
Discrete Applied Mathematics 163 (2014) 247–257

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Text searching allowing for inversions and translocations
of factors✩

Domenico Cantone a, Simone Faro a,∗, Emanuele Giaquinta a,b

a Università di Catania, Dipartimento di Matematica e Informatica, Viale Andrea Doria 6, I-95125 Catania, Italy
b Department of Computer Science, University of Helsinki, Finland

a r t i c l e i n f o

Article history:
Received 13 December 2011
Received in revised form 15 February 2013
Accepted 17 May 2013
Available online 17 June 2013

Keywords:
Approximate string matching
Text processing
Computational biology
Inversions and translocations
Analysis of algorithms

a b s t r a c t

The approximate string matching problem consists in finding all locations at which a
pattern p of length m matches a substring of a text t of length n, after a finite number of
given edit operations.

In this paper,we investigate such a problemwhen the edit operations are translocations
of adjacent factors of equal length and inversions of factors. In particular, we first present
anO(nmmax(α, β))-time andO(m2)-space algorithm, where α and β are respectively the
maximum lengths of the factors which can be involved in any translocation and inversion,
and show that under the assumptions of equiprobability and independence of characters
our algorithmhas aO(n logσ m) average time complexity, for an alphabet of size σ .We also
present a very fast variant of a recently proposed algorithm for the same problem, based
on an efficient filtering method, which has a O(n)-time complexity in the average case,
though in the worst case it retains the same O(nmmax(α, β))-time complexity.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Retrieving information and teasing out the meaning of biological sequences are central problems in modern biology.
Generally, basic biological information is stored in strings of nucleic acids (DNA, RNA) or amino acids (proteins).

With the availability of large amounts of DNA data, matching of nucleotide sequences has become an important
application, and there is an increasing demand for fast computer methods for analysis and data retrieval. In recent
years, much work has been devoted to the development of efficient methods for aligning strings and, despite sequence
alignment seeming to be a well-understood problem (especially in the edit-distancemodel), the same cannot be said for the
approximate string matching problem on biological sequences.

Approximate string matching is a fundamental problem in text processing; it consists in finding approximate matches of
a pattern in a string. The closeness of a match is measured in terms of the sum of the costs of the edit operations necessary
to convert the string into an exact match.

Most biological stringmatchingmethods are based on the Levenshtein distance [13], commonly referred to just as the edit
distance, or on the Damerau distance [8]. The edit operations in the case of the Levenshtein distance are insertions, deletions,
and substitutions of characters, whereas, in the case of the Damerau distance, swaps of characters, i.e., transpositions of two
adjacent characters, are also allowed (for an in-depth survey on approximate string matching, see [14]). Both distances
assume that changes between strings occur locally, i.e., only a small portion of the string is involved in the mutation event.

✩ The paper extends results that appeared in a preliminary form in [3].
∗ Corresponding author. Fax: +39 095 330094.

E-mail address: faro@dmi.unict.it (S. Faro).

0166-218X/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.dam.2013.05.016

http://dx.doi.org/10.1016/j.dam.2013.05.016
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2013.05.016&domain=pdf
mailto:faro@dmi.unict.it
http://dx.doi.org/10.1016/j.dam.2013.05.016

248 D. Cantone et al. / Discrete Applied Mathematics 163 (2014) 247–257

However, evidence shows that in some cases large-scale changes are possible [7,15]. For example, large pieces of DNA can
be moved from one location to another (translocations), or replaced by their reversed complements (inversions).

In this paper, we investigate the approximate stringmatching problem under a string distance whose edit operations are
translocations of equal length adjacent factors and inversions of factors. Such a problem can be solved naively in O(nm2)-
time andO(m2)-space. In the first part of the paper,we present aO(nmmax(α, β))-time andO(m2)-space algorithm,where
α and β are the maximum lengths of the factors that can be involved in a translocation and in an inversion, respectively.
Our algorithm, called M-Sampling, is based on a dynamic-programming approach and makes use of the Directed Acyclic
Word Graph of the pattern. We show that under the assumption of equiprobability and independence of characters in the
alphabet, on average our algorithm has a O(n logσ m)-time complexity, for an alphabet of size σ .

Next, in the second part of the paper, we present a very fast variant of the recently proposed GFG (Grabowski–Faro–
Giaquinta) algorithm for the same problem (see [10]), based on an efficient permutation filtering method for locating
candidate positions. As for the GFG algorithm and the M-Sampling algorithm presented in the first part of the paper, our
algorithm, called Addition–Counting–Filter, achieves a O(nmmax(α, β)) worst-case time complexity but requires only
O(max(α, β, σ)) additional space. More interestingly, we will show that it has a O(n) average-case time complexity and
that it is very fast in most practical cases. In fact, we conducted an extensive experimental evaluation to compare our
proposed algorithms with two different implementations of the fast GFG algorithm [10]. Experimental results show that
the Addition–Counting–Filter algorithm is up to 40% faster than the GFG algorithm.

The rest of the paper is organized as follows. In Section 2, we introduce some preliminary notions and definitions.
Subsequently, in Section 3, we present our algorithm M-Sampling and analyze it both in the worst case and in the average
case. In Section 4, we present our algorithm Addition–Counting–Filter and show that it has a linear complexity in the
average case. Then, in Section 5, we examine the results of an experimental evaluation of our proposed algorithms (whose
codes are reported in the Appendix) and compare them with two implementations of the GFG algorithm.

2. Basic notions and definitions

Let p be a string of length m ≥ 0, over an alphabet Σ . We represent it as a finite array p[0..m − 1] of characters of Σ

and write |p| = m. In particular, for m = 0, we have the empty string ε. We denote by p[i] the (i + 1)st character of p, for
0 ≤ i < m. Likewise, the substring or factor of p contained between the (i+1)st and the (j+1)st characters of p is indicated
by p[i.. j], for 0 ≤ i ≤ j < m. The set of factors of p is denoted by Fact(p), and its size is O(m2). Given another string p′, we
say that p′ is a suffix of p (in symbols, p′ ⊒ p) if p′ = p[i..m − 1], for some 0 ≤ i < m, and denote by Suff (p) the set of
the suffixes of p. Similarly, we say that p′ is a prefix of p if p′ = p[0.. i], for some 0 ≤ i < m. We also put pi

Def
= p[0.. i], for

0 ≤ i < m, and make the convention that p−1 denotes the empty string ε. In addition, we write pp′ for the concatenation of
p and p′, and pr for the reverse of the string p, i.e., pr Def

= p[m− 1]p[m− 2] · · · p[0].
For x ∈ Fact(p), we denote with end-pos(x) the set of all positions in p where an occurrence of x ends; formally, we

put end-pos(x) Def
= {i | x ⊒ pi}. For any given pattern p, we define an equivalence relation Rp by putting xRpy

Def
⇐⇒

end-pos(x) = end-pos(y), for all x, y ∈ Σ∗, and denote with Rp(x) the equivalence class of the string x. For each equivalence

class q of Rp, we put len(q) Def
= |val(q)|, where val(q) is the longest string x in the equivalence class q.

