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Searching for all occurrences of a pattern in a text is a fundamental problem in 
computer science with applications in many other fields, like natural language processing, 
information retrieval and computational biology. In the last two decades a general trend 
has appeared trying to exploit the power of the word RAM model to speed-up the 
performances of classical string matching algorithms. In this model an algorithm operates 
on words of length w , grouping blocks of characters, and arithmetic and logic operations 
on the words take one unit of time.
In this paper we use specialized word-size packed string matching instructions, based on 
the Intel streaming SIMD extensions (SSE) technology, to design a very fast string matching 
algorithm. We evaluate our solution in terms of efficiency, stability and flexibility, where 
we propose to use the deviation in running time of an algorithm on distinct equal length 
patterns as a measure of stability.
From our experimental results it turns out that, despite their quadratic worst case time 
complexity, the new presented algorithm becomes the clear winner on the average in many 
cases, when compared against the most recent and effective algorithms known in literature.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Given a text t of length n and a pattern p of length m over some alphabet Σ of size σ , the exact string matching problem
consists in finding all occurrences of the pattern p in t . This problem has been extensively studied in computer science 
because of its direct application to many areas. Moreover, string matching algorithms are the basic components in many 
software applications and play an important role in theoretical computer science by providing challenging problems.

In a computational model where the matching algorithm is restricted to read all the characters of the text one by one 
the optimal complexity is O(n), and was achieved the first time by the well known Knuth–Morris–Pratt algorithm [26]
(KMP). However, in many practical cases it is possible to avoid reading all the characters of the text achieving sub-linear 
performances on the average. The optimal average O(

n logσ m
m ) time complexity [35] was reached for the first time by the 

Backward-DAWG-Matching algorithm [11] (BDM). However, all algorithms with a sub-linear average behavior may have to 
read all the text characters in the worst case. It is interesting to note that many of those algorithms have an even worse 
O(nm)-time complexity in the worst-case [10,19,22].

✩ A preliminary version of the results presented in this paper has been previously published in [15].
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In the last two decades a lot of work has been made in order to exploit the power of the word RAM model of compu-
tation to speed-up classical string matching algorithms. In this model, the computer operates on words of length w , thus 
blocks of characters are read and processed at once. This means that usual arithmetic and logic operations on the words all 
take one unit of time.

Most of the solutions which exploit the word RAM model are based on either the bit-parallelism technique or the packed 
string matching technique.

The bit-parallelism technique [1] takes advantage of the intrinsic parallelism of the bit operations inside a computer 
word, allowing to cut down the number of operations that an algorithm performs by a factor up to w . Bit-parallelism is 
particularly suitable for the efficient simulation of nondeterministic automaton. The Shift-Or [1] (SO) algorithm is the first 
of this genre, which simulates efficiently the nondeterministic version of the KMP automaton and runs in O(n� m

w �). It is 
still considered among the best practical algorithms in the case of very short patterns and small alphabets [22,19]. Later a 
very fast BDM-like algorithm (BNDM), based on the bit-parallel simulation of the nondeterministic suffix automaton, was 
presented in [31]. Some variants of the BNDM algorithm [16,18,12,32] are among the most practical efficient solutions in 
literature (see [22,19]). However, the bit-parallel encoding requires one bit per pattern symbol, for a total of � m

w � computer 
words. Thus, as long as a pattern fits in a single computer word, bit-parallel algorithms are extremely fast, otherwise their 
performances degrade considerably as � m

w � grows. Though there are a few techniques to maintain good performances in the 
case of long patterns [28,13,8,9], such limitation is intrinsic.

