
International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

A SPACE EFFICIENT BIT-PARALLEL ALGORITHM

FOR THE MULTIPLE STRING MATCHING PROBLEM∗

DOMENICO CANTONE †

and

SIMONE FARO ‡

Dipartimento di Matematica e Informatica, Università di Catania
Viale A.Doria n.6, Catania, Italy, 95125

ABSTRACT

Finite (nondeterministic) automata are very useful building blocks in the field of

string matching. This is particularly true in the case of multiple pattern matching,
where the use of factor-based automata can reduce substantially the number of compu-
tational steps when the patterns have large common factors.

Direct simulation of nondeterministic automata can be performed very efficiently us-
ing the bit-parallelism technique, though this is not necessarily true for factor-based

automata.

In this paper we present an algorithm for the multiple string matching problem, based
on the bit-parallel simulation of nondeterministic factor-based automata which satisfy a

particular ordering condition. We also show how to enforce such condition by suitably
modifying a minimal initial automaton, through equivalence preserving transformations.
The resulting automaton turns out to be smaller than the corresponding maximal au-

tomata used by existing bit-parallel algorithms, as they do not take any advantage of
common factors in patterns.

Keywords: multiple string matching, bit-parallelism, text searching

1. Introduction

Given a set P = {P1, . . . , Pr} of patterns and a text T , all strings over a finite

alphabet Σ of size σ, the multiple pattern matching problem is to determine all the

positions where any of the patterns in P occurs in T . This problem arises naturally

in many applications, and several algorithms exist to solve it. For example, the

UNIX fgrep and egrep programs support multi-pattern matching through the -f

option. The worst case complexity of multiple pattern matching is Ω(n) and it

has been achieved by the Aho-Corasick algorithm [1]. From a practical point

of view, the best average complexity bound for multi-pattern matching algorithms

is O(n logσ(rm)/m), where m is the minimum length of any pattern in P. Such

bound has been reached, for instance, by the Dawg-Match algorithm [6] and by

∗This paper is based on results preliminarily presented in [4]
†cantone@dmi.unict.it
‡faro@dmi.unict.it

1

the Multi-BDM algorithm [8]. We cite also that the Boyer-Moore strategy has

been extended to multi-pattern matching, such as in the Commenz-Walter [5]

and in the Wu-Manber [14] algorithms.

In this paper we are mainly interested on automata based solutions of the pat-

tern matching problem, and on their implementation by bit-parallelism. In general,

(nondeterministic) automata allow to handle classes of characters and multiple pat-

terns in a simple, efficient, and flexible way, leading to algorithms which are asymp-

totically optimal both in space and time [10, 1].

The bit-parallelism technique [?] consists in exploiting the intrinsic parallelism

of the bit operations inside a computer word. It can be profitably used for the

simulation of finite automata even in their nondeterministic form.

The paper is organized as follows. After introducing in Section 2 the basic nota-

tions used in the paper, in Section 3 we survey the most significant algorithms for

the single and multiple pattern matching problem which make use of factor-based

deterministic finite automata. Then, in Section 4 we describe the bit-parallelism

technique and discuss some of the single and multi-pattern matching algorithms

based on it. Existing algorithms in the multi-pattern case do not take any partic-

ular advantage of the presence of large common factors in the patterns. Thus, in

Section 5 we present a new solution for the multi-pattern matching problem which

efficiently mixes the advantages in space obtained from factor-based automata with

the simplicity and flexibility of bit-parallelism. Finally, we draw our conclusions

and propose some hints for future work in Section 6.

2. Basic Definitions and Terminology

We introduce here the basic notations and terminology used in the paper. A

string P of length m is represented as an array P [0 ..m− 1]. Thus P [i] will denote

the (i + 1)-st character of P , for i = 0, . . . ,m − 1. We denote the length of P by

|P |. In addition, if P = {P1, P2, . . . , Pr} is a set of strings, we denote by size(P)

the sum of the lengths of its strings, namely size(P) =
∑r

i=1 |Pi|.

For any two strings P and P ′, we write P ′
⊐ P to indicate that P ′ is a proper

suffix of P , P ′
⊏ P to indicate that P ′ is a proper prefix of P , and P.P ′ to denote

the concatenation of P ′ to P . Given a set of patterns P = {P1, P2, . . . , Pr} in an

alphabet Σ, the trie T associated with P is a rooted directed tree, whose edges are

labeled by single characters of Σ, such that (i) distinct edges out of a same node

are labeled by distinct characters, (ii) all paths in T from the root are labeled by

prefixes of the strings in P, (iii) for each string P in P there exists a path in T from

the root which is labeled by P .

If we do not insist on property (i) above, we obtain a more relaxed form of trie,

which we call nondeterministic trie. Since all tries considered in this paper are

nondeterministic, for the sake of simplicity we will refer to them just as “tries.”

For any node p in a trie T , we denote by lbl(p) the string which labels the path

from the root of T to the node p and put len(p) = |lbl(p)|, i.e., len(p) is the length

of the path from the root of T to p. Additionally, for any edge (p, q) in T , we

2

denote the label of (p, q) by lbl(p, q). We also denote by childrenT (p) the set of the

children of p in the trie T .

Given a (nondeterministic) trie T relative to a set of patterns P = {P1, P2, . . . , Pr}

over an alphabet Σ, we can naturally associate with T the following canonical non-

deterministic finite automaton (NFA) T̂ = (QT , q0, FT , δT), where:

• QT is the set of nodes of T (set of states);

• q0 ∈ QT is the root of T (initial state);

• FT =Def {q ∈ QT | lbl(q) ∈ P} (set of final or terminal states);

• δT : QT × Σ → P(QT), with

δT (q, c) =Def

{
{p ∈ QT | lbl(q).c = lbl(p)} if q 6= q0

{p ∈ QT | lbl(q).c = lbl(p)} ∪ {q0} if q = q0 ,

for q ∈ QT , c ∈ Σ, and where P(·) is the powerset operator (transition

function).

