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The swap matching problem consists in finding all occurrences of a pattern x of
length m in a text y of length n, allowing for disjoint local swaps of characters in
the pattern. In 2003 Amir et al. solved the problem in O(n logm log σ) worst case
time complexity, where σ is the size of the alphabet. In recent years much research
has focused on practical solutions and efficient algorithms have been devised
by means of the bit-parallel simulation of non-deterministic automata. In this
paper we present a new efficient algorithm for the swap matching problem based
on character comparison and structured as a generalisation of the Skip-Search
algorithm for the exact string matching problem. Although our solution has a
quadratic worst case time complexity, it shows a sub-linear behaviour on average.
According to experimental results, our algorithm obtains in most practical cases
the best running times, when compared against the most effective solutions. The
gain in speed-up, in terms of running times, is up to 48%. This makes the new
algorithm one of the most efficient solutions in practical cases.
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1. INTRODUCTION

The string matching problem with swaps (swap
matching problem, for short) is a well-studied variant of
the classic string matching problem, and was introduced
for the first time in 1995 as one of the open problems
in nonstandard string matching [1].

It consists in finding all occurrences, up to character
swaps, of a pattern x of length m in a text y of
length n, with x and y sequences of characters drawn
from a same finite alphabet Σ of size σ. More
precisely, the pattern is said to swap-match the text at
a given location j if adjacent pattern characters can be
swapped, if necessary, so as to make it identical to the
substring of the text starting (or, equivalently, ending)
at location j. All swaps are constrained to be disjoint,
i.e., each character can be involved in at most one
swap. Moreover, we make the agreement that identical
adjacent characters are not allowed to be swapped.

For instance the pattern x = “abaab” swap-matches
the text y = “baababa” at three different locations.
Specifically, at position 0 the substring “baaba” needs
two swaps to match the pattern, while at positions 1
and 2 the substrings “aabab” and “ababa” need a single
swap to match the pattern, respectively.

This problem arises from one of the edit operations
considered by Lowrance and Wagner [2] to define a
distance metric between strings and turns out to be
of relevance in practical applications such as text and

music retrieval, data mining, network security, and
many others.

For instance, in the field of natural language
processing the transposition of two adjacent characters
in a text is a most common typing error. Thus
several algorithms for the spell-checking problem are
designed in order to identify swaps of characters
in their matching engines. In musical information
retrieval the swap of two adjacent notes in a melody
(or two beats in a rhythmic sequence) is used as a
basic operation to compute the similarity between two
musical sequences [3]. Swap matching is also strongly
connected with the Kendall’s Tau distance [4], which
computes the number of pairs that are in different order
in two given rankings. In this context it serves to find
the rankings whose ordering can be restored by means
of direct swaps of adjacent elements.

According to [5], the swap matching problem finds
also application in the process of translation in
molecular biology, with the genetic triplets (otherwise
called codons). In such application one wants to detect
the possible positions of the start and stop codons of
a mRNA in a biological sequence and find hints as to
where the flanking regions are, relative to the translated
mRNA region.
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1.1. Previous works

The first nontrivial result to the Swap Matching
problem was reported by Amir et al. [6], who provided

a O(nm
1
3 logm)-time algorithm in the case of alphabet

sets of size 2, showing also that the case of alphabets
of size exceeding 2 characters can be reduced to that
of size 2 with a O(log2 σ)-time overhead, subsequently
reduced to O(log σ) in the journal version [7].

Amir et al. [8] studied some rather restrictive cases in
which a O(m log2m)-time algorithm can be obtained.
More recently, Amir et al. [9] solved the swap matching
problem in O(n logm log σ)-time. The above solutions
are all based on the fast Fourier transform and consist
in reducing the problem to convolutions. For this reason
they are only of theoretical interest.

The first attempt to provide a practical solution
to the problem goes back to 2000 and is due to
Fredriksson [10], who presented a generalisation of the
nondeterministic finite automaton for the language Σ∗x
adapted to the Swap Matching problem, together with
a fast method to simulate it using bit-parallelism [11].
The resulting algorithm runs in O(ndm/we)-time and
uses O(σdm/we)-space, where w is the size in bits of
a word in the target machine. In the same paper
Fredriksson also presented a variant of the Bndm
algorithm [11], which generalises the nondeterministic
suffix automaton of x and achieves sub-linear time on
average, while requires O(nmdm/we)-time in the worst-
case.

In 2008 Iliopoulos and Rahman introduced in [5] a
new graph-theoretic approach to model the problem
(then extended in a journal version [12] by Ahmed et
al.) and devised an efficient algorithm based on the bit-
parallel encoding, which runs in O((n+ dm/we) logm)-
time. However Blâzej et al. recently [13] pointed out a
fatal flaw in the algorithm presented in [12] and devised
a corrected algorithm which, although slower than the
previous, is based on the same graph theoretical model.