Example 1. Let p = abcabccab. Then we have end-pos(ab) = {1, 4, 8} while end-pos(bcc) = {6}. Observe moreover that
Rp(ab) = {ab, b}. Similarly we have Rp(c) = {abc, bc, c}. Thus len(Rp(ab)) = 2 while len(Rp(c)) = 3.

The Directed AcyclicWord Graph (DAWG) [2,5,6] of a pattern p is the deterministic automatonA(p) = (Q , Σ, δ, root, F)
whose language is Fact(p), where Q = {Rp(x) : x ∈ Fact(p)} is the set of states, Σ is the alphabet of the characters in p,
root = Rp(ε) is the initial state, F = Q is the set of final states, and δ : Q × Σ → Q is the transition function defined by

δ(Rp(y), c)
Def
= Rp(yc), for all c ∈ Σ and yc ∈ Fact(p).

We define a failure function, sℓ : Fact(p) \ {ε} → Fact(p), called the suffix link, by putting sℓ(x) Def
= ‘‘longest y ∈

Suff (x)such that y R̸px’’, for any x ∈ Fact(p) \ {ε}. The function sℓ has the property xRpy H⇒ sℓ(x) = sℓ(y). We extend the

functions sℓ and end-pos to Q by putting sℓ(q) Def
= Rp(sℓ(val(q))) and end-pos(q) Def

= end-pos(val(q)), for each q ∈ Q .
A distance d : Σ∗ × Σ∗ → R is a function which associates to any pair of strings x and y the minimal cost of any finite

sequence of edit operations which transforms x into y, if such a sequence exists, and∞ otherwise. The mutation distance
md(x, y) is based on the following edit operations: translocations, where a factor of the form zw is transformed into wz,
provided that |z| = |w| > 0; and inversions, where a factor z is transformed into zr. Both operations are assigned unit cost.

Observe that, since equal length factors are involved in translocations, the maximum length of the factors involved in a
translocation in a string x is ⌊|x|/2⌋, whereas the length of the factors involved in an inversion can be up to |x|.

Example 2. Let x = gtgaccgtccag and y = gtcgtgacccga. Thenmd(x, y) = 2, since x can be transformed into yby translocating
the substrings x[2..4] = gac and x[5..7] = cgt , and inverting the substring x[10..11] = ag .

When md(x, y) <∞, we say that x and y have an md-match. If x has an md-match with a suffix of y, we write x
md
⊒ y.

D. Cantone et al. / Discrete Applied Mathematics 163 (2014) 247–257 249

3. An automaton-based approach: the M-Sampling algorithm

We present an efficient algorithm, called M-Sampling, which finds the md-matches of a given pattern p (of length m)
in a text t (of length n). Our algorithm, based on the dynamic programming approach, has a O(nmmax(α, β))-time and
O(m2)-space complexity, where α ≤ ⌊m/2⌋ and β ≤ m are bounds on the length of the factors that can be involved in any
translocation and in any inversion, respectively.

Given p, t,m, n, α, and β as above, the M-Sampling algorithm iteratively computes, for j = m− 1,m, . . . , n− 1, all the
prefixes of p which have an md-match with a suffix of tj, by exploiting information gathered at previous iterations. For this

purpose, it is convenient to introduce the set Sj
Def
= {0 ≤ i ≤ m − 1 | pi

md
⊒ tj}, for 0 ≤ j < n. Thus, the pattern p has an

md-match ending at position j of the text t if and only if (m− 1) ∈ Sj.
Since the allowed edit operations involve substrings of the pattern p, it is useful to consider also the set F k

j of all the
positions in p at which an occurrence of the suffix of tj of length k ends. More precisely, for 1 ≤ k ≤ α and k − 1 ≤ j < n,

we put F k
j

Def
= {k− 1 ≤ i ≤ m− 1 | t[j− k+ 1.. j] ⊒ pi}. Observe that F k

j ⊆ F h
j , for 1 ≤ h ≤ k ≤ m.

Similarly, to handle inversions, it is convenient to define the set Ik
j of the positions in p at which an occurrence of the

reverse of the suffix of tj of length k ends. More precisely, for 1 ≤ k ≤ β and k − 1 ≤ j < n, we put Ik
j

Def
= {k − 1 ≤ i ≤

m− 1 | (t[j− k+ 1.. j])r ⊒ pi}.

Example 3. Let p = cattcatgatcat be a pattern, and let t = atcatgacttactgactta be the text. Then F 3
4 is the set of all positions

in p at which an occurrence of the suffix of t4 of length 3 ends, namely, cat . Thus F 3
4 = {2, 6, 12}. Similarly, we have that

F 2
4 = {2, 6, 9, 12}. Observe that F 3

4 ⊆ F 2
4 .

Observe also that, since t[2..4] = cat is the reverse string of t[9..11] = tac , we have I3
11 = F 3

4 = {2, 6, 12}. Moreover,
I2
8 = {4, 10}, since the reverse of the substring t[7..8] = ct occurs in its reverse form at positions 3 and 9 of the pattern.

The sets Sj can then be computed by way of the recursive relations contained in the following elementary lemma.

Lemma 1. Let t and p be a text of length n and a pattern of length m, respectively. Then i ∈ Sj, for 0 ≤ i < m and i ≤ j < n, if
and only if one of the following three facts holds:

(a) p[i] = t[j] and (i− 1) ∈ Sj−1 ∪ {−1};
(b) (i− k) ∈ F k

j , i ∈ F k
j−k, and (i− 2k) ∈ Sj−2k ∪ {−1}, for some 1 ≤ k ≤ ⌊ i+12 ⌋;

(c) i ∈ Ik
j and (i− k) ∈ Sj−k ∪ {−1}, for some 1 ≤ k ≤ i+ 1. �

Notice that conditions (b) and (c) in Lemma 1 refer to a translocation of adjacent factors of length k and to an inversion of a
factor of length k, respectively.

Likewise, the sets F k
j and Ik

j can be computed according to the following lemma.

Lemma 2. Let t and p be a text of length n and a pattern of length m, respectively. Then i ∈ F k
j if and only if p[i] = t[j] and

either k = 1 or (i− 1) ∈ F k−1
j−1 , for 1 ≤ k ≤ α, k− 1 ≤ j < n, and k− 1 ≤ i < m.