Thus the words node and state will often be used interchangeably. Likewise, we

will often identify a trie T with its corresponding NFA T̂ .

3. Automata Based String Matching Algorithms

Automata play a very important role in the design of efficient pattern matching

algorithms. For instance the well known Knuth-Morris-Pratt algorithm [10]

uses a deterministic automaton that searches a pattern in a text by performing

its transitions on the text characters. The main result relative to the Knuth-

Morris-Pratt algorithm is that its automaton can be constructed in O(m)-time

and -space, whereas pattern search takes O(n)-time, thus reaching the best bound

for a pattern matching algorithm (as usual, m and n denote the length of the

pattern and text, respectively). In the case of multiple pattern matching, the Aho-

Corasick algorithm [1] has been the first having a linear behavior. It is also

based on the automata approach and can be viewed much as a generalization of

the Knuth-Morris-Pratt algorithm to the multi-pattern case. In particular, the

Aho-Corasick automaton is a trie T for the set of patterns P, with a failure

function f : QT → QT which is followed when no transition is possible on a text

character. The function f is defined on each node u ∈ QT in such way that:

• lbl(f(u)) ⊐ lbl(u), and

• len(f(u)) ≥ len(p), for each p ∈ QT such that lbl(p) ⊐ lbl(u) .

The Aho-Corasick automaton can be constructed in linear time and space [8].

Automata based solutions have been also developed to design algorithms which

have optimal sublinear performances on average. For instance, several algorithms

have been developed to extend to the multiple pattern matching case the efficient

3

Boyer-Moore strategy [3]. Among them, we cite the Commenz-Walter algo-

rithm [5] which extends the Horspool algorithm [9] through a suffix based ap-

proach. The Commenz-Walter algorithm starts by reading the text backwards

from position j, initially set to ℓ = min{|Pk| : Pk ∈ P}. Then characters are

matched against the labels of the trie T for the set Pr of the reverse patterns.

When a final state is reached, an occurrence is reported. If no matching is possi-

ble with the current character, then position j is shifted by the minimum nonnull

depth in T of an edge labeled by the previous read character T [j]. If no edge in T

is labeled by T [j], then j is increased by ℓ.

Another type of automaton, called suffix automaton (or Dawg, for Directed

Acyclic Word Graph), has been introduced for the single pattern matching problem

in [6, 7, 8, 13] and later generalized to the multi-pattern case. A suffix automaton

for a set P of patterns is a trie for the set Pr that recognizes all the suffixes of the

patterns in P.

For instance, the Reverse-Factor algorithm [7], for the single pattern match-

ing problem, computes shifts which match prefixes of the pattern, rather than suf-

fixes, using the smallest suffix automaton of the reverse of the pattern. Despite

its quadratic worst-case time complexity, the Reverse-Factor algorithm is very

fast in practice. Other optimal sublinear algorithms on average, like Backward-

DAWG-Match (BDM) and Turbo-BDM [7, 8], have been obtained with this

approach, and have been also extended to multiple pattern matching in [6, 8, 13].

4. String Matching and Bit-Parallelism

In general, it is much easier to construct a nondeterministic automaton rather

than a deterministic one, due to its simplicity and regularity. Thus, it would be

desirable to be able to simulate efficiently the parallel computation of an NFA.

This can be done using the bit-parallelism technique [?]. Such technique consists in

exploiting the intrinsic parallelism of the bit operations inside a computer word. In

favorable cases it allows to cut down the overall number of operations by a factor

of ω, where ω is the number of bits in a computer word. For this reason, although

string matching algorithms based on bit-parallelism are usually simple and have very

low memory requirements, they generally work well only with patterns of moderate

length.

In the context of string matching, such technique has been especially used to

speed-up algorithms based on automata. The simulation is carried out by represent-

ing an automaton as an array of L bits, where L + 1 is the number of states of the

automaton. The initial state does not need to be represented, because it is always

active. Bits corresponding to active states are set to 1, whereas bits corresponding

to inactive states are set to 0.

To simulate efficiently an NFA using the bit-parallelism technique, its states

must be mapped into the positions of a bit-vector by a suitable bijection.

In the case of a trie (or better, the NFA associated with it), we succeded to

simulate it efficiently provided that the bijection is a weakly safe topological ordering,

in a sense which will be explained later.

4

For the time being, we just recall that a topological ordering of a trie T is a

bijection π : QT → {0, . . . , |QT | − 1}, which agrees with the edges of T , namely

such that π(p) < π(q) whenever (p, q) is in T . It is convenient to associate with π

its inverse φ : {0, . . . , |QT | − 1} → QT , which is assumed to map each position of a

bit-vector to the corresponding state of T .

For later purposes, given a topological ordering π of T , it is also convenient

to associate to each edge (p, q) in T its π-interval [π(p), π(q)[, also denoted by

Intπ(p, q). The length π(q) − π(p) of the π-interval [π(p), π(q)[will be denoted by

|Intπ(p, q)|. Notice that since π is a topological ordering of T , then |Intπ(p, q)| ≥ 1,

for each edge (p, q) in T .