In 2009, Cantone and Faro [14] presented a new ef-
ficient algorithm, named Cross-Sampling (Cs), which
simulates a non-deterministic automaton with 2m
states and 3m − 2 transitions. The Cs algorithm
though characterized by a O(nm) worst-case time com-
plexity, admits an efficient bit-parallel implementa-
tion, named Bit-Parallel-Cross-Sampling (Bpcs), which
achieves O(ndm/we) worst-case time and O(σdm/we)
space complexity. In a subsequent paper [15] a more
efficient algorithm, named Backward-Cross-Sampling
(Bcs) was proposed, with a O(nm2)-time complex-
ity, whereas its bit-parallel implementation, named Bit-
Parallel-Backward-Cross-Sampling (Bpbcs), works in
O(ndm/we)-time and O(σdm/we)-space, showing bet-
ter practical performances.

More recently Faro [16] presented a new theoretical
model to solve the problem based on reactive
automata [17, 18]. The model is based on an
automaton with only m states, at most 3m − 2

transitions and 8m − 12 reactive links. The author
proposed also two non-standard bit-parallel simulations
of the automaton. The first simulation, named Bit-
Parallel Swap Reactive Automata (Bpsra), works by
encoding the transitions of the reactive automaton
requiring O(ndm/we) worst case time complexity and
O(σdm/we)-space complexity. The second simulation,
name Bit-Parallel Swap Reactive Oracle (Bpsro), uses
a simpler encoding and, under suitable conditions, it
turns out to be very efficient in practice, achieving
O(ndm/we) worst case time complexity and requiring
O(σ2dm/we)-extra space. It is associated with the
definition of a string with disjoint triplets (see [16]) and,
since it works as an oracle, in the general case it needs
an extra verification phase when a candidate occurrence
is found. In this case its worst case time complexity is
O(nm).

For the sake of completeness we mention also a recent
study [19] by Fredriksson and Giaquinta, about on
the bit-parallel simulation of the automaton due to
Fredriksson [10]. By exploiting the method presented
by Cantone et al. [20], the authors obtained a compact
bit-parallel encoding of the swap automaton which
takes only O(σ2dk/we) space and allows one to simulate
the automaton in time O(ndk/we), where dm/σe ≤ k ≤
m.

1.2. Our results

In this paper we present a new algorithm for the swap
matching problem in strings, based on comparison of
characters. Specifically the algorithm can be seen as
a generalisation to swap matching of the well known
Skip-Search algorithm [21] for the exact string matching
problem. In order to speed-up the searching procedure,
our solutions extend the original Skip-Search approach
in order to take into account substrings of characters.
To the best of our knowledge this is the first solution
to the swap matching problem which is based on
character’s comparison.

Our solution achieves a quadratic worst case time
complexity in the worst case, but shows a sub-
linear behaviour in practice. In particular from our
experimental results it turns out that the proposed
algorithm obtains the best results in most cases. The
gain, in terms of running times, is up to 48% in the case
of large alphabets, and is in most cases it is over 20%.

1.3. Organization of the paper

The paper is organised as follows. In Section 2
we introduce some notions and definitions. Then in
Section 3 we introduce our new solution based on the
Skip Search approach, describe its preprocessing and
its searching phase and discuss its practical behaviour.
In Section 4 we compare our solution, in terms of
running times, against the most effective algorithms
known in literature for the Swap Matching problem.
Finally we draw our conclusions in Section 5.
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2. NOTIONS AND BASIC DEFINITIONS

Given a string x of length m ≥ 0, we represent it as
a finite array x[0 ..m− 1] and denote by |x| the length
of x. In particular, for m = 0 we obtain the empty
string ε. We denote by x[i] the (i + 1)-st character
of x, for 0 ≤ i < |x|, and by x[i .. j] the substring of
x contained between the (i + 1)-st and the (j + 1)-st
characters of x, for 0 ≤ i ≤ j < |x|. A k-substring of a
string z is a substring of z of length k. We denote by
xi the nonempty prefix x[0 .. i] of x of length i + 1, for
0 ≤ i < m, whereas, if i < 0, we agree that xi is the
empty string ε. Moreover, we say that x′ is a proper
prefix (suffix) of x if x′ is a prefix (suffix) of x and
|x′| < |x|. We write x · z to denote the concatenation of
x and z.

Definition 2.1. A swap permutation for a string
x of length m is a permutation π : {0, ...,m − 1} →
{0, ...,m− 1} such that:

(a) if π(i) = j then π(j) = i
(characters at positions i and j are swapped);

(b) for all i, π(i) ∈ {i− 1, i, i+ 1}
(only adjacent characters can be swapped);

(c) if π(i) 6= i then x[π(i)] 6= x[i]
(identical characters can not be swapped).

For a given string x and a swap permutation π for
x, we write π(x) to denote the swapped version of x,
namely π(x) = x[π(0)] · x[π(1)] · · ·x[π(m− 1)].

Definition 2.2. Given a text y of length n and a
pattern x of length m, x is said to swap-match (or to
have a swapped occurrence) at location j ≥ m− 1 of y
if there exists a swap permutation π of x such that π(x)
matches y at location j, i.e., π(x) = y[j−m+ 1 .. j]. In
such a case we write x ∝ yj.

If a pattern x of length m has a swap-match ending
at location j of a text y, then the number k of swaps
needed to transform x into its swapped version π(x) =
y[j−m+1 .. j] is equal to half the number of mismatches
of x at location j. Thus the value of k lies between 0
and bm/2c.