In the packed string matching technique multiple characters are packed into one larger word, so that the characters can be 
compared in bulk rather than individually. In this context, if the characters of a string are drawn from an alphabet of size σ , 
then � w

log σ � different characters fit in a single word, using �log σ � bits per characters. The packing factor is α = � w
log σ �.1

A first theoretical result in packed string matching was proposed by Fredriksson [23]. He presented a general scheme 
that can be applied to speed-up many pattern matching algorithms. His approach relies on the use of the four Russian
technique (i.e. tabulation), achieving in favorable cases an O(nεm)-space and O( n

m log σ +nεm + occ)-time complexity, where 
ε > 0 denotes an arbitrary small constant, and occ denotes the number of occurrences of p in t . Bille [5] presented an 
alternative solution with O( n

logσ n + m + occ)-time and O(nε + m)-space complexities by an efficient segmentation and 
coding of the KMP automaton. Belazzougui [2] proposed a packed string matching algorithm which works in O( n

m + n
α +

m + occ) time and O(m) space, reaching the optimal O( n
α + occ)-time bound for α ≤ m ≤ n

α . More recently, Belazzougui 
and Raffinot [3] introduced an average-optimal time string matching algorithm for packed strings, which achieves O(n/m)

query time. However, none of these results leads to practical algorithms.
The first algorithm that achieves good practical and theoretical results was very recently proposed by Ben-Kiki et al. [4]. 

The algorithm is based on two specialized packed string instructions, the pcmpestrm and the pcmpestri instructions [29], 
and reaches the optimal O( n

α + occ)-time complexity requiring only O(1) extra space. Moreover the authors showed that 
their algorithm turns out to be among the fastest string matching solutions in the case of very short patterns. However, 
it has to be noticed that on the family of Intel Sandy Bridge processors, which we consider as the benchmark platform for 
the implementations throughout the study, pcmpestrm and pcmpestri have 2-cycle throughput and 7- and 8-cycle latency, 
respectively [29].

When the length of the searched pattern increases, another algorithm named Streaming SIMD Extensions Filter (SSEF), 
presented by Külekci in [27] (and extended to multiple pattern matching in [14]), exploits the advantages of the word-RAM 
model. Specifically it uses a filter method that inspects blocks of characters instead of reading them one by one. Despite its 
O(nm) worst case time complexity, the SSEF algorithm turns out to be among the fastest solutions when searching for long 
patterns [22,19].

Efficient solutions have been also designed for searching on packed DNA sequences [33,17]. However in this paper we 
do not take into account this type of solutions since they require a different type of data representation.

Streaming SIMD technology offers single-instructions to perform a variety of tests on packed strings. Unfortunately those 
instructions are heavier than other instructions provided in the same family as a consequence of their relatively high laten-
cies. Hence, in this paper we focus on design of algorithms using instructions with low latency and high throughput, when 
compared with those used in [4].

Specifically we introduce a new practical and efficient algorithm for the exact packed string matching problem that turns 
out to be faster than the best algorithms known in literature in most practical cases [15].

The newly presented algorithm, named Exact Packed String Matching (EPSM), is based on four different search procedures 
used for, respectively, very short patterns (0 < m < α

2 ), short patterns ( α
2 ≤ m < α), medium length patterns (m ≥ α) and 

long patterns (m ≥ w). All search procedures have an O(nm) worst case time complexity. However, they have very good 
performances on average. In the case of very short patterns, i.e. when m ≤ α

2 , the first two search procedures achieve, 
respectively, an O(n + occ) and an optimal O( n

α + occ)-time complexity.
The paper is organized as follows. In Section 2, we introduce some notions and terminologies, while in Section 3 we de-

scribe the model of computations we assume for describing our solutions. We then present a new algorithm for the packed 

1 However, it is noteworthy that in practice supporting varying packing factors seems not very possible in todays SIMD technologies such as the Intel’s 
SSE instruction set. The practical implementations assume the ASCII alphabet with size 8-bits per symbol and the packing factor used is 16 (32) symbols 
per block in 128-bits (256-bits) SIMD technologies.



S. Faro, M.O. Külekci / Journal of Discrete Algorithms 28 (2014) 61–72 63
Fig. 1. An example of the application of wscmp(a,b), assuming w = 48, γ = 4 and α = 12.

string matching problem in Section 4 and report experimental results under various conditions in Section 5. Conclusions are 
given in Section 6.