4.1. Searching for a Single Pattern

In the case of single pattern matching, the trie T associated with a given pattern

P of length m is linear. Thus, the corresponding NFA T̂ is obtained from T just

by adding a self-loop on its initial state, labeled by all symbols of the alphabet Σ,

to allow the scan to begin at any position in the text. Plainly, in this case we have

only one possible topological ordering of T , whose inverse φ1 is recursively defined

by:

φ1(i) =

{
δT (q0, P [0]) if i = 0
δT (φ1(i − 1), P [i − 1]) if 1 ≤ i ≤ m − 1 .

Thus, for i = 0, 1, . . . ,m − 1, state φ1(i) is simulated by the i-th bit of a bit-

vector. The initial state does not need to be represented, because it is always

active. Figure 1(A) shows the nondeterministic finite automaton which recognizes

the pattern P = aababb.

The first result, concerning single pattern matching algorithms using the bit-

parallelism technique, is due to Baeza-Yates and Gonnet [?]. Their algorithm,

named Shift-And, maintains, for each symbol c of the alphabet Σ, a bit mask

B[c] whose i-th bit is set to 1, provided that P [i] = c, where P is the pattern.

The current configuration of the automaton is maintained in a bit mask D, which

is initialized to 0L, since initially all (noninitial) states are inactive. Moreover a

final-state bit-mask M = 10L−1 maintains the position of the final state of the

automaton, whereas an initial-state bit-mask I = 0L−11 maintains the position of

the node adjacent to the initial state.

While scanning a text T from left to right, the Shift-And algorithm simulates

automaton transitions by the following basic shift-and operation, for each position

j:

D = ((D ≪ 1) | I) & B[T [j]] .

If the final state is active, i.e. D & M 6= 0L, a matching is reported at position j.

It turns out that the Shift-And algorithm has an O(⌈mn/ω⌉) worst-case running

time and requires O(⌈L/ω⌉)-space.

Other algorithms based on bit-parallelism use a Boyer-Moore strategy, to

simulate a right to left scan of the pattern. For instance, the BNDM algorithm [?]

is the bit-parallel implementation of the Reverse-Factor algorithm. It is based

5

Figure 1: (A) An NFA which recognizes the pattern P = aababb. (B)
An NFA obtained from the maximal trie T of the set of patterns P =
{aaabb, aabba, abaab, ababb}. (C) The parallel topological ordering of T . (D)
The sequential topological ordering of T .

on the nondeterministic version of the smallest suffix automaton of the reverse of

the pattern P . Unlike the Shift-And algorithm, characters of text and pattern

are compared from right to left until the entire pattern is read or no transition by

the automaton is possible. Then the pattern is shifted by ℓ positions to the right,

where ℓ is the length of the last matched prefix. Despite its quadratic worst-case

running time, the BNDM algorithm performs well in practical cases.

4.2. Searching for Multiple Patterns

Existing algorithms that search for a set P = {P1, . . . , Pr} of patterns, using bit-

parallelism, simulate the behavior of the maximal trie of P. This is the trie T of P

obtained from the linear tries T1, T2, . . . , Tr for the patterns P1, P2, . . . , Pr, respec-

tively, by merging the roots of T1, T2, . . . , Tr in a single node. Plainly, the number

of states of T is given by |T | =
∑r

i=1 |Ti| − r + 1 = size(P) + 1, so that it can be

represented by a bit-vector of L = size(P) bits. For instance, Figure 1(B) shows the

maximal trie relative to the set of patterns P = {aaabb, aabba, abaab, ababb}. Two

different topological orderings have been used in literature to simulate a maximal

trie of a set of pattern P. A first arrangement, πpar, has been proposed in [14],

under the restriction that all patterns in the set P have the same length. Given a

set P = {P1, P2, . . . , Pr} of r distinct patterns of the same length m, the topological

ordering πpar of the trie T relative to P is obtained just by interleaving the NFAs

of the patterns of P in a parallel fashion. More precisely, the inverse φpar of πpar

6

can be recursively defined by

φpar(kr + j) =

{
δTj+1

(q0, Pj+1[0]) if k = 0
δTj+1

(φpar((k − 1)r + j), Pj+1[k]) if 1 ≤ k ≤ m − 1 ,

with 0 ≤ j ≤ r − 1. Figure 1(C) shows the parallel topological ordering of the NFA

of Figure 1(B). Using such arrangement, it is possible to search for patterns in P just

as in the case of a single pattern. The only difference with the single pattern case is

that the shift is not by a single bit, but by r bits (since consecutive nodes are r bits

apart in the parallel arrangement). Moreover, we need to use the new initial-state

and final-state masks I = 0r(m−1)1r and M = 1r0r(m−1), respectively. Figure 2

(left side) shows the code of an implementation of the Shift-And algorithm, based

on a parallel ordering of the maximal trie for a set P of patterns having the same

length.

An alternative arrangement, πseq, has been proposed in [12]. It consists in

concatenating in a sequential fashion the different branches of the maximal trie of a

set P of patterns. More precisely, given a set P = {P1, P2, . . . , Pr} of patterns (not

necessarily of the same length), the inverse φseq of the ordering πseq relative to the

maximal trie of P is recursively defined by

φseq
(∑h−1

j=1 |Pj | + i
)

=

{
δTh

(q0, Ph[0]) if i = 0

δTh
(φseq(

∑h−1
j=1 |Pj | + i − 1), Ph[i − 1]) if 1 ≤ i ≤ |Ph| − 1 ,

with 1 ≤ h ≤ r.

Figure 1(D) shows the sequential topological ordering of the NFA in Figure 1(B).