Definition 2.3 (Pattern Matching Problem with
Swaps). Given a text y of length n and a pattern x of
length m, find all locations j ∈ {m − 1, ..., n − 1} such
that x swap-matches with y at location j, i.e., x ∝ yj.

The following elementary result will be used later (its
proof is given in [14]).

Lemma 2.1 ([14]). Let x and R be strings of length m
over an alphabet Σ and suppose that there exists a swap
permutation π such that π(x) = R. Then π is unique.

Corollary 2.1. Given a text y of length n and a
pattern x of length m, if x ∝ yj, for a given position
j ∈ {m − 1, . . . , n − 1}, then there exists a unique
swapped occurrence of x in y ending at position j.

3. A NEW EFFICIENT ALGORITHM

In this section we present an efficient algorithm for
the Swap Matching Problem, which takes inspiration
from the Skip-Search algorithm. While most of the
previous solutions were based on automata and their
simulation by using bit-parallelism, to the best of our
knowledge this is the first time that an approach based
on character’s comparison is adopted for solving the
pattern matching problem with swaps. The resulting
algorithm has a quadratic worst case time complexity
while in practical cases it shows a sub-linear behaviour.

The Skip Search algorithm is an elegant and efficient
solution to the exact pattern matching problem, firstly
presented in [21] and subsequently adapted to many
other problems and variants of exact pattern matching.

Let x and y be a pattern and a text of length m and
n, respectively, over a common alphabet Σ of size σ.
For each character c of the alphabet, the Skip Search
algorithm collects in a bucket B[c] all the positions of
that character in the pattern x, so that for each c ∈ Σ
we have:

B[c] = {i : 0 ≤ i ≤ m− 1 and x[i] = c}.

Plainly, the space and time complexity needed for the
construction of the array B of buckets is O(m+ σ).

Thus if a character occurs k times in the pattern,
there are k corresponding positions in the bucket of the
character.

The search phase of the Skip Search algorithm
examines all the characters y[j] in the text at positions
j = km − 1, for k = 1, 2, . . . , bn/mc. For each such
character y[j], the bucket B[y[j]] allows one to compute
the possible positions h of the text in the neighborhood
of j at which the pattern could occur. By performing a
character-by-character comparison between x and the
substring y[h . . h + m − 1] until either a mismatch is
found, or all the characters in the pattern x have been
considered, it can be tested whether x actually occurs
at position h of the text.

The Skip Search algorithm has a quadratic worst-case
time complexity, however, as shown in [21], the expected
number of text character inspections is O(n).

Among the variants of the Skip Search algorithm,
the most relevant one for our purposes is the Alpha
Skip Search algorithm [21], which collects buckets for
substrings of the pattern rather than for its single
characters, and the Skip Search using q-grams [22].

We are now ready to present our new algorithm
for the Swap Matching Problem. In the same line of
the algorithm presented in [22] our solution makes use
of a q-gram approach and a fingerprint function. In
the following sections we will introduce the fingerprint
function used for finding candidate occurrences of the
pattern, the preprocessing phase and the searching
phase. Finally we will briefly discuss some practical
behaviours of the algorithm.
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3.1. The fingerprint value

The main idea behind the new algorithm for the
Swap Matching problem consists in using same kind
of resemblance between the substrings of the pattern
and the substrings of the text in order to easily
locate candidate occurrences of the pattern in the text.
Specifically, we define a hash function

h : Σ∗ → {0 . . 2α − 1} (1)

which associates an integer value 0 ≤ v < 2α (for a
given bound α) with any string over the alphabet Σ.

Here we shall make the assumption that each
character c ∈ Σ can be handled as an integer
value, so that arithmetic operations can be performed
on characters. For instance, in many practical
applications, input strings can be handled as sequences
of ASCII characters. Thus each character can be seen
as an 8-bit value corresponding to its ASCII code.

For each string x ∈ Σ∗ of length m ≥ 0, the value of
h(x) is defined as follows

h(x) =

m−1∑
j=0

(
x[i+ j]× 4(m− 1− j)

) mod 2α

(2)
Observe that, due to the modulo operation, for each
string x ∈ Σ∗, we have 0 ≤ h(x) < 2α.

The use of the bound α in the definition of the hash
function given in (1) is for avoiding space consumption
and may depend on the target machine on which the
algorithm is implemented. In our setting, the value α
has been fixed to 16, so that each hash value fits into a
single 16-bit register. Although greater values of α are
possible, it turns out by observations conducted in [23]
that by setting the value of α to 16 the average number
of collisions due to the hash function computed as in
(2) is negligible.

The hash function defined in (2) is not original;
it has been used in many other string matching
algorithms in order to associate an integer value with
any string over the input alphabet. Just to mention two
relevant examples, it has been used in the well known
Wu-Manber algorithm [24] for the multiple pattern
matching problem and in one of the most effective
algorithms for the exact pattern matching problem, the
Hashq algorithm [25] by Lecroq. Although a different
hash function can be used in the implementation of our
algorithm, it has been noticed [23] that the function
given in (2) is the right tradeoff between the number of
induced collisions and the computation conciseness.

