Cross-Sampling algorithm, shown in Fig. 2(B), achieves

O(⌈(mn log m)/w⌉) worst-case time complexity and requires O(σ⌈m log m/w⌉)

extra-space. If the length of the pattern is such that m(log(⌊m/2⌋ + 1) + 1) ≤ w,

then the algorithm reports all swapped matches in O(n) time and O(σ) extra space.

September 15, 2010 16:37

10 M. Campanelli, D. Cantone, S. Faro and E. Giaquinta

4. Backward-Cross-Sampling algorithms

In this section we present a practical algorithm for solving the swap matching

problem, called Backward-Cross-Sampling, which though characterized by a

O(mn2)-time complexity in practice is faster than the Cross-Sampling algorithm.

In Section 4.2 we extend the Backward-Cross-Sampling algorithm in order

to solve the Approximate Pattern Matching Problem with Swaps, preserving the

same time and space complexities. Later, in Section 4.3, we present efficient imple-

mentations of the algorithms based on bit parallelism, which achieve a O(mn)-time

and O(σ)-space complexity, when the pattern fits within few computer words, i.e.,

if m ≤ c1w, for some small constant c1.

4.1. Standard Swap Matching Problem

The Backward-Cross-Sampling algorithm inherits from the Cross-Sampling

algorithm the same doubly crossed structure of its iterative computation. However,

it searches for all occurrences of the pattern in the text by scanning characters from

right to left, as in the Backward DAWG Matching (BDM) algorithm for the exact

single pattern matching problem [11].

The BDM algorithm processes the pattern by constructing a directed acyclic

word graph (DAWG) of the reversed pattern. The text is processed in windows of

size m, which are searched for the longest prefix of the pattern from right to left by

means of the DAWG. At the end of each search phase, either a longest prefix or a

match is found. If no match is found, the window is shifted to the start position of the

longest prefix, otherwise it is shifted to the start position of the second longest prefix.

As in the BDM algorithm, the Backward-Cross-Sampling algorithm processes

the text in windows of size m. Each attempt is identified by the last position j of

the current window of the text. The window is searched for the longest prefix of the

pattern which has a swapped occurrence ending at position j of the text. At the

end of each attempt, the new value of j is computed by performing a safe shift to

the right of the current window in such a way to left-align the current window of

the text with the longest prefix matched in the previous attempt.

To this end, for any given position j in the text T , we let Sh
j denote the set

of the integral values i such that the h-substring of P ending at position i has a

swapped occurrence ending at position j of the text T . More formally, we have

Sh
j = {h− 1 ≤ i ≤ m− 1 : P [i− h + 1 .. i] ∝ Tj} ,

for 0 ≤ j < n and 0 ≤ h ≤ m.

If h − 1 ∈ Sh
j , then there is a swapped occurrence of the prefix of the pattern

of length h, i.e., P [0 .. h− 1] ∝ Tj . In addition, it turns out that P has a swapped

occurrence at location j of T if and only if Sm
j 6= ∅. Indeed, if Sm

j 6= ∅ then

Sm
j = {m− 1}, for any given position j in the text.

The sets Sh
j can be computed efficiently by a dynamic programming algorithm,

by exploiting the following very elementary property.

September 15, 2010 16:37

Pattern Matching with Swaps in Practice 11

Lemma 10. Let T and P be a text of length n and a pattern of length m, respec-

tively. Then, for each 0 ≤ j < n, 0 ≤ h ≤ m, and h − 1 ≤ i < m, we have that

P [i− h + 1 .. i] ∝ Tj if and only if one of the following two facts holds

(a) P [i− h + 2 .. i] ∝ Tj and P [i− h + 1] = T [j − h + 1]; or

(b) P [i−h+3 .. i] ∝ Tj, P [i−h+1] = T [j−h+2], and P [i−h+2] = T [j−h+1].

Let us denote by Wh
j , for 0 ≤ j < n and 0 ≤ h < m, the collection of all values i

such that P [i− h + 1] = T [j − h] and the (h− 1)-substring ending at position i of

P has a swapped occurrence ending at location j of the text T . More formally

Wh
j = {h ≤ i < m− 1 : P [i− h + 2 .. i] ∝ Tj and P [i− h + 1] = T [j − h]} .

For any given position j in the text, the base case for h = 0 is given by

S0
j = {i : 0 ≤ i < m} and W0

j = {0 ≤ i < m− 1 : P [i + 1] = T [j]}. (4)

Additionally, Lemma 10 justifies the following recursive definitions

Sh+1
j = {h− 1 ≤ i ≤ m− 1 : (i ∈ Sh

j and P [i− h] = T [j − h]) or

(i ∈ Wh
j and P [i− h] = T [j − h + 1]) }

Wh+1
j = {h ≤ i ≤ m− 1 : i ∈ Sh

j and P [i− h] = T [j − h− 1]} .