In this case, we return to single bit shifts, whereas the initial-state and final-state

masks are
I = (0|P1|−11)(0|P2|−11) · · · (0|Pr|−11)

M = (10|P1|−1)(10|P2|−1) · · · (10|Pr|−1) .

On some processors, shifts by a single position is faster than shift by r > 1

positions. In such cases the arrangement πseq yields faster algorithms. Moreover, as

already observed, such arrangement allows to deal with sets of patterns of different

lengths.

Figure 2 (right side) shows the code of an implementation of the Shift-And

algorithm, based on a sequential ordering of the maximal trie of a set P. Though

not necessary, for the sake of simplicity we have assumed that the patterns in P

have the same length m.

5. A new space efficient approach

In this section we propose a new approach to bit-parallel multiple pattern match-

ing. Unlike existing solutions, presented in the previous section, which make use of

the maximal trie of a set P of patterns, here we propose a solution which simulates,

using bit-parallelism, a factor-based automaton thus reducing the number of states

and, accordingly, the number of bits needed for its representation.

Below we introduce the important notion of (weakly) safe topological ordering

of a trie. Then, in Section 5.1 we present an efficient variant of the Shift-And

7

Sequential-Shift-And (T , P = {P1, . . . , Pr})
1. n = length(T)
2. m = length(P1)
3. L = mr

4. for c ∈ Σ do B[c] = 0L

5. l = 0
6. for k = 1 to r do

7. for i = 0 to m − 1 do

8. B[Pk[i]] = (B[Pk[i]] | (0L−11 ≪ l + i))
9. l = l + m

10. I = (0m−11)r

11. M = (10m−1)r

12. D = 0L

13. for j = 0 to n − 1 do

14. if D & M 6= 0L then print(j)
15. D = ((D ≪ 1) | I) & B[T [j]]

Parallel-Shift-And (T , P = {P1, . . . , Pr})
1. n = length(T)
2. m = length(P1)
3. L = mr

4. for c ∈ Σ do B[c] = 0L

5. l = 0
6. for i = 0 to m − 1 do

7. for k = 1 to r do

8. B[Pk[i]] = (B[Pk[i]] | (0L−11 ≪ l + k))
9. l = l + r

10. I = 0r(m−1)1r

11. M = 1r0r(m−1)

12. D = 0L

13. for j = 0 to n − 1 do

14. if D & M 6= 0L then print(j)
15. D = ((D ≪ r) | I) & B[T [j]]

Figure 2: The Parallel-Shift-And algorithm which uses a parallel ordering of
the maximal trie T of the set P, and the Sequential-Shift-And algorithm which
uses a sequential ordering of the nodes of T .

algorithm, based on a trie for P admitting a weakly safe topological ordering. Our

proposed algorithm, called Multiple-Trie-Shift-And, searches a text T for any

pattern in a set P in O(n⌈L/ω⌉)-time, where n = |T |, L = size(P), and ω is the

size of a computer word. Subsequently, in Section 5.2 we present an algorithm,

named Construct-Safe-Topological-Ordering, which given a (minimal) trie

T for a set P of patterns constructs another trie T ′ for P admitting a weakly

safe topological ordering (in general, the size of T ′ may be larger than the size

of T). The Construct-Safe-Topological-Ordering algorithm is based on a

DFS approach and runs in O(L)-time and -space, under suitable hypotheses.

Let πu be a topological ordering of the subtrie Tu of T rooted in u. Also, let

(p, q) be an edge of Tu.

We say that (p, q) is a long-bit edge (relative to the ordering πu) if the length

8

of the πu-interval of (p, q) is greater than 1, i.e., in symbols, |Intπu
(p, q)| > 1.a

Otherwise, i.e. if |Intπu
(p, q)| = 1, we say that (p, q) is a 1-bit edge (relative to the

ordering πu). Additionally, if (p, q) is a long-bit edge of Tu, we say that the label

lbl(p, q) of the edge (p, q) is an engaged symbol for the node u. It is convenient to

define the following function and set

Lπu
(c) =Def {(p, q) ∈ Tu | lbl(p, q) = c and |Intπu

(p, q)| > 1}
Aπu

=Def {c ∈ Σ | Lπu
(c) 6= ∅} ,

for c in the alphabet Σ, u in T , and πu a topological ordering of Tu. In other words,

Lπu
(c) is the collection of long-bit edges of Tu labeled by c, whereas Aπu

is the

collection of all engaged symbols for u.

Finally, a topological ordering π of a trie T is said to be

• safe, if for each c ∈ Σ, the intervals in {Intπ(p, q) | (p, q) ∈ Lπ(c)} are pairwise

disjoint, i.e., if the π-intervals of any two distinct long-bit egdes labeled by a

same character are disjoint;

• weakly safe, if for each c ∈ Σ, the intervals in {Intπ(p, q) | (p, q) ∈ Lπ(c) and p 6=

root(T)} are pairwise disjoint, i.e., if the π-intervals of any two distinct long-

bit egdes labeled by a same character and not originating from the root of T

are disjoint.

Figures 3(B)-(C) show two different topological orderings of the trie in Fig-

ure 3(A). In particular, concerning the ordering π′ relative to Figure 3(B), we

have Lπ′(a) = {(3, 6), (8, 9)} and Lπ′(b) = {(1, 2)}; hence π′ is a weakly safe

topological ordering since π′(9) = 6 < 10 = π′(3). On the other hand, the or-

dering π′′ relative to Figure 3(C) is not weakly safe, since in this case we have

Lπ′′(a) = {(1, 8), (3, 6), (8, 9)}, Lπ′(b) = ∅, and π′′(1) = 1 < π′′(3) = 3 < π′′(6) =

6 < π′′(8) = 8, i.e. Intπ′′(3, 6) ⊂ Intπ′′(1, 8).