2. Notions and terminology

Throughout the paper we will make use of the following notations and terminology. A string p of length m > 0 is 
represented as a finite array p[0..m − 1] of characters from a finite alphabet Σ of size σ . Thus, p[i] will denote the 
(i + 1)-st character of p, for 0 ≤ i < m, and p[i.. j] will denote the factor (or substring) of p contained between the (i + 1)-st 
and the ( j + 1)-st characters of p, for 0 ≤ i ≤ j < m. In some cases we will denote by pi the (i + 1)-st character of p, so that 
pi = p[i] and p = p0 p1 . . . pm−1.

We indicate with symbol w the number of bits in a computer word and with symbol γ = �logσ � the number of bits 
used for encoding a single character of the alphabet Σ . The number of characters of the alphabet that fit in a single word 
is shown by α = �w/γ �. Without loss in generality we will assume along the paper that γ divides w and that α is an even 
value.

In chunks of α characters, the string p is represented by an array P [0..k − 1] of length k = (m − 1)/α + 1. In particular 
we denote P = P0 P1 P2 . . . Pk−1, where Pi = piα piα+1 piα+2 . . . piα+α−1, for 0 ≤ i < k. The last block Pk−1 is not complete if 
m mod α 	= 0. In that case, the rightmost remaining characters of the block are set to zero.

Although different values of α and γ are possible, in most cases we assume that α = 16 and γ = 8, which is the most 
common case when working with characters in ASCII code and in a word RAM model with 128-bit registers, which are 
almost all available in recent commodity processors supporting single instruction multiple data (SIMD) operations.

Finally, we recall the notation of some bitwise infix operators on computer words, namely the bitwise and “&”, the 
bitwise or “|” and the left shift “
” operator (which shifts to the left its first argument by a number of bits equal to 
its second argument).

3. The model

In the design of our algorithms we use specialized word-size packed string matching instructions, based on the Intel 
streaming SIMD extensions (SSE) technology. SIMD instructions exist in many recent microprocessors supporting parallel 
execution of some operations on multiple data simultaneously via a set of special instructions working on limited number 
of special registers.

Although the usage of SIMD is explored deeply in multimedia processing, implementation of encryption/decryption al-
gorithms, and on some scientific calculations, it has not been much addressed in pattern matching.

In the design of our algorithms we make use of the following specialized word-size packed instructions. For each in-
struction we describe how it could be emulated by using SSE specialized intrinsics.

3.1. wscmp(a, b) (word-size compare instruction)

The wscmp instruction compares two w-bit words, handled as a block of α characters. In particular if a = a0a1 . . .aα−1
and b = b0b1 . . .bα−1 are the two w-bit integer parameters, wscmp(a, b) returns an α-bit value r = r0r1 . . . rα−1, where ri = 1
if and only if ai = bi , and ri = 0 otherwise. Fig. 1 shows an example of the application of wscmp(a, b), assuming w = 48, 
γ = 4 and α = 12.

The wscmp specialized instruction can be emulated in constant time by using the following sequence of specialized SIMD 
instructions

h ← _mm_cmpeq _epi8(a,b)

r ← _mm _movemask_epi8(h)

Specifically the _mm_cmpeq_epi8 instruction compares two 128-bit words, handled as a block of sixteen 8-bit values, 
and returns a 128-bit value h = h0h1 . . .h15, where hi = 18 if and only if ai = bi , and hi = 08 otherwise. It has a 0.5-cycle 
throughput and a 1-cycle latency.

The _mm_movemask_epi8 instruction gets a 128-bit parameter h, handled as sixteen 8-bit integers, and creates a 16-bit 
mask from the most significant bits of the 16 integers in h, and zero extends the upper bits.
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Fig. 2. An example of the application of wsmatch(a,b), assuming w = 48, γ = 4, α = 12 and k = 3.

Fig. 3. An example of the application of wsblend(a,b), assuming w = 48, γ = 4 and α = 12.

3.2. wsmatch(a, b) (word-size matching instruction)

The wsmatch instruction reports all occurrences of a short string b in a w-bit parameter a, handled as a string of α
characters. The parameter b is a string of length k ≤ α.