Similarly, i ∈ Ik
j if and only if p[i − k + 1] = t[j] and either k = 1 or i ∈ Ik−1

j−1 , for 1 ≤ k ≤ β, k − 1 ≤ j < n, and
k− 1 ≤ i < m. �

Based on the recurrence relations in Lemmas 1 and 2, a general dynamic programming algorithm can be readily
constructed, characterized by an overall O(nmmax(α, β))-time and O(m2)-space complexity. However, the overhead due
to the computation of the sets F k

j and Ik
j turns out to be quite relevant.

3.1. Efficient computation of the sets F k
j and Ik

j

An efficient method for computing the sets F k
j , for 1 ≤ k ≤ α and k− 1 ≤ j < n, makes use of the DAWG of the pattern

p and the function end-pos. Later we will also show how to compute efficiently the sets Ik
j .

Let A(p) = (Q , Σ, δ, root, F) be the DAWG of p. For each position j in t , let p′ be the longest factor of p, of length at most
α, which is a suffix of tj; also, let qj be the state of A(p) such that Rp(p′) = qj, and let lj be the length of p′. We call the pair
(qj, lj) a t-configuration of A(p).

The idea is then to compute the t-configuration (qj, lj) of A(p), for each position j of the text, while scanning the text t .
The set F k

j computed at previous iterations does not need to be maintained explicitly; rather, it is enough to maintain only
t-configurations. These are then used to compute efficiently the set F k

j only when needed.
The longest factor of p ending at position jof t is computed in the sameway as in the Forward-Dawg-Matching algorithm

for the exact pattern matching problem (see [6]). We maintain the invariant that the current state of the automaton never
corresponds to factors longer than α.

250 D. Cantone et al. / Discrete Applied Mathematics 163 (2014) 247–257

Let (qj−1, lj−1) be the t-configuration of A(p) at step (j− 1). Two cases must be distinguished.

Case lj−1 < α: The new t-configuration (qj, lj) is set to (δ(q, t[j]), length(q)+ 1), where q is the first node in the suffix path
⟨qj−1, sℓ(qj−1), sℓ(2)(qj−1), . . .⟩ of qj−1, including qj−1, having a transition on t[j], if such a node exists; otherwise, (qj, lj) is
set to (root, 0).1

Case lj−1 = α: We first compute the t-configuration corresponding to the factor t[j − α + 1.. j − 1] of p of length
(α − 1) ending at position j − 1 in t , namely, the t-configuration (q′j−1, l

′

j−1), where (q′j−1, l
′

j−1) ≡ (sℓ(qj−1), lj−1 − 1), if
length(sℓ(qj−1)) = lj−1 − 1; otherwise, (q′j−1, l

′

j−1) ≡ (qj−1, lj−1 − 1). Then we compute the new t-configuration (qj, lj)
starting from (q′j−1, l

′

j−1) as in the previous case, observing that l′j−1 = α − 1.
Before explaining how to compute the sets F k

j , it is convenient to introduce a partial function, φ : Q × N→ Q , which,
given a node q ∈ Q and a length k ≤ length(q), computes the state φ(q, k) whose corresponding set of factors contains the
suffix of val(q) of length k. Roughly speaking, φ(q, k) is the first node p in the suffix path of q such that length(sℓ(p)) < k.

In the preprocessing phase, the DAWG A(p) = (Q , Σ, δ, root, F) together with the associated end-pos function is
computed. Since for a pattern p of lengthmwe have that |Q | ≤ 2m+ 1 and |end-pos(q)| ≤ m, for each q ∈ Q , we need only
O(m2) extra space (see [2,5]).

To compute the set F k
j , for 1 ≤ k ≤ lj, one can take advantage of the relation F k

j = end-pos(φ(qj, k)). Notice that, in

particular, we have F
lj
j = end-pos(qj). The time complexity of the computation of φ(q, k) can be bounded by the length of

the suffix path of node q. Specifically, since the sequence ⟨len(sℓ(0)(q)), len(sℓ(1)(q)), . . . , 0⟩ of the lengths of the nodes in
the suffix path from q is strictly decreasing, we can do at most len(q) iterations over the suffix link, obtaining a O(m)-time
complexity.

According to Lemma 1, a translocation of length 2k at position j of the text t is possible only if factors of p of length at
least k have been recognized at both positions j and j− k, namely if lj ≥ k and lj−k ≥ k.

Let ⟨k1, k2, . . . , kr⟩ be the increasing sequence of all values k such that 1 ≤ k ≤ min(lj, lj−k). For each 1 ≤ i ≤ r , condition
(b) of Lemma 1 requires member queries on the sets F

ki
j and F

ki
j−ki

.
Observe that, if we proceed for decreasing values of k, the sets F k

j , for 1 ≤ k ≤ lj, can be computed in constant time.
Specifically,F k

j can be computed in constant time fromF k+1
j , for k = 1, . . . , lj−1, with atmost one iteration over the suffix

link of the state φ(qj, k + 1). The computation of F kr
j−kr has a O(α)-time complexity, since length(qj−kr) ≤ α. To compute

F
ki
j−ki

, for i = r − 1, r − 2, . . . , 1, we distinguish the following two cases.

Case ki+1 = ki + 1: Let q′ = φ(qj−ki+1 , ki+1). Given the node q′ computed in the previous iteration, the node φ(qj−ki , ki) can
be computed in two steps: first, we look up the node corresponding to the suffix of length ki+1− 2 of the factor represented
by q′, with at most two iterations of the suffix link of q′; then, we perform a transition on t[j − ki] on the node so found.
Formally,

φ(qj−ki , ki) = δ(φ(q′, ki+1 − 2), t[j− ki]).

Case ki+1 > ki+1: Observe that lj−s ≤ s−1must hold, for each s = ki+1−1, . . . , ki+1. In particular, we have lj−(ki+1) ≤ ki,
which implies that lj−ki ≤ ki + 1, since lj ≤ lj−1 + 1 always holds. Hence, the computation of φ(qj−ki , ki) requires at most
one iteration of the suffix link of qj−ki .