5.1. The Multiple-Trie-Shift-And Algorithm

Given a text T and a set P = {P1, P2, . . . , Pr} of patterns, the Multiple-

Trie-Shift-And algorithm which we present below searches for any pattern of

P in the text T in O(n⌈L/ω⌉)-time, where n = |T |, L = size(P), and ω is the

size of a computer word. Besides the text T , it takes as input a pair T and π,

where T is a trie for P and π is a weakly safe topological ordering of T (as will

be shown in the next section, such T and π can be efficiently constructed starting

from a minimal trie for P). The Multiple-Trie-Shift-And algorithm simulates

its input automaton T using bit-parallelism. Since |QT | ≤ L + 1, in general our

algorithm deals with smaller automata than the algorithms reviewed in Section 4.2.

Let T1, T2, . . . , Th be the subtries of T rooted in the children of root(T) and let

{f1, f2, . . . , fk} be the set of final states of T . The algorithm initializes two bit-

masks of length L = |T |−1, respectively the initial-state mask I and the final-state

aThe notion of πu-interval and the notation |Intπu (p, q)| have been introduced just before
Section 4.1.

9

Figure 3: (A) The minimal trie of the set of patterns P =
{ababb, abaab, aaabb, aabba}. (B) A weakly safe topological ordering of
the trie in (A). (C) A topological ordering of the trie in (A) which is not weakly
safe.

mask M , as follows

I = (0|QTh
|−11) · · · (0|QT2

|−11)(0|QT1
|−11)

M = (10π(fk)−π(fk−1)−1) · · · (10π(f2)−π(f1)−1)(10π(f1)−1) .

Subsequently, for each symbol c ∈ Σ, the Multiple-Trie-Shift-And algo-

rithm initializes as shown below three more bit-masks of length L, namely B[c], IS [c]

and GS [c], which allow to perform the automaton transitions.

For each state q ∈ QT such that lbl(q)[len(q) − 1] = c, we set the π(q)-th bit of

B[c] to 1.

Let Lπ(c) = {(p1, q1), (p2, q2), . . . , (pt, qt)} be the set of long-bit edges in π la-

beled by the symbol c, arranged in such a way that π(p1) < π(q1) ≤ π(p2) <

π(q2) ≤ · · · ≤ π(pt) < π(qt). The mask IS [c] is the initial-shift bit-mask of c. It

marks all nodes in π from which a long-bit edge labeled with symbol c originates.

In other words, for each edge (p, q) ∈ Lπ(c), the π(p)-th bit of IS [c] is set to 1.

More formally,

IS [c] = (0L−pt1)(0pt−pt−1−11) · · · (0p2−p1−11)(0p1−1) .

Finally, the mask GS [c] is the gap-shift bit-mask of c. For each long-bit edge

(p, q) ∈ Lπ(c), the bits of GS [c] from position (π(p) + 1) up to position (π(q) − 1)

are set to 1. More formally,

GS [c] = (0L−qt+11qt−pt−1)(0pt−qt−1+11qt−1−pt−1−1) · · · (0p2−q1+11q1−p1−1)(0p1) .

10

Multiple-Trie-Shift-And (T , T , π)

/* Initialization */
1. n = length(T)
2. φ = π−1

3. L = |QT | − 1
4. I = M = 0

L

5. for each c ∈ Σ do B[c] = IS [c] = GS [c] = 0
L

6. root = φ(0)
7. for each q ∈ childrenT (root) do

8. c = lbl(root , q)
9. B[c] = (B[c] | (0L−1

1 ≪ (π(q) − 1)))
10. for i = 1 to L do

11. p = φ(i)
12. if is final(p) then M = (M | (0L−1

1 ≪ (i − 1)))
13. if p ∈ childrenT (root) then I = (I | (0L−1

1 ≪ (i − 1)))
14. for each q ∈ childrenT (p) do

15. c = lbl(p, q)
16. if π(q) > i + 1 then

17. IS [c] = (IS [c] | (0L−1
1 ≪ (π(q) − 1)))

18. GS [c] = (GS [c] | (0L−π(q)+π(p)+1
1

π(q)−π(p)−1 ≪ π(p)))
19. else B[c] = (B[c] | (0L−1

1 ≪ (π(q) − 1)))

/* Searching Phase */
20. D = 0

L

21. for j = 0 to n − 1 do

22. if D & M 6= 0
L then print(j)

23. D′ = (D ≪ 1) & B[T [j]]
24. D′′ = ((((D & IS [T [j]]) ≪ 1) + GS [T [j]]) & ∼GS [T [j]])
25. D = (D′ | D′′) | (I & B[T [j]])

Figure 4: The Multiple-Trie-Shift-And algorithm for the multiple string match-
ing problem.

During the searching phase (lines 20-25), a bit-mask D maintains the active

state of the automaton. For each position j of the text T , the algorithm performs

three main steps

1-bit transitions (line 22):

This is made in a simple way by shifting the mask D by one position to the

left. Then all transitions labeled with symbols different from T [j] are deleted

by performing an and operation with the bit-mask B[T [j]]. More formally,

the operation that simulates 1-bit transitions is

(D ≪ 1) & B[T [j]] .

Long-bit transitions (line 23):

First, the operation (D & IS [T [j]]) isolates all active states from which long-

bit edges originate. Then the resulting mask is shifted by one position to the

left and its value is added to the value of the bit-mask GS [T [j]]. This has the

effect that, if (p, q) ∈ Lπ(T [j]) and p is an active state in D, then the π(q)-th

11

bit of D is set to 1 and all bits from position π(p) up to position π(q)− 1 are

set to 0. However, if (p, q) ∈ Lπ(T [j]) and p is not an active state in D, then

all bits from position π(p) + 1 up to position π(q)− 1 maintain their value 1.