Specifically, if a = a0a1 . . .aα−1, and b = b0b1 . . .bk−1, then the wsmatch(a, b) instruction returns an α-bit integer value, 
r = r0r1 . . . rα−1, where ri = 1 if and only if ai+ j = b j for j = 0 . . .k − 1, i.e. an occurrence of b in a begins at position i. 
Notice that ri = 0 for α − k < i < α, since no occurrence of b in a could begin at a position greater than α − k. Fig. 2 shows 
an example of the application of wsmatch(a, b), assuming w = 48, γ = 4, α = 12 and k = 3.

The wsmatch(a, b) instruction can be emulated in constant time by using the following sequence of SIMD specialized 
instructions

h ← _mm_mpsadbw _epu8(a,b)

� ← _mm _cmpeq_epi8(h, z)

r ← _mm_movemask_epi8(�)

where z is a 128-bit register with all bits set to 0, i.e. z = 0128.
Specifically the _mm_mpsadbw_epu8(a, b) instruction gets two 128-bit words, handled as a block of sixteen 8-bit val-

ues, and returns a 128-bit value r = r0r1 . . . r7 (handled as a block of eight 16-bit values), where ri is computed as 
ri = ∑3

j=0 |ai+ j − b j | for i = 0 . . . 7.

Thus we have that ri = 016 if and only if ai+ j = b j for j = 0 . . . 3, i.e. an occurrence of the prefix of b with length 4 begins 
in a at position i. The _mm_mpsadbw_epu8 instruction has 1-cycle throughput and a 4-cycle latency. The _mm_cmpeq_epi8
and _mm_movemask_epi8 instructions have been described above.

3.3. wsblend(a, b) (word-size blend instruction)

The wsblend instruction blends two w-bit parameters, handled as two blocks of α characters. Specifically if
a = a0a1 . . .aα−1 and b = b0b1 . . .bα−1, the instruction returns a w-bit integer r = r0r1 . . . rα−1, where ri = ai+α/2, 
if 0 ≤ i < α/2, and ri = bi−α/2 if α/2 ≤ i < α, i.e. r = a α

2
a α

2 +1 . . .aα−1b0b1 . . .b α
2 −1. Fig. 3 shows an example of the ap-

plication of wsblend(a, b), assuming w = 48, γ = 4 and α = 12.
The wsblend(a, b) instruction can be emulated in constant time by using the following sequence of SIMD specialized 

instructions

h ← _mm_blend _epi16(a,b, c)

SHUFFLE ← _MM_SHUFFLE(1,0,3,2)

r ← _mm_shuffle_epi32(h,SHUFFLE)

Such instruction blends two 128-bit integers, a = a0a1 . . .a7 and b = b0b1 . . .b7, handled as packed 16-bit integers, according 
to a third parameter c. In particular it returns a 128-bit integer r = r0r1 . . . r7 where ri = ai if ci = 0, and ri = bi otherwise. 
If we set c = 164064 we get r = b0b1b2b3a4a5a6a7. The _mm_blend_epi16 instruction has 0.5-cycle throughput and a 1-cycle 
latency.

The _mm_shuffle_epi32 instruction shuffles a w-bit parameter, a = a0a1a2a3, handled as four 32-bit values, according to 
the order of the _MM_SHUFFLE macro. In this case we get r = a2a3a0a1. The _mm_shuffle_epi32 instruction has 1-cycle 
throughput and a 1-cycle latency.
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3.4. wscrc(a) (word-size cyclic redundancy check)

The wscrc instruction computes the 32-bit cyclic redundancy checksum (CRC) signature for a w-bit parameter. It is an 
error-detecting code commonly used in digital networks and storage devices to detect accidental changes to raw data and 
can also be used as a hash function.

The wscrc(a) instruction can be emulated in constant time by using the following SIMD specialized instruction

r ← _mm_crc32 _u64(a)

Specifically the _mm_crc32_u64(a) instruction computes the 32 bit cyclic redundancy check of a 64-bit block according 
to a polynomial. Such instruction has a 1-cycle throughput and a 3-cycle latency, thus provides a robust and fast way of 
computing hash values.