(5)

Such relations, coupled with the initial conditions (4), allow one to compute the

sets Sh
j and Wh

j in an iterative fashion.

The code of the Backward-Cross-Sampling algorithm is shown in Fig. 3(A).

For any attempt at position j of the text, we denote by ℓ the length of the longest

prefix matched in the current attempt. Then the algorithm starts its computation

with j = m− 1 and ℓ = 0. During each attempt, the window of the text is scanned

from right to left, for h = 1 to m. If, for a given value of h, the algorithm states

that element (h− 1) ∈ Sh
j then ℓ is updated to value h.

The algorithm is not able to remember the characters read in previous iterations.

Thus, an attempt ends successfully when h reaches the value m (a match is found),

or unsuccessfully when both sets Sh
j and Wh

j are empty. In any case, at the end of

each attempt, the start position of the window, i.e., position j −m + 1 in the text,

can be shifted to the start position of the longest proper prefix detected during the

backward scan. Thus the window is advanced m− ℓ positions to the right. Observe

that since ℓ < m, we plainly have that m− ℓ > 0.

To compute the worst-case time complexity of the algorithm, we first observe

that, since the algorithm does not remember the length of the prefix matched in

previous attempts, each character of the text is processed at most m times during

the searching phase. Thus the while-cycle of line 7 is executed O(nm) times. The for-

cycles of line 9 and line 14 are executed |Sh
j | and |Wh

j | times, respectively. However,

according to Lemma 6, for each position j of the text we can report only a single

swapped occurrence of the substring P [i− h + 1 . . . i] in Tj, for each h− 1 ≤ i < m,

which implies that |Sh
j | ≤ m and |Wh

j | < m.

Therefore the Backward-Cross-Sampling algorithm has a O(nm2)-time

complexity and requires O(m) extra space to represent the sets Sh
j and Wh

j .

September 15, 2010 16:37

12 M. Campanelli, D. Cantone, S. Faro and E. Giaquinta

(A) Backward-Cross-Sampling (P, m, T, n)

1. j ← m− 1
2. while j < n do
3. h← ℓ← 0
4. S0

j ← {i : 0 ≤ i < m}

5. W0
j ← {0 ≤ i < m− 1 : P [i + 1] = T [j]}

6. while h < m and Sh
j ∪W

h
j 6= ∅ do

7. Sh+1
j
←Wh+1

j
← ∅

8. if (h− 1) ∈ Sh
j then ℓ← h

9. for i ∈ Sh
j do

10. if i ≥ h and P [i− h] = T [j − h]

11. then Sh+1
j
← Sh+1

j
∪ {i}

12. if i > h and P [i− h] = T [j − h− 1]

13. then Wh+1
j

←Wh+1
j
∪ {i}

14. for i ∈ Wh
j do

15. if i ≥ h and j − h < n− 1
16. and P [i− h] = T [j − h + 1]

17. then Sh+1
j
← Sh+1

j
∪ {i}

18. h← h + 1

19. if (h− 1) ∈ Sh
j then Output(j)

20. j ← j + m− ℓ

(B) Approximate-BCS (P, m, T, n)

1. j ← m− 1
2. while j < n do
3. h← ℓ← c← 0
4. S0

j ← {i : 0 ≤ i < m}

5. W0
j ← {0 ≤ i < m− 1 : P [i + 1] = T [j]}

6. while h < m and Sh
j ∪W

h
j 6= ∅ do

7. Sh+1
j

←Wh+1
j

← ∅

8. if (h− 1) ∈ Sh
j then ℓ← h

9. for i ∈ Sh
j do

10. if i ≥ h and P [i− h] = T [j − h]

11. then Sh+1
j
← Sh+1

j
∪ {i}

12. if i > h and P [i− h] = T [j − h− 1]

13. then Wh+1
j

←Wh+1
j
∪ {i}

14. for i ∈ Wh
j do

15. if i ≥ h and j − h < n− 1
16. and P [i− h] = T [j − h + 1]

17. then Sh+1
j
← Sh+1

j
∪ {i}

18. if m− 1 ∈ Sh+1
j

and m− 1 /∈ Sh
j

19. then c← c + 1
20. h← h + 1

21. if (h− 1) ∈ Sh
j then Output(j,c)

22. j ← j + m− ℓ

Fig. 3. (A) The Backward-Cross-Sampling algorithm for the swap matching problem. (B) The
Approximate-BCS algorithm for the approximate swap matching problem.

4.2. Approximate Swap Matching Problem

The Approximate-BCS algorithm searches for all the swap occurrences of a pat-

tern P (of length m) in a text T (of length n) using the same right-to-left scan used

by the Backward-Cross-Sampling algorithm described above.