These undesirable bits are deleted by performing an and operation with the

bit-mask ∼GS [T [j]]. More formally, long-bit transitions are simulated by the

operation

((((D & IS [T [j]]) ≪ 1) + GS [T [j]]) & ∼GS [T [j]]) .

Transitions from the initial state (line 24):

The transitions starting from the initial state are performed by computing an

or operation with the mask I. As in the 1-bit transition case, all transitions

labeled with symbols different from T [j] are deleted by performing an and

operation with the bit-mask B[T [j]]. Formally, transitions from the initial

state are simulated by the following operation

(D | I) & B[T [j]] .

The Multiple-Trie-Shift-And algorithm, shown in Figure 4, runs in O(n)

time if L ≤ ω, where ω is the length of a computer word. However if L > ω the

algorithm has a O(n⌈L/ω⌉) worst-case time complexity.

In the following section we describe an algorithm that, given a minimal trie T

for a set P = {P1, P2, . . . , Pr} of patterns, it constructs another trie T ′, equivalent

to T , together with a weakly safe topological ordering π for T ′.

5.2. Constructing a Trie with a Weakly Safe Topological Ordering

Before entering into the details of the algorithm, we need to introduce some

further useful concepts.

For each node q ∈ QT we define the set B(q) of binding symbols of q as the col-

lection of all characters which label some edge (p, p′) originating from a predecessor

p of q, but such that p′ does not lie on the path from the root(T) to q. In symbols

B(q) =Def {lbl(p, p′) | p, p′ ∈ QT , lbl(p) ⊏ lbl(q) , and lbl(p′) 6⊑ lbl(q)} .

In addition, for each node q ∈ QT , we define the function bindq : Σ →

{1, 2, . . . , len(q)} such that for each c ∈ Σ

bindq(c) =Def

1 + max

len(p)

∣∣∣∣∣∣

p ∈ QT , lbl(p) ⊏ lbl(q) , and
c = lbl(p, p′) , lbl(p′) 6⊑ lbl(q)
for some p′ ∈ QT

 if c ∈ B(q)

0 otherwise .

Observe that, if lbl(p) ⊏ lbl(q), then len(p) < len(q) and therefore 0 ≤ bindq(c) ≤

len(q), for c ∈ Σ. For each h ∈ {1, . . . , len(q)} we define the set Bh(q) ⊆ B(q) by

putting

Bh(q) =Def {c ∈ B(q) | bindq(c) = h}.

12

Next, let again q ∈ QT and let w = |childrenT (q)|. Also, for each node s ∈

childrenT (q), let πs be a safe topological ordering for Ts. We say that the set

childrenT (q) is resolved w.r.t. the above orderings πs, if there exists an ordering

s1, s2, . . . , sw of the children of q in T such that the concatenation πs1
.πs2

. · · · .πsw

yields a safe topological ordering πq for Tq. Observe that the edge (q, s1) is a 1-bit

edge for πq, whereas the edges (q, si), for i = 2, . . . , w, are long-bit edges for πq.

Then, in order for πq to be a safe topological ordering, we must have

lbl(q, si) /∈
i−1⋃

j=1

Aπq
(sj) , for each i = 1, . . . , w .

Additionally, observe that the set Blen(q)(s) = {lbl(q, s′) | s′ ∈ childrenT (q) \ {s} }

defines the binding symbols on node s imposed by its predecessor q, for each s ∈

childrenT (q). Thus, if Aπq
(s) ∩ Blen(q)(s) 6= ∅, for some s ∈ childrenT (q), then

the node s could violate some binding in Blen(q)(s). To maintain such information

during its execution, the algorithm in Figure 5 which we are about to describe

performs a suitable coloring of the nodes. In particular, for each q ∈ QT , we define

the value color(q) which can assume the following values:

white: The color of a node q is white provided that it has not been already

visited by the algorithm. Thus, during the initialization phase, color(q) is set

to white, for each q ∈ QT .
green/red: Suppose that the visit of node q has been completed and that a

safe topological ordering πq of Tq has been constructed. Then color(q) is

set to green, provided that πq does not violate any binding imposed by its

predecessor, i.e. provided that Aπq
∩Blen(q)−1(q) = ∅, otherwise is set to red.

The algorithm which constructs a trie T ′ equivalent to a given input trie T and

such that T ′ is endowed with a weakly safe topological ordering is shown in Figure 5.

It performs a DFS visit of the trie T , starting from root(T). When the visit of a

node q ∈ QT \ {root(T)} has been completed, a safe topological ordering πq for the

current subtrie rooted in q has been computed. The procedure for visiting a node

q ∈ QT works in the following 6 main steps:

Step 0 (Initialization)

During initialization, A(q) is set to ∅ and the ordering πq is indirectly initial-

ized by putting φq(0) = q (we recall that φq = π−1
q).

Step 1. (Recursive calls)

After initialization, all s ∈ childrenT (q) which have not been already visited

are visited. Then, at the end of Step 1, it follows inductively that, for each

s ∈ childrenT (q), a safe topological ordering πs has been defined and either

color(s) = green or color(s) = red.