Procedure fng (shown in Fig. 2) is used for
computing the fingerprint value of a string. Given
a sequence x of length m and a swap permutation
π, the procedure fng computes the fingerprint of the
substring π(x). For efficiency, multiplications in the
definition of the hash function are translated in bitwise
shift operations in line 3, i.e. x[i] × 4 is translated

Length #Strings Collisions Percentage

2 16 0 0%
3 64 1 1.5%
4 256 13 5.0%
5 1024 97 9.4%
6 4,096 589 14.3%
7 16,384 3,188 19.4%

TABLE 1. The number of collisions of the fingerprint
values in the case of Dna sequences. The table reports also
the percentage of strings which share the same fingerprint
among all possible strings of a given length.

into programming code by x[i] � 2. Plainly, its time
complexity is O(m).

Example 1. A Dna sequence is a string over the
alphabet Σ = {a,c,g,t}. Let x be the Dna sequence
of length |x| = 5, and specifically x = “agcgt”. If
we indicate by Ascii(c) the Ascii code corresponding
to a given character c ∈ Σ, we have Ascii(a) = 97,
Ascii(c) = 99, Ascii(g) = 103 and Ascii(t) = 116.
According to the definition of the hash function given
in equation (2) we have

h(x[0..1]) = (97× 4) + 103 = 491
h(x[1..3]) = (103× 16) + (99× 4) + 103 = 2147
h(x[2..4]) = (99× 16) + (103× 4) + 116 = 2112

Observe that the the fingerprint value is not unique
for each substring of length q, i.e. two different strings
can be associated with the same fingerprint value. For
instance in the case of Dna sequences it turns out that
the two sequences on length 3 “gcg” and “ctc” share
the same fingerprint value. In particular we have

h(“gcg”) = (103× 16) + (99× 4) + 103 = 2147
h(“ctc”) = (99× 16) + (116× 4) + 99 = 2147

However it has to be noticed that, for short strings,
such collisions are rare in practical cases. Just to
mention some examples concerning strings over the
Dna alphabet, we have only one collision among the
64 possible different sequences of length 3 (just 1.5%)
and only 13 collisions among the 256 possible different
sequences of length 4 (just 5.0%). Such results are
clearly reported in Table 1. On the other hand,
when the length of the strings increases the number of
collisions drastically rises: we have 97 collisions among
the 1024 possible different sequences of length 5 (9.4%),
589 collisions for sequences of length 6 (14.3%), and
3, 188 collisions for sequences of length 7 (20%).

For the sake of completeness we mention a specific
approach [26] which can be used to drastically reduce
(or completely remove, under particular conditions)
the number of collisions in the case of short patterns.
However this approach introduces an additional
overhead in terms of computational time. In what
follows we will not take into account these specific
enhancements.
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3.2. The preprocessing phase

The preprocessing phase of the algorithm, which is
reported in Fig. 2, consists in compiling the fingerprints
values associated with of all possible substrings of
length q contained in the pattern x, for a given
parameter 1 ≤ q ≤ m.

Specifically the preprocessing phase works as follows.
Let “*” be a jolly symbol, not appearing in the alphabet
Σ. For each substring of length q, z = x[i . . i + q − 1],
for 0 ≤ i < m − q, an extended version of z, ext(z), is
computed by adding the symbol “*” at the beginning
(and at the end) of it, provided that z is not already a
prefix (or a suffix, respectively) of x (lines 3-5). More
formally, for a string x of length m, we have

ext(x[i..j]) =


x[i..j] if i = 0 and j = m− 1
x[i..j] · ∗ if i = 0 and j < m− 1
∗ · x[i..j] if 0 < i and j = m− 1
∗ · x[i..j] · ∗ if 0 < i ≤ j < m− 1

Example 2. Let x = “cbabbcc” be a string of length
7 and let q = 4. Then the set of all substrings of length
4, together with their corresponding extended versions,
contains the following strings:

(a) cbab→ cbab∗
(b) babb→ ∗babb∗
(c) abbc→ ∗abbc∗
(d) bbcc→ ∗abbc

Observe that (a) is extended only on its right side, since
it is a prefix of x, while (d) is extended only in its left
side, since it is a suffix of x.

Subsequently, for each such extended z the algorithm
computes all the possible swap permutations π(z) and
the corresponding fingerprint values (lines 6-7). The
number of swap permutations of a string depends on its
length and, according to Definition 2.1, on its structure.
Fig. 1 presents the set of all possible swap permutations
of ext(z) for a generic string z, with length varying in
the range {0 . . . 5}. In Fig. 1 we assume that the string
doesn’t contain any couple of equal adjacent characters.

Regarding the maximal number of swap permutations
of a string of length n, we can observe that it is equal
to the (n + 1)-th number in the Fibonacci Sequence.
Specifically we obtain the following technical result.

Lemma 3.1. Let x be a string of length n. Then the
number of swap permutations of x is bounded by the
(n+ 1)-th number in the Fibonacci Sequence.