Before entering into details we need to introduce some results on which the

approximate version of the Backward-Cross-Sampling algorithm is based.

The following result follows immediately from (5).

Lemma 11. Let P and T be a pattern of length m and a text of length n, respec-

tively. Moreover let m − 1 ≤ j ≤ n − 1 and 0 ≤ i < m. If i ∈ Sγ
j , then it follows

that i ∈ (Sh
j ∪W

h
j), for 1 ≤ h ≤ γ.

The following technical lemma helps in identifying identical characters in the

pattern using information gathered in the sets Sγ
j , Sγ−1

j , and Wγ−1
j .

Lemma 12. Let P and T be a pattern of length m and a text of length n, re-

spectively. Then, for every m − 1 ≤ j ≤ n − 1 and 0 ≤ i < m such that

i ∈ (Sγ
j ∩W

γ−1
j ∩ Sγ−1

j), we have P [i− γ + 1] = P [i− γ + 2].

Proof. From i ∈ (Sγ
j ∩S

γ−1
j) and i ∈ Wγ−1

j it follows that P [i−γ+1] = T [j−γ+1]

and P [i− γ + 2] = T [j − γ + 1]. Thus P [i− γ + 1] = P [i− γ + 2].

September 15, 2010 16:37

Pattern Matching with Swaps in Practice 13

Lemma 13. Let P and T be a pattern of length m and a text of length n, respec-

tively. Moreover let m− 1 ≤ j ≤ n − 1 and 0 ≤ i < m. Then, if i ∈ Sγ
j , there is a

swap between characters P [i− γ +1] and P [i− γ +2] if and only if i ∈ (Sγ
j \S

γ−1
j).

Proof. Before entering into details we remember that, by Definition 1, a swap

can take place between characters P [i − γ + 1] and P [i − γ + 2] if and only if

P [i−γ+1] = T [j−γ +2], P [i−γ+2] = T [j−γ+1], and P [i−γ+1] 6= P [i−γ+2].

Now, suppose that i ∈ Sγ
j and that there is a swap between characters P [i−γ+1]

and P [i− γ + 2]. We proceed by contradiction to prove that i /∈ Sγ−1
j . We have

(i) i ∈ Sγ
j (by hypothesis)

(ii) P [i− γ + 2] = T [j − γ + 1] 6= P [i− γ + 1] (by hypothesis)

(iii) i ∈ Sγ−1
j (by contradiction)

(iv) i /∈ Wγ−1
j (by (ii), (iii), and Lemma 12)

(v) P [i− γ + 1] = T [j − γ + 1] (by (i) and (iv))

obtaining a contradiction between (ii) and (v).

Next, suppose that i ∈ (Sγ
j \ S

γ−1
j). We prove that there is a swap between

characters P [i− γ + 1] and P [i− γ + 2]. We have

(i) i ∈ Sγ
j and i /∈ Sγ−1

j (by hypothesis)

(ii) i ∈ Wγ−1
j (by (i) and Lemma 11)

(iii) i ∈ Sγ−2
j (by (ii) and (5))

(iv) P [i− γ + 1] = T [j − γ + 2] (by (i) and (ii))

(v) P [i− γ + 2] = T [j − γ + 1] (by (ii))

(vi) P [i− γ + 2] 6= T [j − γ + 2] = P [i− γ + 1] (by (i) and (iii)).

The following corollary is an immediate consequence of Lemmas 13 and 11.

Corollary 14. Let P and T be strings of length m and n, respectively, over a

common alphabet Σ. Then, for m−1 ≤ j ≤ n−1, P has a swapped occurrence in T at

location j with k swaps, i.e., P ∝
k

Tj, if and only if (m−1) ∈ Sm
j and |∆j | = k ,

where ∆j = {1 ≤ h < m : (m− 1) ∈ (Sh+1
j \ Sh

j)}.

In consideration of the preceding corollary, the Approximate-BCS algorithm

maintains a counter which is incremented every time (m − 1) ∈ (Sh+1
j \ Sh

j), for

any 1 < h ≤ m, in order to count the swaps for an occurrence ending at a given

position j of the text.

For any attempt at position j of the text, let us denote by ℓ the length of

the longest prefix matched in the current attempt. Then the algorithm starts its

computation with j = m − 1 and ℓ = 0. During each attempt, the window of the

text is scanned from right to left, for h = 1, . . . , m. If, for a given value of h, the

algorithm discovers that (h− 1) ∈ Sh
j , then ℓ is set to the value h.

September 15, 2010 16:37

14 M. Campanelli, D. Cantone, S. Faro and E. Giaquinta

The algorithm is not able to remember the characters read in previous iterations.