Step 2. (Resolving nodes of set Green(q))

Suppose Green(q) and Red(q) are the sets of, respectively, green and red

nodes of childrenT (q). By construction, no node in Green(q) violates any

13

Construct-Safe-Topological-Ordering (T)
1. for each q ∈ QT do color(q) =white

2. φ(0) = root(T)
3. i = 1
4. for each q ∈ childrenT (root(T)) | color(q) = white do

5. φq = Visit(q, T)
6. for j = 0 to |QTq

| − 1 do φ(i + j) = φq(j)
7. i = i + |QTq

|
8. return (φ, T)

Visit (q, T)
/* Step 0 (Initialization) */

1. φq(0) = q, i = 1
2. A(q) = ∅

/* Step 1 (Recursive calls) */
3. for each s ∈ childrenT (q) | color(s) = white do Visit(s, T)
4. Green(q) = {s ∈ childrenT (q) | color(s) = green }
5. Red(q) = {s ∈ childrenT (q) | color(s) = red }

/* Step 2 (Resolving nodes of set Green(q)) */
6. if Green(q) 6= ∅ then

7. Let s ∈ Green(q) | bind(lbl(q, s)) ≥ bind(lbl(q, p)),∀ p ∈ Green(q)
8. for j = 0 to |QTs

| − 1 do φq(i + j) = φs(j)
9. i = i + |QTs

|
10. A(q) = A(q) ∪ A(s)
11. Green(q) = Green(q) − {s}
12. for each s ∈ Green(q) do

13. for j = 0 to |QTs
| − 1 do φq(i + j) = φs(j)

14. i = i + |QTs
|

15. A(q) = A(q) ∪ A(s) ∪ {lbl(q, s)}

/* Step 3 (Resolving nodes of set Red(q)) */
16. for each s ∈ Red(q) do

17. if lbl(q, s) /∈ A(q) then

18. Red(q) = Red(q) − {s}
19. for j = 0 to |QTs

| − 1 do φq(i + j) = φs(j)
20. i = i + |QTs

|
21. if A(q) = ∅ then A(q) = A(q) ∪ A(s)
22. else A(q) = A(q) ∪ A(s) ∪ {lbl(q, s)}

/* Step 4 (Pruning all remaining red nodes) */
23. for each s ∈ Red(q) do

24. construct a new trie T ′ for lbl(s)
25. for each u ∈ QT ′ do color(u) =white

26. prune Ts from T and insert it at the end of T ′

27. merge root(T ′) with root(T)

/* Step 5 (Setting color of node q) */
28. if A(q) ∩ Blen(q)−1(q) = ∅ then color(q) = green

29. else color(q) = red

30. return φq

Figure 5: The algorithm for computing a safe topological ordering of the trie T .

binding imposed by q. Thus, it is more convenient to resolve first the nodes in

Green(q) and later the ones in Red(q). If Green(q) 6= ∅, a node s ∈ Green(q)

such that lbl(q, s) has the largest binding value bind(lbl(q, s)) is selected. In

this way all engaged edges which could violate the binding closest to q are

14

eliminated. Then the topological ordering πs is concatenated to πq, the edge

(q, s) becomes a 1-bit edge in πq, and A(q) is set to the value A(q) ∪ A(s).

For each remaining node s ∈ Green(q), the ordering πs is concatenated to πq,

so that all engaged nodes in πs become engaged nodes in πq. Observe that,

after the first selection, the edge (q, s) is a long-bit edge of πq, so that A(q)

must be set to the value A(q) ∪ A(s) ∪ {lbl(q, s)}.

Step 3. (Resolving nodes of set Red(q))

After that all green nodes have been resolved in Step 2, nodes in Red(q) are

also resolved. In particular, if Red(q) 6= ∅, then an attempt is made to select

a node s ∈ Red(q) such that the symbol lbl(q, s) is not engaged in πq, i.e.

lbl(q, s) /∈ A(q). If such a node s is found, the ordering πs is concatenated to

the ordering πq and the set A(q) of engaged nodes in πq is updated accordingly.

Step 3 is reapeted until no further node s ∈ Red(q) can be selected.

Observe that, if Green(q) = ∅ at the beginning of Step 2, then the first selected

node in Red(q) generates a 1-bit edge in πq. This case is tested in lines 21-22.

Step 4. (Pruning all remaining red nodes)

If Red(q) 6= ∅ after Step 4, each subtree rooted at any node s ∈ Red(q) is

first detached from T and then re-attached to T through a freshly introduced

linear path labeled by lbl(s). Notice that Step 4 can cause the trie T to

become nondeterminstic.

Step 5. (Setting color of node q)

Finally, if the engaged symbols of q violate some binding in B(q)len(q)−1, i.e.

A(q) ∩ B(q)len(q)−1 6= ∅, color(q) is set to red. Otherwise color(q) is set to

green.

At the end of the execution, the modified T and the function φ are returned. It

turns out that φ−1 is a weakly safe topological ordering of T .

Observe that there exist sets of patterns whose minimal tries admit no weakly

safe topological ordering. The pruning of sub-tries in Step 4 is just intended to

separate in T those patterns which cause troubles.

Let P be a set of patterns and let T be the minimal trie for P. We evaluate the

complexity of the algorithm in Figure 5 in terms of L = size(P).

An efficient implementation of the algorithm Construct-Safe-Topological-

Ordering maintains, for each node q ∈ QT , the sets B(q)len(q)−1 and A(q) in two

bit-vectors. Thus, if we assume that |childrenT (q)| ≤ ω, for each q ∈ QT , where ω

is the length of a computer word, the operations of set union and set intersection

can be performed in constant time and O(|QT |) space. Such assumption is quite

reasonable, since in practical cases the degree of a node is rarely greater than ω.