Proof. Let Fn be the n-th number in the Fibonacci
Sequence and let τ(n) be the number of swap
permutations of a string of length n.

We first assume the base case where x is a string of
length 1. Since a single character cannot be swapped
the string admits a single swap permutation, thus
τ(1) = 1 = F2. In addition, if x has length 2, we
have exactly 2 swap permutations, namely x[0] · x[1]
and x[1] · x[0]. Thus τ(2) = 2 = F3.

All Possible Swap Permutations

[2:2]

* *
* *

[3:3]

* a b *
* b a *
a * b *
a * * b
* a * b

[4:5]

* a b *
* b a *
a * b *
a * * b
* a * b

[5:8]

* a b c *
* b a c *
* a c b *
a * b c *
a * c b *
a * b * c
* a b * c
* b a * c

[6:13]

* a b c d *
* b a c d *
* a c b d *
* a b d c *
* b a d c *
a * b c d *
a * c b d *
a * b d c *
a * b c * d
a * c b * d
* a b c * d
* b a c * d
* a c b * d

[7:21]

* a b c d e *
* b a c d e *
* a c b d e *
* a b d c e *
* a b c e d *
* b a d c e *
* a c b e d *
* b a c e d *
a * b c d e *
a * c b d e *
a * b d c e *
a * b c e d *
a * c b e d *
a * b c d * e
a * c b d * e
a * b d c * e
* a b c d * e
* b a c d * e
* a c b d * e
* a b d c * e
* b a d c * e

FIGURE 1. All possible swap permutations of ∗ ·z · ∗ for a
generic string z, with length varying in the range {0 . . . 5}.
In the first row of the table the original string is depicted.
Swapped couples of characters have been underlined. Each
permutation list is labeled by a couple of values in square
brachets [α, β], where α is the length of the string z, while
β is the number of permutations.

Assume now that the relation holds for n > 1, i.e.
τ(n) ≤ Fn+1, and let x be a string of length n+1. If we
avoid the leftmost character x[0] to swap, the number
of swap permutations is computed on the substring
x[1..n] and coincides with τ(n). On the other hand if
we assume that the leftmost character x[0] swaps with
x[1], the number of swap permutations is computed
on the substring x[2..n] and coincides with τ(n − 1).
Thus the total number of swaps permutation is given
by τ(n− 1) + τ(n) ≤ Fn + Fn+1 = Fn+2.

Corollary 3.1. Let τ(n) be the number of swap
permutations of a string of length n. Then we have
that τ(n) ∈ O(2n).

Let z be ext(x[i . . i + q − 1]), let π be a swap
permutation of z and let v be the corresponding
fingerprint value. In this case we say that the index
i is associated with the fingerprint value v. During the
preprocessing phase a table T , of size 2α, is computed
in order to maintain, for any possible fingerprint value
v, the set of all positions i associated with v.

More precisely, for 0 ≤ v < 2α, we have

T [v] =
{
i | z = ext(x[i..i+ q − 1]) and

0 ≤ i < m− q and

∃ π(z) | fng(z, |z|, π) = v
}

Thus the preprocessing phase of the algorithm requires
some additional space to store the 2q(m − q) possible
alignments in the 2α locations of the table T . Thus, the
space requirement of the algorithm is O(2q(m−q)+2α).
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However if we assume that q is a constant smaller than
5 and α is a parameter smaller than 16 the above
requirement could be approximated to O(m).

From our experimental tests conducted on a 32 bit
machine, assuming that each set in T is represented by
an ordered linked list and each node of the list consists
of an integer and a next pointer, it turns out that the
total memory requirement for maintaining the table T is
always less 140 KB, for patterns with a length m < 256.

Concerning the time complexity of the preprocessing
phase, observe that the first loop (line 1) just initialises
the table T , while the second loop (line 2) requires
O(2q(m − q)) time, which makes the overall time
complexity of such phaseO(2qm+2α) that, again, could
be approximated to O(m).

Verify(x,m, y, i)
1. j ← 0
2. while (j < m) do
3. if (x[j] = y[i+ j]) then j ← j + 1
4. else
5. if (j < m− 1 and
6. x[j] = y[i+ j + 1] and
7. x[j + 1] = y[i+ j])
8. then j ← j + 2
9. else return False

10. return True

fng(x,m, π)
1. v ← 0
2. for i← m− 1 downto 0 do
3. if (x[π(i)] 6= “ ∗ ”) then
3. v ← (v � 2) + x[π(i)]
4. return v

Preprocessing(x, q,m)
1. for v ← 0 to 2α − 1 do T [v]← ∅
2. for i← 1 to m− q − 1 do
3. z = x[i..i+ q − 1]
4. if (i > 0) then z = ∗ · z
5. if (i < m− q) then z = z · ∗
6. foreach swap permutation π(z) do
7. v ← fng(z, |z|, π)
8. if (i /∈ T [v]) then T [v]← T [v] ∪ {i}
9. return T

Skipq(x,m, y, n, q)
1. T ←Preprocessing(x, q,m, q)
2. π ← 〈0, 1, . . . , q − 1〉
3. for j ← m− q to n−m step m− q + 1 do
4. v ← fng(y[j..j + q − 1], q, π)
5. for each i ∈ T [v] do
6. if Verify(x,m, y, j − i)
7. then output (j − i)

FIGURE 2. The pseudo-code of the Skipq algorithm for
the swap matching problem and its auxiliary procedures.