Thus, an attempt ends successfully when h reaches the value m (a match is found),

or unsuccessfully when both sets Sh
j and Wh

j are empty. In any case, at the end of

each attempt, the start position of the window, i.e., position j −m + 1 in the text,

can be shifted to the start position of the longest proper prefix detected during the

backward scan. Thus the window is advanced m− ℓ positions to the right. Observe

that since ℓ < m, we plainly have that m− ℓ > 0.

The code of the Approximate-BCS algorithm is shown in Fig. 3(B). Its time

complexity is O(nm2) in the worst case and requires O(m) extra space.

4.3. Bit-Parallel Implementation

In this section we present practical implementations of the Backward-Cross-

Sampling algorithms based on the bit-parallelism technique. The resulting algo-

rithms work as the BNDM (Backward Nondeterministic DAWG Matching) algo-

rithm [14], which is a bit-parallel implementation of the BDM algorithm, where

the simulation of a nondeterministic automaton takes place by updating the state

vector much as in the Shift-And algorithm [7].

In the bit-parallel variant of the Backward-Cross-Sampling algorithm, the

sets Sh
j and Wh

j are represented as lists of m bits, Dh
j and Ch

j respectively.

The (i − h + 1)-st bit of Dh
j is set to 1 if i ∈ Sh

j , i.e., if P [i − h + 1 .. i] ∝ Tj,

whereas the (i− h + 1)-st bit of Ch
j is set to 1 if i ∈ Wh

j , i.e., if P [i− h + 2 .. i] ∝ Tj

and P [i− h + 1] = T [j − h]. All remaining bits are set to 0. Notice that if m ≤ w,

each bit vector fits in a single computer word, whereas if m > w we need ⌈m/w⌉

computer words to represent each of the sets Sh
j and Wh

j .

For each character c of the alphabet Σ, the algorithm maintains a bit mask M [c]

whose i-th bit is set to 1 if P [i] = c.

As in the Backward-Cross-Sampling algorithm, the text is processed in

windows of size m, identified by the last position j, and the first attempt starts at

position j = m − 1. For any searching attempt at location j of the text, the bit

vectors D1
j and C1

j are initialized to M [T [j]] | (M [T [j + 1]] & (M [T [j]]≪ 1)) and

M [T [j − 1]], respectively, according to the base cases shown in (4) and recursive

expressions shown in (5). Then the current window of the text, i.e. T [j−m+1 .. j],

is scanned from right to left, by reading character T [j−h+1], for increasing values

of h. Namely, for each value of h > 1, the bit vector Dh+1
j is computed in terms of

Dh
j and Ch

j , by performing the following bitwise operations:

(a) Dh+1
j ← (Dh

j ≪ 1) & M [T [j − h]] ,

(b) Dh+1
j ← Dh+1

j | ((Ch
j ≪ 1) & M [T [j − h + 1]]) .

Concerning (a), by a left shift of Dh
j , all elements of Sh

j are added to the set

Sh+1
j . Then, by performing a bitwise and with the mask M [T [j − h]], all elements

i such that P [i − h] 6= T [j − h] are removed from Sh+1
j . Similarly, the bit op-

erations in (b) have the effect of adding to Sh+1
j all elements i in Wh

j such that

September 15, 2010 16:37

Pattern Matching with Swaps in Practice 15

P [i− h] = T [j − h + 1]. Formally, we have the following correspondence:

(a′) Sh+1
j ← Sh

j \ {i ∈ S
h
j : P [i− h] 6= T [j − h]} ,

(b′) Sh+1
j ← Sh+1

j ∪Wh
j \ {i ∈ W

h
j : P [i− h] 6= T [j − h + 1]} .

Similarly, Ch+1
j is computed by performing the following bitwise operations:

(c) Ch+1
j ← (Dh

j ≪ 1) & M [T [j − h− 1]]

which have the effect of adding to the setWh+1
j all elements of the set Sh

j (by shifting

Dh
j to the left by one position) and of removing all elements i such P [i] 6= T [j−h−1]

holds (by a bitwise and with the mask M [T [j − h− 1]]).

More formally, we have the following symbolic correspondence:

(c′) Wh+1
j ← Sh

j \ {i ∈ S
h
j : P [i− h] 6= T [j − h− 1]} .

As in the Backward-Cross-Sampling algorithm, an attempt ends when h =

m or (Dh
j |C

h
j) = 0. If h = m and Dh

j 6= 0, a swap match at position j of the text is

reported. In any case, if h < m is the largest value such that Dh
j 6= 0, then a prefix

of the pattern, of length ℓ = h, which has a swapped occurrence ending at position

j, has been found. Thus a safe shift of m− ℓ positions to the right can take place.