This is especially true if the patterns belong to a natural language where consecutive

symbols are not independent, rather they are strongly related in most cases. For

instance the symbol “q” is almost always followed by the symbol “u”, whereas in

general the symbol “t” is followed only by the symbols “a,e,h,i,l,o,r,u,y”.

15

Additionally, if we maintain the topological orderings πq, for each node q, as

linked-lists, the operations in lines 8, 13, and 19, which concatenate two different

topological orderings, can be also performed in constant time.

The procedure Visit is called only once for each node q ∈ QT . Since each node

s ∈ QT , with the exception of the root, will enter either set Green(q) or set Red(q),

for only one node q ∈ QT , we have that

∑

q∈QT

(|Green(q)| + |Red(q)|) = |QT | − 1 .

Thus the overall complexity of Steps 2 and 3 is O(L), since |QT | = O(L).

In Step 4, the pruning of a red node s consists in following the path from the

root of the trie to node s. Thus the overall work of Step 4 is bounded again by

O(L).

Finally Step 0 and Step 5 are performed in constant time. Thus, it turns out

that the algorithm Construct-Safe-Topological-Ordering has a O(L)-time

and -space complexity.

It must be remarked that in general the algorithm Construct-Safe-Topological-

Ordering does not construct the minimal trie T ′, equivalent to a given trie T ,

which is endowed with a weakly safe topological sorting. A natural variant which

enforces minimality takes quadratic time.

On the other hand, some experimentations has shown that the heuristics em-

bodied in Steps 2, 3, and 4 are quite effective in keeping the returned trie close to

minimal.

6. Conclusion

In this paper we have presented a new algorithm for the multiple pattern match-

ing problem, based on the bit-parallelism technique. In particular, our algorithm is

based on the parallel simulation of a factor-based trie (not necessarily the optimal

one) for the input set of patterns. In fact, our simulation requires that the factor-

based trie admits a topological ordering which is weakly safe, in a sense amply

explained before. The complexity of our algorithm is linear in the length of the text

and in the size of the set of patterns.

We have also shown how to transform a given minimal trie into a trie which has

a weakly safe topological ordering in linear time and space in the size of the set

of patterns. The resulting trie is in general significantly smaller than the maximal

tries used in the other multi-pattern matching algorithms based on bit-parallelism.

Further variations and improvements are still possible. For instance, we expect

that our approach can be extended to obtain a space efficient version of the BNDM

algorithm for the multiple pattern matching problem.

An interesting open problem is to find other suitable topological orderings

on deterministic tries which guarantee that they can be easily simulated by bit-

parallelism, without any need to modify their topology.

16

References

1. A. V. Aho and M. J. Corasick. Efficient string matching: an aid to bibliographic
search. Commun. ACM, 18(6):333–340, 1975.

2. R. A. Baeza-Yates and G. H. Gonnet. A new approach to text searching. In
N. J. Belkin and C. J. van Rijsbergen, editors, Proceedings of the 12th International

Conference on Research and Development in Information Retrieval, pages 168–175,
Cambridge, MA, 1989. ACM Press.

3. R. S. Boyer and J. S. Moore. A fast string searching algorithm. Commun. ACM,
20(10):762–772, 1977.

4. D. Cantone and S. Faro. A space efficient bit-parallel algorithm for the multi-
ple string matching problem. In J. Holub and M. Šimánek, editors, Proc. of

the Prague Stringology Conference ’05, pages 109–124, Czech Technical University,
Prague, Czech Republic, 2005.

5. B. Commentz-Walter. A string matching algorithm fast on the average. In H. A.
Maurer, editor, Proceedings of the 6th International Colloquium on Automata, Lan-

guages and Programming, number 71 in Lecture Notes in Computer Science, pages
118–132, Graz, Austria, 1979. Springer-Verlag, Berlin.

6. M. Crochemore, A. Czumaj, L. Ga̧sieniec, S. Jarominek, T. Lecroq, W. Plandowski,
and W. Rytter. Fast practical multi-pattern matching. Rapport 93-3, Institut
Gaspard Monge, Université de Marne la Vallée, 1993.

7. M. Crochemore, A. Czumaj, L. Ga̧sieniec, S. Jarominek, T. Lecroq, W. Plandowski,
and W. Rytter. Speeding up two string matching algorithms. Algorithmica,
12(4/5):247–267, 1994.

8. M. Crochemore and W. Rytter. Text algorithms. Oxford University Press, 1994.

9. R. N. Horspool. Practical fast searching in strings. Softw. Pract. Exp., 10(6):501–
506, 1980.

10. D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt. Fast pattern matching in strings.
SIAM J. Comput., 6(1):323–350, 1977.

11. G. Navarro and M. Raffinot. A bit-parallel approach to suffix automata: Fast ex-
tended string matching. Technical Report TR/DC–98–1, Department of Computer
Science, University of Chile, 1998.

12. G. Navarro and M. Raffinot. A bit-parallel approach to suffix automata: Fast
extended string matching. In M. Farach-Colton, editor, Proceedings of the 9th

Annual Symposium on Combinatorial Pattern Matching, number 1448 in Lecture
Notes in Computer Science, pages 14–33, Piscataway, NJ, 1998. Springer-Verlag,
Berlin.

13. M. Raffinot. On the multi backward dawg matching algorithm (MultiBDM). In
R. Baeza-Yates, editor, Proceedings of the 4th South American Workshop on String

Processing, pages 149–165, Valparaiso, Chile, 1997. Carleton University Press.

14. S. Wu and U. Manber. Fast text searching with errors. Report TR-91-11, Depart-
ment of Computer Science, University of Arizona, Tucson, AZ, 1991.

17