Thus the total complexity for computing all the sets F
ki
j−ki

is O(α).
Next, we show how to use the DAWG A(pr) of pr to compute efficiently the sets Ik

j . Specifically, we compute the longest
reversed factor ending at j and maintain the invariant that the current state of the automaton never corresponds to factors
longer than β , using the algorithm Dawg-Delta reported in the Appendix, as in the case of the computation of the sets F k

j .
Let (qrj , l

r
j) denote the t-configuration of A(pr) after having read the character of t at position j, where lrj is the length of the

longest reversed factor of p recognized. Then the sets Ik
j can be computed, for 2 ≤ k ≤ lrj , by

Ik
j = {i | (m− i+ k− 2) ∈ end-pos(φ(qrj , k))}. (1)

Indeed, i ∈ Ik
j iff p[i−k+1.. i] = (t[j−k+1.. j])r iff pr

[(m−1)− i.. (m−1)−(i−k+1)] = (p[i−k+1.. i])r = t[j−k+1.. j].
Thus (1) follows readily, since the latter equality is plainly equivalent to (m− i+ k− 2) ∈ end-pos(φ(qrj , k)).

For each k = 1, . . . , lrj , condition (3) of Lemma 1 requiresmember queries on the sets Ik
j . As in the case of the setsF k

j , the
set end-pos(φ(qrj , k)) can be computed in constant time, in decreasing order of k, by iterating the suffix link on qrj . Although
Ik
j is not equal to end-pos(φ(qrj , k)), a member query on Ik

j can still be done in constant time using (1).

1 We recall that sℓ(0)(q) Def
= q and, recursively, sℓ(h+1)(q) Def

= sℓ(sℓ(h)(q)), for h ≥ 0, provided that sℓ(h)(q) ≠ root .

D. Cantone et al. / Discrete Applied Mathematics 163 (2014) 247–257 251

3.2. Worst-case time and space analysis

In this section, we present the worst-case time and space analysis of the M-Sampling algorithm. In particular, we will
refer to the code of the M-Sampling algorithm reported in the Appendix.

First of all, observe that the main for-loop at line 6 is always executed n times. Moreover, we have |Sj| ≤ m, lj ≤ α, and
lrj ≤ β , for all 0 ≤ j < n. For each iteration of the for-loop at line 22, the amortized cost of the two while-loops at lines 25
and 30 is O(1). Thus, at each iteration of the main for-loop, the internal for-loop at line 11 takes at most O(m)-time, while
the for-loops at lines 15 and 22 take at most O(mβ)-time and O(mα)-time, respectively. Summing up, the M-Sampling
algorithm has a O(nmmax(α, β)) worst-case time complexity, which becomes O(nm2)-time when max(α, β) = Θ(m).

In order to evaluate the space complexity of the M-Sampling algorithm, we observe that, in the worst case, during the
jth iteration of its main for-loop, the sets F k

j−k and Sj−2k, for 1 ≤ k ≤ α, and the sets Sj−k, for 2 ≤ k ≤ β , must be kept
in memory to handle translocations and inversions, respectively. However, as explained before, we do not keep the values
of F k

j−k explicitly, but rather we maintain only their corresponding t-configurations of the automaton A(p). Thus, we need
O(α)-space for the last α configurations of the automaton and O(mmax(α, β))-space to keep the last max(2α, β) values
of the sets Sj−k, since the maximum cardinality of each set is m. Observe also that, although the size of the DAWG is linear
inm, the end-pos (·) function can require O(m2)-space. Therefore, the total space complexity of the M-Sampling algorithm
is O(m2).

3.3. Average-case time analysis

Next, we evaluate the average time complexity of the M-Sampling algorithm, assuming a uniform distribution and
independence of characters.

In our analysis, we do not include the time required for the computation of the DAWG and the end-pos (·) function, since
they require O(m) and O(m2) worst-case time, respectively, which turn out to be negligible if we assume m much smaller
than n. We evaluate only the searching phase of the algorithm.

Given integers 1 ≤ α, β ≤ m ≤ n and an alphabet Σ of size σ ≥ 4, for j = 0, 1, . . . , n − 1, we consider the following
nonnegative random variables over the sample space of the pairs of strings p, t ∈ Σ∗ of lengthm and n, respectively:

– X(j) Def
= the length lj ≤ α of the longest factor of p which is a suffix of tj;

– Y (j) Def
= the length lrj ≤ β of the longest factor of pr which is a suffix of tj;

– Z(j) Def
= |Sj|, where we recall that Sj = {0 ≤ i ≤ m− 1 | ti

md
⊒ tj}.

Then the run time of a call to the M-Sampling algorithm with parameters (p, t, α, β) is proportional to

n−1
j=1


Z(j− 1)+

Y (j)
k=2

Z(j− k)+


X(j)
k=1

Z(j− 2k)+ X(j)


, (2)

where the external summation refers to the main for-loop (at line 6), and the three terms within it take care of the internal
for-loops at lines 11, 15, and 22, in that order.

Let E(·) be the expectation function. The average-case complexity of the M-Sampling algorithm is thus the expectation
of (2), which, by linearity, is equal to

n−1
j=1


E(Z(j− 1))+ E


Y (j)
k=2

Z(j− k)


+ E


X(j)
k=1

Z(j− 2k)


+ E(X(j))


. (3)

Since E(X(j)) ≤ E(X(n − 1)), E(Y (j)) ≤ E(Y (n − 1)), E(Z(j)) ≤ E(Z(n − 1)), for 0 ≤ j ≤ n − 1,2 and also
E(X(n− 1)) = E(Y (n− 1)), by putting X Def

= X(n− 1) and Z Def
= Z(n− 1), expression (3) gets bounded from above by

n−1
j=1


E(Z)+ E


X

k=2

Z


+ E


X

k=1

Z


+ E(X)


. (4)

Let Zi and Xk be the indicator variables defined respectively, for i = 0, . . . ,m− 1 and k = 1, . . . ,m, as

Zi
Def
=


1 if i ∈ Sn−1
0 otherwise and Xk

Def
=


1 if X ≥ k
0 otherwise,

2 In fact, for j = m, . . . , n− 1 all inequalities hold as equalities.

252 D. Cantone et al. / Discrete Applied Mathematics 163 (2014) 247–257

so that Z =
m−1

i=0 Zi, E(Z2
i) = E(Zi) = Pr{pi

md
⊒ t}, X =

m
k=1 Xk, and E(X2

k) = E(Xk) = Pr{X ≥ k}. Then we have
X

k=1

Z = XZ =


m

k=1

Xk


·


m−1
i=0

Zi


=

m
k=1

m−1
i=0

XkZi.