In practice, we can use just two vectors to implement the sets Dh
j and Ch

j . Thus,

during the h-th iteration of the algorithm at a given location j of the text, vector

Dh
j is transformed into vector Dh+1

j and vector Ch
j is transformed into vector Ch+1

j .

The resulting BP-Backward-Cross-Sampling algorithm is shown in Fig. 4(A).

It achieves a O(⌈nm2/w⌉) worst-case time complexity and requires O(σ⌈m/w⌉)

extra space, where σ is the alphabet size. If the length of the pattern is m ≤ w,

then the algorithm finds all swapped matches in O(nm) time and O(σ) extra space.

In the bit-parallel version of the Approximate-BCS algorithm, named

Approximate-BPBCS, the sets Sh
j ,Wh

j , and Ch
j are represented and computed as

in the BP-Backward-Cross-Sampling algorithm, using equations (a), (b), and

(c) as described above.

Moreover, in order to count the number of swaps, observe that the (i−h+1)-st

bit of Dh
j is set to 1 if i ∈ Sh

j . Thus, the condition (m − 1) ∈ (Sh+1
j \ Sh

j) can be

implemented by the following bitwise condition:

(d) ((Dh+1 & ∼ (Dh ≪ 1)) & (1≪ h)) 6= 0 .

The counter for keeping track of the number of swaps requires log(⌊m/2⌋+ 1) bits

to be implemented. This compares favorably with the BP-Approximate-Cross-

Sampling algorithm which uses instead m counters of log(⌊m/2⌋+ 1) bits, one for

each prefix of the pattern.

The resulting Approximate-BPBCS algorithm is shown in Fig. 4(B). It

achieves a O(⌈nm2/w⌉) worst-case time complexity and requires O(σ⌈m/w⌉ +

log(⌊m/2⌋ + 1)) extra-space, where σ is the alphabet size. If the pattern fits in

few machine words, then the algorithm finds all swapped matches and their corre-

sponding counts in O(nm)-time and O(σ) extra-space.

September 15, 2010 16:37

16 M. Campanelli, D. Cantone, S. Faro and E. Giaquinta

(A) BP-Backward-Cross-Sampling (P, m, T, n)

1. F ← 10m−1

2. for c ∈ Σ do M [c]← 0m

3. for i← 0 to m− 1 do
4. M [P [i]]←M [P [i]] | F
5. F ← F ≫ 1
6. j ← m− 1

7. F ← 10m−1

8. while j < n do
9. h← 1, ℓ← 0
10. D← M [T [j]]
11. if j < n− 1 then
12. H ←M [T [j + 1]] & (M [T [j]] ≪ 1)
13. D ← D | H
14. C ←M [T [j − 1]]
15. while h < m and (D | C) 6= 0 do

16. D
′

← D ≪ 1
17. if D & F 6= 0 then ℓ← h
18. H ← (C ≪ 1) & M [T [j − h + 1]]
19. C ← D′ & M [T [j − h− 1]]
20. D ← D′ & M [T [j − h]]
21. D ← D | H
22. h← h + 1
23. if D 6= 0 then Output(j)
24. j ← j + m− ℓ

(B) Approximate-BPBCS (P, m, T, n)

1. F ← 10m−1

2. for c ∈ Σ do M [c]← 0m

3. for i← 0 to m− 1 do
4. M [P [i]]←M [P [i]] | F
5. F ← F ≫ 1
6. j ← m− 1

7. F ← 10m−1

8. while j < n do
9. h← 1, ℓ← c← 0
10. D ←M [T [j]]
11. if j < n− 1 then
12. H ←M [T [j + 1]] & (M [T [j]] ≪ 1)
13. D ← D | H
14. C ←M [T [j − 1]]
15. while h < m and (D | C) 6= 0 do

16. D
′

← D ≪ 1
17. if D & F 6= 0 then ℓ← h
18. H ← (C ≪ 1) & M [T [j − h + 1]]

19. C ← D
′

& M [T [j − h− 1]]

20. D ← D
′

& M [T [j − h]]
21. D ← D | H

22. if (D & ∼ D
′

) & (1≪ h) 6= 0
23. then c← c + 1
24. h← h + 1
25. if D 6= 0 then Output(j,c)
26. j ← j + m− ℓ

Fig. 4. Two bit-parallel algorithms. (A) The BP-Backward-Cross-Sampling algorithm for the
swap matching problem. (B) The Approximate-BPBCS algorithm for the approximate swap
matching problem.