3.3. The searching phase

Along the same line of the Skip Search algorithm,
the basic idea of the searching phase is to compute a
fingerprint value every (m−q+1) positions of the text y
and to check whether the pattern appears in y, involving
the block y[j . . j + q − 1]. If the fingerprint value
associated with such block indicates that some of the
alignments are possible, then the candidate positions
are checked naively for matching.

The pseudo-code provided in Fig. 2 reports the
skeleton of the Skip-Search algorithm for the Swap
Matching problem. The main loop investigates the
blocks of the text y in steps of (m− q + 1) blocks (line
3). If the fingerprint v computed on y[j . . j + q − 1]
points to a nonempty bucket of the table T , then the
positions listed in T [v] are verified accordingly.

In particular T [v] contains a linked list of the values
i marking the pattern x and the beginning position of
the candidate occurrence in the text.

While looking for occurrences on y[j . . j + q − 1], if
T [v] contains the value i, this indicates that the pattern
x may potentially begin at position (j−i) of the text. In
that case, a matching test has to be performed between
x and y[j−i . . j−i+m−1] via a character-by-character
inspection. This is done by means of procedure Verify.

Procedure Verify naively checks if the pattern x
swap-matches at a given position i of the text, i.e.
if x ∝ yi. It simply compares the characters of the
text, proceedings from left to right, i.e. from position
i to position i + m − 1. At each position j the
procedure checks if a swap is involved in the match
(x[j] = y[i + j + 1] and x[j + 1] = y[i + j]) or if the
the character y[j] matches directly the corresponding
character in the pattern. If none of the above conditions
are verified the procedure stops. It is easy to prove that
if x swap-matches at position i, according to Corollary
2.1 such a match is unique, and procedure Verify
correctly detects it.

Thus procedure Verify works in O(m)-worst case
time complexity and O(1) space.

Regarding the time complexity of the searching
phase, we can observe that the total number of attempts
performed by the algorithm is exactly n/(m − q). At
each attempt, the maximum number of verification
requests is (m− q), since the filter provides information
about that number of appropriate alignments of the
pattern. On the other hand, if the computed fingerprint
points to an empty location in T , then there is obviously
no need for verification. Hence, in the worst case the
time complexity of the verification is O(m(m − q)),
which happens when all alignments in x must be verified
at any possible beginning position. Hence, the best
case complexity is O(n/(m − q)), while the worst case
complexity is O(nm).

However, despite its quadratic worst case time
complexity, the algorithm has a sub-linear behaviour
in practice, as shown in the next sections.
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3.4. Practical behaviour

In this section we shortly present some experimental
evaluations in order to understand how effective is
the searching strategy adopted by our Skip Search
algorithm for the Swap Matching problem described
above, and how its variants, implemented with different
values of q, compare from a practical point of view.

When working with filtering solutions for string
matching it is important to investigate how effective is
the underlying filtering strategy during the searching
phase. Specifically we are interested in counting
the number of verifications performed during the
execution of the algorithm, i.e candidate positions found
during the searching phase which have to be naively
verified. Such verifications, in general, downgrades the
performance of the algorithm indeed.

Fig. 3 shows the average number of verifications
performed, for each attempt, by the Skip Search
algorithm, implemented with values of q ranging in the
set {1, . . . , 5}. A symbol “∼” is reported to indicate a
value smaller than 0.01. Experimental results have been
performed on a genome sequence, a protein sequence
and a natural language text (see Section 4 for all the
details of experimental settings). It turns out that by
implementing the algorithm with increasing values of q
the number of verifications sensibly decreases. However

G
e
n
o
m
e
S
e
q
u
e
n
c
e

m skip skip2 skip3 skip4 skip5

4 2.0 ∼ ∼ ∼ -
8 4.3 0.9 ∼ ∼ ∼
16 9.1 2.9 0.9 ∼ ∼
32 18.1 6.5 2.1 0.6 0.8
64 36.6 14.0 5.1 1.8 2.0
128 73.6 28.9 10.9 4.1 4.9
256 147.0 58.4 22.6 8.8 10.2
512 294.3 118.0 45.7 18.4 21.4
1024 591.6 237.9 92.3 38.0 44.4

P
r
o
t
e
in

S
e
q
u
e
n
c
e

m skip skip2 skip3 skip4 skip5

4 0.6 ∼ ∼ ∼ -
8 1.2 ∼ ∼ ∼ ∼
16 2.6 ∼ ∼ ∼ ∼
32 5.2 1.0 ∼ ∼ 0.7
64 10.8 2.7 0.9 ∼ 1.8
128 21.3 5.8 1.9 ∼ 4.0
256 43.5 12.1 4.1 1.1 8.9
512 86.1 24.8 8.9 3.0 18.3
1024 171.7 49.4 18.4 6.9 37.0