Therefore

E


X

k=2

Z


≤ E


X

k=1

Z


=

m
k=1

m−1
i=0

E (XkZi) ,

which yields the following upper bound for (4):
n−1
j=1


E(Z)+ 2 ·

m
k=1

m−1
i=0

E (XkZi)+ E(X)


. (5)

To estimate each of the terms E(XkZi) in (5), we use the well-known Cauchy–Schwarz inequality, which, in the context
of expectations, assumes the form |E(UV)| ≤


E(U2)E(V 2), for any two random variables U and V such that E(U2), E(V 2)

and E(UV) are all finite.
Then, for 1 ≤ k ≤ m and 0 ≤ i ≤ m− 1, we have

E(XkZi) ≤

E(X2

k)E(Z2
i) =


E(Xk)E(Zi). (6)

From (6), it then follows that (5) is bounded from above by
n−1
j=1


E(Z)+ 2 ·

m
k=1

m−1
i=0


E(Xk)E(Zi)+ E(X)


=

n−1
j=1


E(Z)+ 2 ·


m

k=1


E(Xk)


·


m−1
i=0


E(Zi)


+ E(X)


. (7)

To better understand (7), we evaluate the expectations E(X) and E(Z) and the sums
m

k=1

√
E(Xk) and

m−1
i=0

√
E(Zi). To

this purpose, it will be useful to estimate also the expectations E(Xk) = Pr{X ≥ k}, for 1 ≤ k ≤ m, and E(Zi) = Pr{pi
md
⊒ t},

for 0 ≤ i ≤ m− 1.
Concerning E(Xk) = Pr{X ≥ k}, we reason as follows. Since t[n − k.. n − 1] ranges uniformly over a collection of σ k

strings and there can be at most min(σ k,m − k + 1) distinct factors of length k in p, the probability Pr{X ≥ k} that one of
them matches t[n− k.. n− 1] is at most min


1, m−k+1

σ k


, so that, for k = 1, . . . ,m, we have

E(Xk) ≤ min

1,

m− k+ 1
σ k


. (8)

Then, in view of (8), we have

E(X) =

m
i=0

i · Pr{X = i} =
m
i=1

Pr{X ≥ i} ≤
m
i=1

min

1,

m− i+ 1
σ i


. (9)

Let k be the smallest integer 1 ≤ k < m such that m−k+1
σ k < 1. Then from (9) we have

E(X) ≤

k−1
i=1

1+
m
i=k

m− i+ 1
σ i

≤ k− 1+ (m− k+ 1)
m
i=k

1
σ i

< k− 1+
σ

σ − 1
·
m− k+ 1

σ k
< k− 1+

σ

σ − 1
< k+ 1. (10)

Since m−(k+1)+1
σ k+1 ≥ 1, σ k+1

≤ m − (k + 1) + 1 ≤ m − 1, so that k + 1 < logσ m. Then, from (10) and k + 1 < logσ m, we
obtain

E(X) < logσ m. (11)

Likewise, from (8) and k+ 1 < logσ m, we have
m

k=1


E(Xk) ≤

m
k=1


min


1,

m− k+ 1
σ k


=

k−1
k=1

1+
m

k=k


m− k+ 1

σ k

≤ k− 1+

m− k+ 1 ·

m
k=k

1
√

σ k
< k− 1+

√
σ

√
σ − 1

·


m− k+ 1

σ k

< k− 1+
√

σ
√

σ − 1
≤ k+ 1 < logσ m, (12)

D. Cantone et al. / Discrete Applied Mathematics 163 (2014) 247–257 253

where k is defined as above. Next, we estimate E(Zi) = Pr{pi
md
⊒ t}, for 0 ≤ i ≤ m − 1. Let us denote by µ(i) the number

of distinct strings which have anmd-match with a given string of length i and whose characters are pairwise distinct. Then

Pr{pi
md
⊒ t} ≤ µ(i+ 1)/σ i+1. From the recursion

µ(0) = 1

µ(k+ 1) =
k

h=0

µ(h)+
⌊
k−1
2 ⌋

h=1

µ(k− 2h− 1) (for k ≥ 0),

it is not hard to see that µ(i+ 1) ≤ 3i, for i = 0, 1, . . . ,m− 1, so that we have

E(Zi) = Pr

pi

md
⊒ t


≤

3i

σ i+1
. (13)

Then, concerning E(Z), from (13), we have

E(Z) = E


m−1
i=0

Zi


=

m−1
i=0

E(Zi) ≤
m−1
i=0

3i

σ i+1
<

1
σ
·

1
1− 3

σ

=
1

σ − 3
≤ 1 (14)

(we recall that we have assumed that σ ≥ 4). Likewise, from (13), we have

m−1
i=0


E(Zi) ≤

m−1
i=0


3i

σ i+1
<

1
√

σ
·

1

1−


3
σ

=
1

√
σ −
√
3

< 4. (15)

From (14), (11), (12), and (15), it then follows that (7) is bounded from above by (n − 1) · (9 logσ m + 1), yielding a
O(n logσ m) average-time complexity for the M-Sampling algorithm.

4. A filter-based approach: the Addition–Counting–Filter algorithm

In this section, we present a very efficient algorithm for the approximate stringmatching problem allowing for inversions
of factors and translocations of equal length adjacent factors, which works inO(nmmax(α, β))-worst case time complexity
and O(n)-average case time complexity, under the assumption of a uniform distribution and independence of characters.

Our algorithm, named Addition–Counting–Filter, improves the searching strategy introduced in the M-Sampling
algorithm by making use of an efficient filter method along the same lines of the GFG algorithm, recently presented by
Grabowski et al. [10]. Such a filtering technique, usually referred to as the counting filter, is well known [11,12,1,4] and has
been used for the k-mismatches and k-differences string matching problem.

The idea behind the counting–filter technique is based upon the simple observation that (in our problem), if a pattern p
has an occurrence (possibly involving inversions and translocations) starting at position i of a text t , then the |p|-substring
t[i.. i+ |p| − 1] of the text is a permutation of the pattern p.

As before, let p and t be strings of length m and n, respectively, over a common alphabet Σ = {c0, . . . , cσ−1} of size σ .
Much as theGFG algorithm, the Addition–Counting–Filter algorithm firstly identifies the setΓp,t of all candidate positions
i in the text such that the substring t[i.. i+m− 1] is a permutation of p and, subsequently, for each such candidate position
i ∈ Γp,t , it executes a verification procedure to check whether p and t[i.. i+m−1]match, up to non-overlapping inversions
and translocations.

The GFG algorithm maintains in constant time the size δ of the symmetric difference of the multisets of the characters
occurring in the current text window and of those occurring in the pattern, respectively. When δ = 0, a candidate match is
found. In contrast, the Addition–Counting–Filter algorithm maps the two multisets of our interest into natural numbers,
using a hash function h that allows for very fast updates. In this case, a candidate match is found when the hash values
associated to the current window and to the pattern are equal.

The hash function approach is based on the following elementary fact.