5. Tuning the Dynamic Programming Recurrence

The Cross-Sampling and Backward-Cross-Sampling algorithms, and all the

variants based on them, have to read three text characters per iteration to update

the corresponding sets; for example, to compute the sets Sj and S′j , the Cross-

Sampling algorithm reads the characters T [j − 1], T [j], and T [j + 1]. It is easy

to devise a similar characterization of the sets definition and of the recurrence so

that the algorithm has to access only one character per iteration. We describe this

kind of variant for the Cross-Sampling algorithm, but it is trivial to adapt it to

the Backward-Cross-Sampling case. The definition of Sj is as in the original

algorithm. Instead, S′j is defined as follows:

S′j = {0 ≤ i < m− 1 | Pi−1 ∝ Tj−1 and P [i + 1] = T [j]} .

Following the new definition of S′j , the recurrence to compute both Sj and S′j is

modified in

Sj+1 = {i ≤ m− 1 | ((i− 1) ∈ Sj ∪ {−1} and P [i] = T [j + 1]) or

((i− 1) ∈ S′j and P [i− 1] = T [j + 1]) }

S′j+1 = {i < m− 1 | (i− 1) ∈ Sj ∪ {0} and P [i + 1] = T [j + 1]} .

(6)

Based on the modified recurrence we can devise a different bit-parallel simulation

September 15, 2010 16:37

Pattern Matching with Swaps in Practice 17

of the Cross-Sampling algorithm; in particular the bit vector Dj can be computed

with the following bitwise operations:

Dj ← Dj−1 ≪ 1 Sj = {i : (i− 1) ∈ Sj−1}

Dj ← Dj | 1 Sj = Sj ∪ {0}

Dj ← Dj & M [T [j]] Sj = Sj \ {i : P [i] 6= T [j]}

Dj ← Dj | H1 Sj = Sj ∪ {i : (i− 1) ∈ S′j−1 ∧ P [i− 1] = T [j]},

where H1 =
(

(D′j−1 & M [T [j]])≪ 1
)

.

Similarly, the bit vector D′j can be computed with the following bitwise opera-

tions:

D′j ← Dj−1 ≪ 1 S′j = {i : (i− 1) ∈ Sj−1}

D′j ← D′j | 1 S′j = S′j ∪ {0}

D′j ← D′j & (M [T [j]]≫ 1) S′j = S′j \ {i : P [i + 1] 6= T [j]}.

6. Experimental Results

Next we present experimental data which allow to compare under various conditions

the reviewed string matching algorithms in terms of their running times.

All algorithms have been implemented in the C programming language and

were used to search for the same strings in large fixed text buffers on a PC with

Intel Pentium M processor of 1.7GHz and a memory of 512Mb. In particular, all

algorithms have been tested on random texts and on three real world problems, with

patterns of length m = 4, 8, 16, 32. In the case of random texts, the algorithms

have been tested on three Randσ problems, for σ = 8, 32, 128. Each Randσ problem

consists in searching a set of 400 random patterns of a given length in a 4Mb random

text over a common alphabet of size σ, with a uniform character distribution. We

notice moreover that in our results computed for the approximate swap matching

problem we use sets of 100 random patterns.

The tests on real world problems have been performed on a genome sequence, on

a protein sequence, and on a natural language text. The genome used is a sequence

of 4, 638, 690 base pairs of Escherichia coli, taken from the file E.coli of the Large

Canterbury Corpus.a The protein sequence used in the tests is a 2.4Mb file with 20

different characters from the human genome. Finally, as natural language text we

used the file world192.txt (The CIA World Fact Book) from the Large Canterbury

Corpus, which contains 2, 473, 400 characters drawn from an alphabet of 93 different

characters.

6.1. Results for Standard Swap Matching

For the Standard Swap Matching problem we have compared under various con-

ditions the following string matching algorithms in terms of their running times:

ahttp://www.data-compression.info/Corpora/CanterburyCorpus/

September 15, 2010 16:37

18 M. Campanelli, D. Cantone, S. Faro and E. Giaquinta

the Iliopoulos-Rahman algorithm (IR), the Cross-Sampling algorithm (CS),

the BP-Cross-Sampling algorithm (BPCS), the Backward-Cross-Sampling

algorithm (BCS) and the BP-Backward-Cross-Sampling algorithm (BPBCS).

We have chosen to exclude from our experimental comparison the naive algo-

rithm and all algorithms based on the FFT technique, since the overhead of such

algorithms is quite high, resulting in very bad performances.

In the tables below, running times have been expressed in hundredths of seconds

and the best results are bold-faced.