N
a
t
u
r
a
l
L
a
n
g
u
a
g
e
T
e
x
t

m skip skip2 skip3 skip4 skip5

4 0.8 ∼ ∼ ∼ -
8 1.6 ∼ ∼ ∼ ∼
16 3.5 ∼ ∼ ∼ ∼
32 7.2 1.0 ∼ ∼ ∼
64 14.5 2.1 0.7 ∼ 0.3
128 29.3 5.1 1.9 0.2 1.4
256 58.1 10.5 4.0 1.2 3.5
512 115.9 21.3 8.2 3.1 7.6
1024 230.2 43.8 17.0 6.9 15.7

FIGURE 3. Average number of verifications performed,
for each attempt, by the Skip Search algorithm,
implemented with values of q ranging in the set {1, . . . , 5}.
Experimental results have been performed on a genome
sequence, a protein sequence and a natural language text.

for q > 4 the number of verifications drastically
increases (of course it also depends on the value of
α). This could be attributed with the increase in
the number of collisions due to the hash function,
as reported in Section 3.1. In addition we perform
experimental evaluations, in terms of running times, by
testing the algorithms on three text buffers: a genome
sequence, a protein sequence and a natural language
text. Running times have been computed as the mean
of 1000 runs over the same set of patterns and are
shown in Fig 4. For each table the best overall running
times have been boldfaced. Observe that, according
to observations shown in Fig. 3, the implementation of
the Skip Search with q = 4, obtains the best results
in almost all cases. On the top of Fig. 4 we report also
preprocessing times of the Skip Search algorithms, for
different values of m. The preprocessing times sensibly
increases as the value of m increases. This further
suggests to avoid values of q greater than 4.

P
r
e
p
r
o
c
e
ss
in
g

T
im

e

m skip skip2 skip3 skip4 skip5

4 0.02 0.02 0.04 0.08 -
8 0.02 0.02 0.05 0.07 0.27
16 0.02 0.02 0.04 0.08 0.27
32 0.02 0.02 0.05 0.09 0.28
64 0.02 0.03 0.06 0.10 0.31
128 0.03 0.04 0.08 0.13 0.36
256 0.05 0.07 0.12 0.19 0.45
512 0.08 0.13 0.21 0.32 0.63
1024 0.14 0.23 0.36 0.56 0.99

G
e
n
o
m
e
S
e
q
u
e
n
c
e

m skip skip2 skip3 skip4 skip5

4 31.37 20.72 12.78 11.59 -
8 32.44 19.71 12.11 7.60 8.71
16 30.86 16.45 10.08 6.04 6.94
32 29.64 14.55 8.59 5.46 6.03
64 28.36 13.19 7.49 4.80 5.21
128 27.97 12.75 6.98 4.47 4.86
256 28.15 12.70 6.71 4.20 4.63
512 28.34 13.07 7.03 4.24 4.55
1024 30.33 14.09 7.30 4.56 5.29

P
r
o
t
e
in

S
e
q
u
e
n
c
e

m skip skip2 skip3 skip4 skip5

4 10.70 7.50 7.29 11.04 -
8 8.95 6.03 4.78 4.39 7.09
16 8.05 5.79 4.07 3.28 5.93
32 7.02 4.88 3.56 2.82 4.99
64 6.35 4.40 3.37 2.64 4.14
128 5.96 3.84 3.09 2.58 3.89
256 6.01 3.76 2.94 2.63 3.78
512 6.07 3.70 2.89 2.46 3.95
1024 7.61 4.03 3.00 2.62 4.44

N
a
t
u
r
a
l
L
a
n
g
u
a
g
e
T
e
x
t

m skip skip2 skip3 skip4 skip5

4 12.68 7.33 7.35 12.00 -
8 11.03 5.99 5.00 4.76 6.10
16 9.77 5.41 4.04 3.43 4.48
32 8.65 4.81 3.43 3.02 3.68
64 7.63 4.45 3.16 2.68 3.35
128 7.26 3.82 2.95 2.56 3.12
256 7.41 3.68 3.13 2.85 3.50
512 7.60 3.62 2.97 2.71 3.24
1024 8.98 4.02 3.12 2.64 3.48

FIGURE 4. Average running times of the Skip Search
algorithm, implemented with values of q ranging in the
set {1, . . . , 5}. Results have been performed on a genome
sequence, a protein sequence and a natural language text.
On the top, preprocessing times are reported.
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4. EXPERIMENTAL COMPARISONS

We report in this section the experimental results
of the performance evaluation of the Skip Search
algorithm and its variants against the most efficient
solutions known in literature for the Swap Matching
problem. Specifically, the following 5 algorithms have
been compared. According to [16] the first four
algorithms in the list are the most effective solutions
for this problem:

- Bpcs: Bit Parallel Cross Sampling [14]
- Bpbcs: Bit Parallel Backward Cross Sampling [15]
- Bpsra: Bit Parallel Swap Reactive Automata [16]
- Bpsro: Bit Parallel Swap Reactive Oracle [16]
- Skipq: Skip Search, with 1 ≤ q ≤ 5 (this paper)

All algorithms have been implemented in the C
programming language1 and have been tested using the
Smart tool [27].2 All experiments have been executed
locally on a MacBook Pro with 4 Cores, a 2 GHz Intel
Core i7 processor, 16 GB RAM 1600 MHz DDR3, 256
KB of L2 Cache and 6 MB of Cache L3. All algorithms
have been compared in terms of their running times,
excluding any preprocessing time.