Lemma 3. Let Σ = {c0, c1, . . . , cσ−1} be an alphabet of size |Σ | = σ , let m > 1 be an integer, and let h : Σ → N be the
mapping h(ci)

Def
= mi, for i = 0, . . . , σ−1. Then, for any two distinct k-multicombinations (i.e., k-combinations with repetitions)

ϕ1 and ϕ2 from the set Σ , with 1 ≤ k ≤ m, we have
c∈ϕ1

h(c) ≠

c∈ϕ2

h(c). (16)

Proof. Letm > 1 be a given integer, and let Σ [k] be the collection of all k-multicombinations from the set Σ , for k ≥ 1. We
prove (16) by induction on k = 1, 2, . . . ,m.

254 D. Cantone et al. / Discrete Applied Mathematics 163 (2014) 247–257

For the base case, let ϕ1 and ϕ2 be two distinct 1-multicombinations in Σ [1]. Then we have ϕ1 = {c} and ϕ2 = {c ′}, with
c, c ′ distinct characters in Σ . Plainly, h(c) ≠ h(c ′), so (16) holds in the base case.

Suppose now that (16) holds for (k − 1)-multicombinations, with 2 ≤ k ≤ m, and prove it for k-multicombinations.
Thus, let ϕ1 and ϕ2 be two distinct k-multicombinations in Σ [k]. First observe that, if ϕ1 ∩ ϕ2 ≠ ∅, then, for any c ∈ ϕ1 ∩ ϕ2,
the multisets ϕ1 − {c} and ϕ2 − {c} are two distinct (k − 1)-multicombinations from Σ , so that, by inductive hypothesis,
we have

c∈ϕ1

h(c) = h(c)+


c∈ϕ1−{c}

h(c) ≠ h(c)+


c∈ϕ2−{c}

h(c) =

c∈ϕ2

h(c).

Thus we can assume that ϕ1 ∩ ϕ2 = ∅. Let µ
Def
= max{i : ci ∈ ϕ1} and ν

Def
= max{i : ci ∈ ϕ2}, and, without any loss in

generality, assume that ν < µ. Then, since k ≤ m, we have
c∈ϕ1

h(c) = h(cµ)+


c∈ϕ1−{cµ}

h(c) > h(cµ) = mµ
≥

k
i=1

mν
≥


c∈ϕ2

h(c),

proving (16) also in the inductive case. �

Inspired by the previous lemma, the Addition–Counting–Filter algorithm precomputes a function h : Σ → N, defined
as h(ci)

Def
= mi, for i = 0, . . . , σ − 1, wherem is the length of the pattern.3 The map h can be naturally extended tom-strings

by putting h(q) Def
=
m−1

i=0 h(q[i]), for any string q of lengthm. The hash value λ
Def
= h(p) of the pattern p is then precomputed.

Likewise, during the searching phase, the hash value γi
Def
= h(t[i.. i+m−1]) is computed for each window t[i.. i+m−1] of

the text t , with 0 ≤ i ≤ n−m. The setΓp,t of all candidate positions in the text is thenΓp,t
Def
= {i : 0 ≤ i ≤ n−m and γi = λ}.

Observe that γi+1 = γi − h(t[s])+ h(t[s+m]), so that γi+1 can be computed in constant time from γi. Thus the set Γp,t can
be computed in O(n)-time.

Example 4. Let p = agcgt be an input pattern of length 5, and let t = agacatgcgatgcc be a text, both over the alphabet
Σ = {a, c, g, t} of size 4. The algorithm precomputes the function h : Σ → N, defined as h(a) = 1, h(c) = 5, h(g) = 25
and h(t) = 125. Then the hash value of the pattern p λ = h(p) is equal to h(a)+ h(g)+ h(c)+ h(g)+ h(t) = 181. The set
Γp,t of all candidate positions in the text is then Γp,t = {8, 9, 10, 11, 12}.

It has been observed experimentally that the collision problem for the hash function h is negligible. In fact, it turns out that
in several practical cases the above hash function h is injective. Aswill be shown in Section 5, theAddition–Counting–Filter
algorithm is up to 40% faster than GFG, since updating hash values requires fewer operations than updating the map δ of
the GFG algorithm.

For each candidate position i ∈ Γp,t (such that γi = λ), a verification procedure is run to check whether a match
occurs at position i, up to translocations and inversions. The verification procedure used by the Addition–Counting–Filter
algorithm is the same procedure Verify used by the GFG algorithm, which takes O(mmax(α, β))-time and O(max(α, β))-
space (see [10] for more details). Thus the total worst-case time complexity of the Addition–Counting–Filter algorithm is
O(nmmax(α, β)), and it uses only O(max(α, β, σ)) additional space.

4.1. Average-case time analysis

In the following analysis, we assume a uniform distribution and independence of characters.
In [10], Grabowski et al. proved a linear average-time bound for the GFG algorithm when m = ω(σO(1)) and σ =

Ω(logm/ log log1−ε m). Here, we establish a similar result for our algorithm, but with a less strict bound on σ .
Let Pr{i ∈ Γp,t} be the probability that position i is a candidate position to be verified, for a given random text t and

pattern p of length n and m, respectively, and with n ≥ m, over an alphabet of size σ . Since the preprocessing phase of our
algorithm and each call to procedure Verify take O(σ)-time and O(m2)-time, respectively, the average time complexity of
the Addition–Counting–Filter algorithm can be expressed as

T (n,m, σ) = O(σ)+

n−m
i=0

Pr{i ∈ Γp,t} · O(m2). (17)

Thus, to obtain a linear average-time bound, it is enough to show that O(1/m2) bounds the probability of finding a
permutation of the pattern.

3 It is understood that for an architecture, say, at 64 bits, all operations will take place modulo 264 .

D. Cantone et al. / Discrete Applied Mathematics 163 (2014) 247–257 255

For simplicity, let us assume that σ divides m, and let k Def
= m/σ . For each text position i, with 0 ≤ i ≤ n − m, the

probability that them-substring of the text, beginning at position i, is a permutation of the pattern p is exactly

Pr{i ∈ Γp,t} =


m
f0

 
m−f0
f1

 
m−f0−f1

f2


. . .


fσ−1
fσ−1


σm

, (18)

where fj is the number of occurrences of cj in p, for j = 0, 1, . . . , σ − 1.
The right-hand side of (18), subject to the constraint

σ−1
j=0 fj = m, attains its maximumwhen all fj’s are equal to k. Thus

Pr{s ∈ Γp,t} ≤

m
k

 m−k
k

 
m−2k

k


. . .


k
k


σm

=
m!

(k!)σ σm
.