Rand8 problem

m 4 8 16 32

IR 3.45 3.42 3.44 3.56
CS 66.6 67.2 67.5 69.0
BPCS 3.96 3.90 3.90 3.91
BCS 62.1 41.1 29.4 22.4
BPBCS 4.14 2.00 1.18 0.80

Rand32 problem

4 8 16 32

2.92 2.95 2.94 2.95
60.0 59.7 59.7 59.2
3.03 3.05 3.08 3.06
46.2 29.0 20.5 15.6
2.65 1.93 1.00 0.24

Rand128 problem

4 8 16 32

3.55 3.61 3.59 3.64
59.9 59.6 59.3 59.1
3.12 3.15 3.16 3.13
42.7 25.7 17.7 13.3
2.00 1.04 0.75 0.18

In the case of random texts the experimental results show that the BPBCS al-

gorithm obtains the best run-time performance in most cases. In particular, for

very short patterns and small alphabets, our algorithm is second only to the IR

algorithm. We notice that the algorithms IR, CS, and BPCS show a linear behavior,

whereas both algorithms BCS and BPBCS are characterized by a decreasing trend.

Observe moreover that, in the case of small alphabets and pattern longer than 16

characters, the BPBCS algorithm is at least three times faster than BPCS and IR.

Such a relation increases to thirty times for large alphabets.

genome sequence (σ = 4)

m 4 8 16 32

IR 3.07 3.06 3.08 3.10
CS 83.0 79.9 79.3 79.4
BPCS 6.82 3.95 3.92 3.94
BCS 102 67.0 49.0 38.6
BPBCS 10.1 3.93 2.01 1.12

protein sequence (σ = 20)

4 8 16 32

1.99 2.00 2.00 1.99
45.1 45.2 45.6 44.4
2.03 2.01 2.05 2.02
31.1 22.4 16.4 12.6
2.13 1.18 0.59 0.07

natural language (σ = 93)

4 8 16 32

1.85 1.82 1.85 1.85
36.9 36.6 36.4 36.2
2.05 1.97 1.99 1.98
30.4 19.3 13.6 10.3
2.00 0.99 0.21 0.01

The above experimental results concerning the real world problems show that in

most cases the BPBCS algorithm obtains the best results and only sporadically is

second to the IR algorithm. Moreover, in the case of natural language texts and long

patterns, the BPBCS algorithm is about 100 times faster than the IR algorithm.

6.2. Results for Approximate Swap Matching

Next we report experimental results relative to an extensive comparison under vari-

ous conditions of the following algorithms: the Approximate-Cross-Sampling

(ACS), the BP-Approximate-Cross-Sampling (BPACS), the Approximate-

BCS (ABCS), the Approximate-BPBCS (BPABCS), the Iliopoulos-Rahman

September 15, 2010 16:37

Pattern Matching with Swaps in Practice 19

algorithm with a naive check of the swaps (IR∗) and the BP-Backward-Cross-

Sampling algorithm with a naive check of the swaps (BPBCS∗)

We have chosen to include in our comparison also the algorithms IR∗ and

BPBCS∗, since the algorithms IR and BPBCS turned out, in [8], to be the most

efficient solutions for the swap matching problem. Instead, as before, the naive

algorithm and algorithms based on the FFT technique have not been taken into

consideration, as their overhead is quite high, resulting in poor performances.

Rand8 problem

m 4 8 16 32

ACS 4.76 4.75 4.78 4.79
ABCS 11.6 7.27 4.73 3.30
BPACS 0.83 0.83 0.83 0.82
BPABCS 0.41 0.22 0.14 0.09
IR∗ 0.28 0.27 0.27 0.28
BPBCS∗ 0.38 0.24 0.15 0.10

Rand32 problem

4 8 16 32

5.28 5.08 5.26 5.29
9.41 5.83 3.95 2.89
0.77 0.74 0.77 0.79
0.29 0.18 0.11 0.07
0.27 0.27 0.27 0.27
0.28 0.19 0.11 0.07

Rand128 problem

4 8 16 32

5.07 5.05 4.99 5.21
8.67 5.28 3.28 2.52
0.83 0.83 0.83 0.83
0.24 0.14 0.09 0.07
0.35 0.35 0.35 0.33
0.23 0.15 0.09 0.07

The experimental results on random texts show that the BPABCS algorithm

obtains the best run-time performance in most cases. For very short patterns and

small alphabets, our algorithm is second only to the IR∗ algorithm. In the case

of very short patterns and large alphabets, our algorithm is second only to the

BPBCS∗ algorithm. We notice that the algorithms IR∗, ACS, and BPACS show a

linear behavior, whereas ABCS and BPABCS are characterized by a decreasing trend.

genome segence (σ = 4)

m 4 8 16 32

ACS 5.62 5.64 5.63 6.04
ABCS 18.0 11.21 7.52 5.35
BPACS 0.95 0.91 0.76 0.84
BPABCS 0.64 0.31 0.23 0.14
IR∗ 0.26 0.28 0.31 0.31
BPBCS∗ 0.67 0.36 0.23 0.14

protein sequence (σ = 20)