We report experimental evaluations on three real
data sets (see Fig. 5). Specifically, we used a genome
sequence, a protein sequence, and an English text. All
sequences have a length of 5MB; they are provided by
the Smart research tool and are available online for
download (for additional details about the sequences
visit the Smart tool web-page).

In the experimental evaluation, patterns of length m
were randomly extracted from the sequences, with m
ranging over the set of values {2i | 2 ≤ i ≤ 10}. For each
case, the mean over the running times (expressed in
hundredths of seconds) of 1000 runs has been reported.

Tables reported in Fig. 5 summarise the running
times of our evaluations, including the speedup (in
percentage) obtained by the Skip Search algorithm
against the best running time among the previous
solutions. Any positive values indicate a performance
improvement. Running times representing best results
have been bold-faced.

From experimental results it turns out that the Skip
Search algorithm obtains the best results in almost
all cases. Specifically it is second to the Bpsro and
Bpbcs algorithms in the case of small alphabets and
short patterns. The speed-up obtained by our solution
increases as the size of the alphabet increases. In
particular in the case of the genome sequence the
improvement in running time is up to 19%, while it
is even up to 45% in the case of natural language texts.
This makes our Skip Search approach one of the most
effective solutions for the Swap Matching problem.

1The C code of all algorithms used in our experimental
comparison are available online for download at the following link
http://www.dmi.unict.it/~faro/swapalgos.zip

2The Smart tool is available online at the following link:
http://www.dmi.unict.it/~faro/smart/.

G
e
n
o
m
e
S
e
q
u
e
n
c
e

m bpcs bpbcs bpsra bpsro skipq speed-up

4 12.31 21.75 11.87 9.37 11.6(4) -

8 10.38 12.39 10.76 8.05 7.60(4) 5%

16 10.34 7.83 10.68 8.02 6.04(4) 23%

32 10.37 5.17 10.80 7.92 5.46(4) -

64 10.27 5.18 10.69 7.81 4.80(4) 7%

128 10.23 5.13 10.75 7.89 4.47(4) 13%

256 10.25 5.19 10.74 8.00 4.20(4) 19%

512 10.31 5.14 10.87 7.93 4.24(4) 17%

1024 10.53 5.26 10.87 7.96 4.56(4) 13%

P
r
o
t
e
in

S
e
q
u
e
n
c
e

m bpcs bpbcs bpsra bpsro skipq speed-up

4 11.67 12.11 12.01 8.55 7.29(3) 15%

8 11.67 8.53 11.53 8.47 4.39(4) 48%

16 11.04 5.49 11.83 8.47 3.28(4) 40%

32 11.29 3.92 12.26 8.63 2.82(4) 28%

64 11.59 3.95 12.61 8.94 2.64(4) 33%

128 11.92 4.08 12.70 8.61 2.58(4) 37%

256 11.86 4.05 12.22 8.89 2.63(4) 35%

512 11.96 4.01 11.93 8.74 2.46(4) 39%

1024 12.20 3.94 12.53 8.63 2.62(4) 33%

N
a
t
u
r
a
l
L
a
n
g
u
a
g
e
T
e
x
t m bpcs bpbcs bpsra bpsro skipq speed-up

4 12.66 14.05 13.07 9.14 7.33(2) 20%

8 12.22 9.60 12.66 9.02 4.76(4) 47%

16 12.24 6.28 12.70 9.23 3.43(4) 45%

32 12.32 4.72 13.01 9.17 3.02(4) 36%

64 11.88 4.52 13.08 9.15 2.68(4) 41%

128 12.02 4.73 12.59 9.13 2.56(4) 46%

256 12.11 4.80 12.95 9.46 2.85(4) 41%

512 12.30 4.66 12.47 9.19 2.71(4) 42%

1024 12.23 4.84 12.70 9.28 2.64(4) 45%

FIGURE 5. Experimental results obtained by running
5 swap matching algorithms on three text buffers.
Experimental results have been conducted on three text
buffers: (on the top) a genome sequence, (in the middle)
a protein sequence and (on the bottom) a natural language
text.

5. CONCLUSIONS

We presented a Skip-Search based approach to Swap
Matching, which is, to the best of our knowledge,
the first solution to the problem based on characters
comparison. The algorithms has a quadratic worst case
time complexity but turns out to be very effective in
practical cases, especially when implemented by using
a q-gram approach. We conducted an extensive set
of experimental results in order to compare our new
solution against the most effective algorithms known in
literature. From such experimental results it turned out
that the Skip Search approach obtains the best results
in most practical cases. The speed-up achieved by the
algorithm is up to 20% in the case of small alphabets,
while it is up to 45% in the case of large alphabets.
Best results are always obtained by choosing a value
of q equal to 4, which turns out to be a good trade-off
between the number of collisions and the computational
overhead.
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