We use Stirling’s approximation form! and k!, recalling that k = m/σ :

m!
(k!)σ σm

= Θ

 √
2πm(m/e)m√

2πm/σ(m/(eσ))m/σ
σ

σm


= Θ

 √
2πm√

2π(m/σ)
σ


.

Since
√
2π/(
√
2π)σ ≤ 1, we have

√
2πm√

2π(m/σ)
σ = O

 √
m√

m/σ
σ

= O


σ σ/2

m(σ−1)/2


.

Let m ≥ σ c and σ ≥ 5c
c−1 , for some constant c > 1. We have σ ≤ c(σ − 5), so that σ σ

≤ σ c(σ−5)
≤ mσ−5. Therefore

σ σ/2/m(σ−1)/2
≤ 1/m2, since, plainly,m(σ−5)/2

= m(σ−1)/2/m2.
Thus, we have Pr{i ∈ Γp,t} = O(1/m2), for any σ ≥ 5c

c−1 and sufficiently large m ≥ σ c , with c > 1. Under such
assumptions, from (17) we easily obtain

T (n,m, σ) = O(σ)+ (n−m+ 1) · O(1/m2) · O(m2)

= O(σ + n) = O(n),

proving a linear average-time bound for the Addition–Counting–Filter algorithm.

5. Experimental evaluation

In this section, we present some experimental results which allow us to compare in terms of their running times the
M-Sampling, GFG, and Addition–Counting–Filter algorithms (ACF). In our evaluation, in the case of the M-Sampling
algorithm,we used an efficient bit-parallel implementation (BPMS) described in [3], which obtains better results in practice.
Moreover, two variants of the GFG algorithm have been evaluated: the first one uses a verification phase based on a O(m2)-
time dynamic programming procedure (GFG1), while the second one uses a verification phase based on the M-Sampling
algorithm (GFG2).

All algorithmswere implemented in the C programming language andwere compiled with the GNU C Compiler, using
the optimization options −O3. The tests were performed on a MacBook Pro with a 2 GHz Intel Core i7 processor, a 4 GB
1333 MHz DDR3 memory and a 64-bit word size. As input files, we used six random texts with a uniform distribution of
characters and alphabet size σ = 4, 8, 16, 32, 64, 128, respectively. Moreover, we used a DNA sequence (dna) and a protein
sequence (prot). All texts have size 1 Mb and were extracted from the smart tool [9]. For each input file, we generated sets
of 500 patterns of fixed length m, randomly extracted from the text, for m = 8, 16, 32, 64. For each set of patterns, we
calculated the mean over the running times of the 500 runs. Table 1 reports the running times obtained in our experimental
results. In the case of the Addition–Counting–Filter algorithm, an asterisk symbol (∗) indicates those runs in which hash
collisions occurred.

From Table 1, it turns out that the filtering strategy is more effective than the BPM-Sampling algorithm and allows one
to dramatically speed up the computation of the matches of a given pattern. Moreover, the Addition–Counting–Filter
algorithm always obtains the best results and is up to 40% faster than the GFG algorithms. It also turns out that the collision
problem is negligible. In particular, for each text position, the Addition–Counting–Filter algorithm incurs an average
number of collisions less than 1.4× 10−4, in all cases, and less than 1.0× 10−5, in most of the cases.

Concerning the GFG algorithm, we observe that, for very small alphabets, the GFG2 variant, based on M-Sampling, is
faster than the GFG1 variant, based on the dynamic programming verification, while in the other cases the two algorithms
have much the same speed.

Finally, we observe that the rate of growth of the BPM-Sampling algorithmmatches the estimated O(n logσ m) average-
time complexity while the Addition–Counting–Filter algorithm exhibits the expected linear behavior.

256 D. Cantone et al. / Discrete Applied Mathematics 163 (2014) 247–257

Table 1
Running times of tested algorithms under various conditions. Running times are expressed in milliseconds. In the case of the
Addition–Counting–Filter algorithm (ACF), an asterisk symbol (∗) indicates those runs in which hash collisions occurred.

ALGO m 8 16 32 64 m 8 16 32 64

BPMS

σ = 4

41.13 51.78 65.35 80.67

σ = 32

21.1 25.8 29.9 31.2
GFG1 16.41 22.58 24.03 24.94 7.57 7.59 7.68 7.86
GFG2 12.78 12.12 11.56 11.10 7.58 7.60 7.60 7.59
ACF 9.40 8.70 8.17 7.73 4.24 4.29∗ 4.41∗ 4.82∗

BPMS

σ = 8

31.7 37.1 44.8 54.7

σ = 64

18.4 21.0 25.7 29.9
GFG1 7.82 7.75 7.80 7.99 7.46 7.47 7.57 7.72
GFG2 7.87 7.79 7.71 7.73 7.48 7.49 7.51 7.51
ACF 4.34 4.28 4.35 4.57∗ 4.21 4.26∗ 4.36∗ 4.83∗

BPMS

σ = 16

26.0 30.5 32.9 37.9

σ = 128

17.1 18.3 20.9 26.0
GFG1 7.63 7.66 7.79 7.91 7.40 7.42 7.49 7.63
GFG2 7.64 7.63 7.63 7.68 7.43 7.44 7.43 7.47
ACF 4.22 4.26∗ 4.36∗ 4.58∗ 4.21 4.26∗ 4.35∗ 4.71∗

BPMS

dna

40.8 50.6 64.0 79.3

prot

25.1 29.9 32.6 36.9
GFG1 12.31 11.64 10.72 10.22 7.66 7.65 7.74 7.88
GFG2 16.16 20.91 20.33 19.86 7.63 7.61 7.62 7.66
ACF 8.94 8.29 7.33 6.83 4.22 4.26∗ 4.36∗ 4.55∗

Appendix. The codes

Below, we show the M-Sampling algorithm (on the left), and the DAWG state update algorithm Dawg-Delta and the
filter-based algorithm Addition–Counting–Filter (on the right). For the code of the verification procedure Verify, the
reader is referred to [10]. Notice that the function sℓ∗ in procedure Dawg-Delta denotes the improved suffix link [6].