3.5. Additional specialized instructions

In addition to the above listed instructions, given an α-bit register r, in our description we make use of the symbol 
{r} to indicate the set of bits in r whose value is set. More formally, given an α-bit register r = r0r1r2 . . . rα−1, we have 
{r} = {i | 0 ≤ i < α and ri = 1}. Moreover, given a value s ∈N, we use for simplicity the expression s + {r} to indicate the set 
of values {s + i | i ∈ {r}}.

The cardinality of the set {r} can be computed in constant time by using the SIMD specialized instruction

n ← _mm_popcnt _u32(r)

which calculates the number of bits of the parameter r that are set to 1. Such instruction has 1-cycle throughput and a 
3-cycle latency.

Differently the list of values in {r} can be efficiently listed in O(α)-time and O(1)-space, or using a tabulation approach, 
in O(|{r}|)-time and O(2α)-space. In the latter case we need an O(α2α)-time preprocessing phase in order to address 
the 2α possible registers.

4. A new packed string matching algorithm

In this section we present the new packed string matching algorithm, named Exact Packed String Matching (EPSM) 
algorithm. EPSM is based on three different auxiliary algorithms, which we name EPSMa, EPSMb and EPSMc, respectively. 
The EPSMa, EPSMb and EPSMc procedures have been previously described in a preliminary result presented in [14].

The first two auxiliary algorithms, EPSMa and EPSMb, are designed to search for patterns of length, at most, α/2. When 
the length of the pattern is longer than α/2 the algorithms adopt a filter mechanism: they first search for a substring of 
the pattern of length α/2 and, when a candidate occurrence has been found, a naive check follows. The EPSMc algorithm 
adopts a filtering based solution and has been designed for searching medium length and long patterns.

All three algorithms run in O(nm) worst case time complexity and use, respectively, O(min{m, α}), O(1) and O(2k)

additional space, where k is a constant parameter. However, when m ≤ α/2 the EPSMa and EPSMb algorithms reach, re-
spectively, an O(mα + mn

α + occ) and O( n
α + occ) time complexity.

The EPSMa procedure is designed to be extremely fast in the case of very short patterns, i.e. when m ≤ α
2 , the EPSMb

procedure turns out to be a good choice when α
2 ≤ m < α, while EPSMc turns out to be effective when α ≤ m < w .

In practical cases we tuned the EPSM algorithm in order to run EPSMa when 0 < m < 4, EPSMb when 4 ≤ m < 16, EPSMc
when m ≥ 16. The pseudocode of the three algorithms is shown in Fig. 4.

4.1. EPSMa: searching for very short patterns

The EPSMa algorithm is designed to be extremely fast in the case of very short patterns and although it could be adapted 
to work for longer patterns its performance degrades as the length of the patterns increases.

The main idea in EPSMa algorithm is to mark the positions of the very short pattern’s symbols on the investigated 
text chunk. Assume we have m α-bits long bitmaps, where the bits of the ith bitmap are set to 1 at the positions of the 
appearances of the corresponding symbol pi , and to 0 elsewhere. For instance, if P = ab, the first bitmap will indicate the 
positions that letter a is observed, and the second one will do the same for letter b. If ab appears on the current block such 
that titi+1 = ab, for 0 ≤ i < (α − 1), then the position i on the first bitmap and position i + 1 on the second bitmap should 
be set to 1. Thus, the bitwise and between the one bit left-shifted second bitmap and the first bitmap should report a 1
at position i. Careful readers will quickly realize that, the occurrence of the reverse pattern ba will also produce a 1 at ith 
position. To avoid this error, we follow a sequential procedure such that at each step we perform the and operation between 
the previous bitmask and the newly computed bitmap that marks the positions of the current pattern symbol. Notice that 
initially the bitmask is set to all 1s. The details of the EPSMa is as follows.