4 8 16 32

3.77 3.78 3.72 3.74
7.04 4.55 3.16 2.35
0.56 0.58 0.56 0.51
0.24 0.14 0.08 0.05
0.38 0.39 0.38 0.38
0.24 0.14 0.08 0.05

natural language (σ = 93)

4 8 16 32

3.17 2.75 2.75 2.75
6.17 4.05 2.70 1.86
0.49 0.49 0.49 0.49
0.19 0.11 0.07 0.04
0.17 0.16 0.16 0.16
0.16 0.12 0.07 0.05

From the above experimental results on real world problems, it turns out that

the BPABCS algorithm obtains in most cases the best results and, in the case of

very short patterns, is second to IR∗ (for the genome sequence) and to BPBCS∗ (for

the protein sequence and the natual language text buffer).

7. Conclusions

We have presented new efficient algorithms for both the standard and approxi-

mate version of the Swap Matching problem. In particular, we have devised two

algorithms with O(nm) and O(nm2) worst case time complexity, respectively. We

have also shown efficient implementations of them, based on bit-parallelism, which

achieve O(n) and O(nm) worst-case time complexity, with patterns whose length is

comparable to the word-size of the target machine. From an extensive comparison

with some of the most effective algorithms for the swap matching problem, it turns

out that our algorithms are very flexible and achieve very good results in practice.

September 15, 2010 16:37

20 M. Campanelli, D. Cantone, S. Faro and E. Giaquinta

References

[1] A. Amir, Y. Aumann, G. M. Landau, M. Lewenstein, and N. Lewenstein. Pattern
matching with swaps. In IEEE Symposium on Foundations of Computer Science,
pages 144–153, 1997.

[2] A. Amir, Y. Aumann, G. M. Landau, M. Lewenstein, and N. Lewenstein. Pattern
matching with swaps. Journal of Algorithms, 37(2):247–266, 2000.

[3] A. Amir, R. Cole, R. Hariharan, M. Lewenstein, and E. Porat. Overlap matching.
Inf. Comput., 181(1):57–74, 2003.

[4] A. Amir, G. M. Landau, M. Lewenstein, and N. Lewenstein. Efficient special cases of
pattern matching with swaps. Information Processing Letters, 68(3):125–132, 1998.

[5] A. Amir, M. Lewenstein, and E. Porat. Approximate swapped matching. Inf. Process.

Lett., 83(1):33–39, 2002.
[6] P. Antoniou, C. Iliopoulos, I. Jayasekera, and M. Rahman. Implementation of a swap

matching algorithm using a graph theoretic model. In Bioinformatics Research and

Development, Second International Conference, BIRD 2008, volume 13 of Commu-

nications in Computer and Information Science, pages 446–455. Springer, 2008.
[7] R. Baeza-Yates and G. H. Gonnet. A new approach to text searching. Commun.

ACM, 35(10):74–82, 1992.
[8] M. Campanelli, D. Cantone, and S. Faro. A new algorithm for efficient pattern match-

ing with swaps. In Combinatorial Algorithms, 20th International Workshop, IWOCA

2009, Hradec nad Moravićı, Czech Republic, June 28-July 2, 2009, Revised Selected

Papers, volume 5874 of Lecture Notes in Computer Science, pages 230–241. Springer,
2009.

[9] M. Campanelli, D. Cantone, S. Faro, and E. Giaquinta. An efficient algorithm for
approximate pattern matching with swaps. In J. Holub and J. Žďárek, editors, Pro-

ceedings of the Prague Stringology Conference 2009, pages 90–104, Czech Technical
University, Prague, Czech Republic, 2009.

[10] D. Cantone and S. Faro. Pattern matching with swaps for short patterns in linear
time. In SOFSEM 2009: Theory and Practice of Computer Science, 35th Conference

on Current Trends in Theory and Practice of Computer Science, Spindleruv Mlýn,

Czech Republic, January 24-30, 2009. Proceedings, volume 5404 of Lecture Notes in

Computer Science, pages 255–266. Springer, 2009.
[11] M. Crochemore and W. Rytter. Text algorithms. Oxford University Press, 1994.
[12] C. S. Iliopoulos and M. S. Rahman. A new model to solve the swap matching problem

and efficient algorithms for short patterns. In SOFSEM 2008, volume 4910 of Lecture

Notes in Computer Science, pages 316–327. Springer, 2008.
[13] S. Muthukrishnan. New results and open problems related to non-standard stringol-

ogy. In Combinatorial Pattern Matching, 6th Annual Symposium, CPM 95, volume
937 of Lecture Notes in Computer Science, pages 298–317. Springer, 1995.

[14] G. Navarro and M. Raffinot. Fast and flexible string matching by combining bit-
parallelism and suffix automata. J. Exp. Algorithmics, 5:4, 2000.