M-Sampling (p, t, α, β, A, A′)
1.m← |p|, n← |t|
2. (q0, l0)← Dawg-Delta(rootA, 0, α, t[0], A)

3. (qr0, l
r
0)← Dawg-Delta(rootA′ , 0, β, t[0], A′)

4. S0 ← ∅
5. if p[0] = t[0] then S0 ← {0}
6. for j← 1 to n− 1 do
7. (qj, lj)← Dawg-Delta(qj−1, lj−1, α, t[j], A)

8. (qrj , l
r)← Dawg-Delta(qrj , l

r, β, t[j], A′)

9. Sj ← ∅
10. if p[0] = t[j] then Sj ← {0}
11. for i ∈ Sj−1 do
12. if i < m− 1 and p[i+ 1] = t[j] then
13. Sj ← Sj ∪ {i+ 1}
14. u← qrj
15. for k← lrj downto 2 do
16. for i ∈ Sj−k ∪ {−1} do
17. if (m− 2− i) ∈ end-posr(u) then
18. Sj ← Sj ∪ {i+ k}
19. if k = len(sℓA′ (u))+ 1 then
20. u← sℓA′ (u)
21. last ← 0, u← qj
22. for k← lj downto 1 do
23. if k ≤ j and k ≤ lj−k then
24. if last = k+ 1 then
25. while u′ ≠ rootA

and k− 1 ≤ len(sℓA(u′)) do
26. u′ ← sℓA(u′)
27. u′ ← δA(u′, t[j− k])
28. else
29. u′ ← qj−k
30. while k ≤ len(sℓA(u′)) do
31. u′ ← sℓA(u′)
32. last ← k
33. for i ∈ Sj−2k ∪ {−1} do
34. if (i+ k) ∈ end-pos(u)

and (i+ 2k) ∈ end-pos(u′) then
35. Sj ← Sj ∪ {i+ 2k}
36. if k = len(sℓA(u))+ 1
37. then p← sℓA(u)
38. if (m− 1) ∈ Sj then Output(j)

Dawg-Delta(q, l, k, c, B)
1. if l = k then
2. l← l− 1
3. if len(sℓB (q)) = l
4. then q← sℓB (q)
5. if δB (q, c) = nil then
6. do
7. q← sℓ∗B (q)
8. while q ≠ nil and δB (q, c) = nil
9. if q = nil then
10. l← 0, q← rootB
11. else l← len(q)+ 1
12. q← δB (q, c)
13. else l← l+ 1
14. q← δB (q, c)
15. return (q, l)

Addition–Counting–Filter (p,m, t, n, α, β)

1. for i← 0 to σ − 1 do h[ci] ← mi

2. λ← δ← 0
3. for s← 0 to m− 1 do
4. λ← λ+ h[p[s]]
5. δ← δ + h[t[s]]
6. for s← 0 to n−m do
7. if δ = λ then
8. Verify(p,m, t, s, α, β)
9. δ← δ − h[t[s]] + h[t[s+m]]

D. Cantone et al. / Discrete Applied Mathematics 163 (2014) 247–257 257

References

[1] R.A. Baeza-Yates, G. Navarro, New and faster filters for multiple approximate string matching, Random Struct. Algorithms 20 (1) (2002) 23–49.
[2] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M.T. Chen, J. Seiferas, The smallest automaton recognizing the subwords of a text, Theoret. Comput.

Sci. 40 (1985) 31–55.
[3] D. Cantone, S. Faro, E. Giaquinta, Approximate string matching allowing for inversions and translocations, in: Proc. of the Prague Stringology

Conference 2010, pp. 37–51.
[4] Domenico Cantone, Salvatore Cristofaro, Simone Faro, Efficient string-matching allowing for non-overlapping inversions, Theoret. Comput. Sci. 483

(2013) 85–95.
[5] M. Crochemore, Transducers and repetitions, Theoret. Comput. Sci. 45 (1) (1986) 63–86.
[6] M. Crochemore, W. Rytter, Text Algorithms, Oxford University Press, 1994.
[7] P. Cull, T. Hsu, Recent Advances in the Walking Tree Method for Biological Sequence Alignment EUROCAST, 2003, pp. 349–359.
[8] F. Damerau, A technique for computer detection and correction of spelling errors, Commun. ACM 7 (3) (1964) 171–176.
[9] S. Faro, T. Lecroq, Smart: a string matching algorithm research tool, University of Catania and University of Rouen, 2011. http://www.dmi.unict.it/

∼faro/smart/.
[10] S. Grabowski, S. Faro, E. Giaquinta, String matching with inversions and translocations in linear average time (most of the time), Inform. Process. Lett.

111 (11) (2011) 516–520.
[11] R. Grossi, F. Luccio, Simple and efficient string matching with k mismatches, Inform. Process. Lett. 33 (3) (1989) 113–120.
[12] P. Jokinen, J. Tarhio, E. Ukkonen, A comparison of approximate string matching algorithms, Softw. Pract. Exp. 26 (12) (1996) 1439–1458.
[13] V.I. Levenshtein, Binary codes capable of correcting deletions, insertions and reversals, Sov. Phys. Dokl. 10 (1966) 707–710.
[14] G. Navarro, A guided tour to approximate string matching, ACM Comput. Surv. 33 (1) (2001) 31–88.
[15] A.F. Vellozo, C.E.R. Alves, A. Pereira do Lago, Alignment with non-overlapping inversions in O(n3)-time, in: WABI, 2006, pp. 186–196.

http://refhub.elsevier.com/S0166-218X(13)00245-X/sbref1
http://refhub.elsevier.com/S0166-218X(13)00245-X/sbref2
http://refhub.elsevier.com/S0166-218X(13)00245-X/sbref4
http://refhub.elsevier.com/S0166-218X(13)00245-X/sbref5
http://refhub.elsevier.com/S0166-218X(13)00245-X/sbref6
http://refhub.elsevier.com/S0166-218X(13)00245-X/sbref7
http://refhub.elsevier.com/S0166-218X(13)00245-X/sbref8
http://www.dmi.unict.it/~faro/smart/
http://www.dmi.unict.it/~faro/smart/
http://www.dmi.unict.it/~faro/smart/
http://www.dmi.unict.it/~faro/smart/
http://www.dmi.unict.it/~faro/smart/
http://www.dmi.unict.it/~faro/smart/
http://www.dmi.unict.it/~faro/smart/
http://refhub.elsevier.com/S0166-218X(13)00245-X/sbref10
http://refhub.elsevier.com/S0166-218X(13)00245-X/sbref11
http://refhub.elsevier.com/S0166-218X(13)00245-X/sbref12
http://refhub.elsevier.com/S0166-218X(13)00245-X/sbref13
http://refhub.elsevier.com/S0166-218X(13)00245-X/sbref14
http://refhub.elsevier.com/S0166-218X(13)00245-X/sbref15

	Text searching allowing for inversions and translocations of factors
	Introduction
	Basic notions and definitions
	An automaton-based approach: the M-Sampling algorithm
	Efficient computation of the sets Fjk and Ijk
	Worst-case time and space analysis
	Average-case time analysis

	A filter-based approach: the Addition--Counting--Filter algorithm
	Average-case time analysis

	Experimental evaluation
	The codes
	References