The preprocessing of the algorithm (lines 1–4) is computed on the prefix of the pattern of length m′ = min{m, α2 }. 
If m′ = m the whole pattern is preprocessed and searched, otherwise the algorithm works as a filter, searching for all 
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EPSMa(p,m, t,n)

1. m′ ← min{m,α/2}
2. for i ← 0 to (m′ − 1) do
3. for j ← 0 to α − 1 do
4. Bi [ j] ← p[i]
5. for i ← 0 to (n/α) − 1 do
6. r ← 1α

7. for j ← 0 to m′ − 1 do
8. s j ← wscmp(Ti , B j)

9. r ← r & (s j 
 j)
10. if m = m′
11. then report occurrences at iα + {r}
12. else check positions iα + {r}
13. for j ← 0 to m − 2 do
14. check position (i + 1)α − j

EPSMb(p,m, t,n)

1. m′ ← min{m,α/2}
2. p′ ← p[0..m′ − 1]
3. for i ← 0 to (n/α) − 1 do
4. r ← wsmatch(Ti , p′)
5. if r 	= 0α then
6. if m = m′
7. then report occurrences at iα + {r}
8. else check positions iα + {r}
9. S ← wsblend(Ti , Ti+1)

10. r ← wsmatch(S, p′)
11. if r 	= 0α then
12. if m = m′
13. then report occurrences at iα + α

2 + {r}
14. else check positions iα + α

2 + {r}

EPSMc(p,m, t,n)

1. mask ← 0α−k1k

2. for i ← 0 to m − α do
3. v ← wscrc(p[i..i + α − 1])
4. v ← v & mask
5. L[v] ← L[v] ∪ {i}
6. sh ← (�m/(α/2)� − 1)

7. for i ← 0 to (n/(α/2)) − 1 do
8. v ← wscrc(Ti)

9. v ← v & mask
10. for all j ∈ L[v] do
11. if 0 ≤ i − j < n − m
12. then check position i − j
13. i ← i + sh

EPSM(p,m, t,n)

1. if m ≤ α/2 then return EPSMa(p,m, t,n)
2. if m ≤ α then return EPSMb(p,m, t,n)
3. return EPSMc(p,m, t,n)

Fig. 4. The EPSM algorithm and its EPSMa, the EPSMb and the EPSMc procedures.

occurrences of the prefix with length m′ and, after an occurrence has been found, naively checking the whole occurrence of 
the pattern.

Specifically the preprocessing phase consists in constructing an array B of m′ different strings of length α. Each string 
of the array exactly fits in a word of w bits. The i-th string in the array B consists of α copies of the character pi . More 
formally the string B[i], for 0 ≤ i < m′ , is defined as B[i] = (pi)

α .
For instance, if p = ab is a pattern of length m = 2, γ = 8 and w = 128, then B consists of two strings of length 

α = 16, defined as B[0] = a16 and B[1] = b16. The preprocessing phase of the algorithm requires O(min{m, α2 }α)-time and 
O(min{m, α2 })-space.

The searching phase of the algorithm (lines 5–14) processes the text t in chunks of α characters. Let N = n
α − 1 and let 

T = T0T1 . . . T N be the string t represented in chunks of characters. Each block of the text, Ti , is compared with the strings 
in the array B using the instruction wscmp.

Let s j = b0b1 . . .bα−1 be the α-bit register returned by the instruction wscmp(Ti, B[ j]), for 0 ≤ j < m′ . It can be easily 
proved that bk = 1 if and only if the k-th character of the block Ti is equal to p j , i.e. if and only if Ti[k] = p j (remember 
that B[ j] = (p j)

α ). Finally let r = r0r1 . . . rα−1 be the α-bit register defined as r = s0 & (s1 
 1) & (s2 
 2) & · · · & (sm′−1 

(m′ − 1)).
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It is easy to prove that p[0..m′ − 1] has an occurrence beginning at position j of Ti if and only if r j = 1. In fact r j = 1
only if sk[ j + k] = 1, for k = 0 . . .m′ − 1, which implies that Ti[ j + k] = pk , for k = 0 . . .m′ − 1.

Then, if m = m′ the algorithm reports the occurrences of the pattern at positions iα + {r}, if any. Otherwise we know 
that occurrences of the prefix of the pattern with length α/2 begin at positions iα + {r}. Thus the algorithm checks the 
occurrences beginning at those positions.

If we maintain, for each value r, with 0 ≤ r < 2α , a list of the values in the set {r}, the naive check of the occurrences 
can be done in O(|{r}|m)-time. When m = m′ the occurrences can be reported in O(|{r}|)-time.

Finally, observe that the m′ −1 possible occurrences crossing the blocks Ti and Ti+1 are naively checked by the algorithm 
(lines 13–14).

The overall time complexity of the EPSMa algorithm is O(nm), because in the worst case a naive check is required for 
each position of the text. However, when m ≤ α

2 the EPSMa algorithm achieves an O(n + occ) time complexity, where occ
is the number of occurrences of the pattern p in the text t .

4.2. EPSMb: searching for short patterns

The EPSMb algorithm searches for the whole pattern when its length is less or equal to α/2 and works as a filter 
algorithm for longer patterns. However, it is based on a more efficient filtering technique and turns out to be faster in the 
second case.

In a chunk of α characters, the occurrences of the pattern are investigated via the simple wsmatch function described 
above. Since the length of P is less than or equal to α/2, the appearances beginning in the first half of the investigated block 
end in the second half ordinarily, and need no further processing. However, it is possible that an occurrence beginning in the 
second half of the chunk may extend to the next chunk. Thus, instead of scanning in chunks of α symbols, we traverse the 
text in chunks of α/2 characters. We perform the wsblend operation to create an α-symbols long chunk by concatenating 
the second half of the current chunk with the first half of the next chunk, and check whether an occurrence exists on the 
boundary of the text blocks. The formal definition of the EPSMb is as follows.

Let m′ be the minimum between α/2 and m. Moreover let p′ be the prefix of p of length m′ . The searching phase of the 
algorithm (lines 3–14) processes the text t in chunks of α characters.

Let N = n
α − 1 and let T = T0T1 . . . T N be the string t represented in chunks of characters. Each block of the text, Ti , 

is searched one by one for occurrences of the string p′ using the instruction wsmatch.
Specifically, let r = r0r1 . . . rα−1 be the α-bit register returned by the instruction wsmatch(Ti, p′), for 0 ≤ j < m′ . We have 

that r j = 1 if and only if an occurrence of p′ begins at positions j of the block Ti , for 0 ≤ j < α/2. Then, if m′ = m (and 
hence p = p′) the algorithm simply returns positions iα + j, such that r j = 1. Otherwise, if m′ < m, the algorithm naively 
checks for the whole occurrences of the pattern starting at positions iα + j, such that r j = 1.

Notice that generally packed string matching instructions allow to read only blocks Ti of α characters (128 bits in the 
case of SSE instructions), where Ti = t[iα..(i +1)α −1]. Occurrences of the pattern beginning in the second half of the block 
Ti are checked separately. In particular a new block, S , obtained by applying the instruction wsblend(Ti, Ti+1), is processed 
in a similar way as block Ti . In this case we report all occurrences of the pattern beginning at positions iα + α/2 + j, 
with 0 ≤ j < α/2. One may argue that why blending is used instead of simply shifting the window. The reason is the SSE 
instructions used in this context require the operands to be 16-byte aligned in memory, where the performance degrades 
significantly otherwise. Thus, blending is more advantageous.

The resulting algorithm has an O(nm) worst case time complexity and requires O(1) additional space. When m ≤ α/2
the algorithm reaches the optimal O(n/α + occ) worst case time complexity.

4.3. EPSMc: searching for long patterns

The EPSMc algorithm is designed to be faster for medium and long patterns. It is based on a simple filtering method 
and uses a hash function for computing fingerprint values on blocks of α characters in a similar way as in Rabin–Karp 
algorithm [25]. The fingerprint values are computed by using a hash function h : Σα → {0, 1, . . . , 2k − 1}, for a constant 
parameter k ≤ α, that may vary according to the text or the pattern structures. In practical cases we chose a value of 
k = 11, which gave us best results during the benchmarks.

The hash function h used for computing the fingerprint value is computed in a very fast way by using the wscrc special-
ized instruction, and in particular

h(a) = wscrc(a) & 0α−k1k

for each A ∈ Σα , and where we remember that & is the bitwise and operation.
During the preprocessing phase (lines 1–6) a fingerprint value of k bits is computed for all substrings of the pattern of 

length α. Then a table L of size 2k is computed in order to store starting positions of all substrings of the pattern, indexed 
by their fingerprint values. In particular we have

L[v] = {
i
∣∣ h

(
p[i..i + α − 1]) = v

}

for all 0 ≤ v < 2k . Thus the preprocessing phase of the EPSMc algorithm takes O(m + 2k)-time.
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Let N = n
α − 1 and let T = T0T1 . . . T N be the string t represented in chunks of characters.

During the searching phase (lines 7–13) the EPSMc algorithm inspects the blocks of the text in steps of (�m/(α/2)� − 1)

positions.2 For each inspected block Ti the fingerprint value h(Ti) is computed and all positions in the set {iα − j | j ∈
L[h(Ti)]} are naively checked.

It is easy to observe that the EPSMc algorithm has an O(nm) worst case time complexity. However, despite its worst 
case time behavior it turns out to be very effective in practical cases.

5. Experimental results

In this section we present experimental results in order to compare the performances of our newly presented algorithms 
against the best solutions known in literature in the case of short patterns. We consider all the fastest algorithms in the 
case of short patterns as listed in a recent experimental evaluation by Faro and Lecroq [22,19]. In particular we compared 
EPSM with the following algorithms:

– the Hash algorithm using groups of q characters [30] (HASHq);
– the Extended Backward Oracle Matching algorithm [16,18] (EBOM);
– the Fast-Search algorithm using h sliding windows [6,7,21] (TVSBS);
– the TVSBS algorithm using h sliding windows [34,21] (TVSBS);
– the Shift-Or algorithm [1] (SO);
– the Shift-Or algorithm with q-grams [12] (UFNDMq);
– the Fast-Average-Optimal-Shift-Or algorithm [24] (FAOSOq);
– the q-gram filtering algorithm [13] (QFqf );
– the Forward Simplified BNDM algorithm using q-grams and f forward characters [16,18,32] (FSBNDMqf );
– the Forward Simplified BNDM algorithm using h sliding windows [16,18,21] (FSBNDM-Wh);
– the Packed SSE-Filter algorithm using SIMD instructions [27] (SSEF);
– the Packed Crochemore-Perrin algorithm using SIMD instructions [4] (SSECP).

We remember that the EPSM algorithm consists of the EPSMa algorithm, when m < 4, of the EPSMb algorithm when 
4 ≤ m ≤ 16, and of the EPSMc algorithm when m > 16.

In the case of algorithms making use of q grams, the value of q ranges in the set {2, 4, 6}. All algorithms have been 
implemented in the C programming language and have been tested using the Smart tool [20] for exact string matching. The 
experiments were executed locally on a machine running Ubuntu 11.10 (oneiric) with Intel i7-2600 processor with 16 GB 
memory. Algorithms have been compared in terms of running times, including any preprocessing time. For the evaluation 
we used a genome sequence, a protein sequence and a natural language text (English language), all sequences of 4 MB. 
The sequences are provided by the Smart research tool. For each input file, we have searched sets of 1000 patterns of fixed 
length m randomly extracted from the text, for m ranging from 2 to 32 (short patterns). Then, the mean of the running 
times has been reported.

Table 1, Table 2 and Table 3 show the experimental results obtained for a gnome sequence, a protein sequence and a 
natural language text, respectively.

In the case of algorithms using q-grams we have reported only the best result obtained by its variants. The values of q
which obtained the best running times are reported as apices. Running times are expressed in hundredths of seconds, best 
results have been boldfaced and underlined.

5.1. Efficiency

From experimental results it turns out that the EPSM algorithm has mostly the best performances for short patterns. 
When searching on a genome sequence it is second only to the BNDMq algorithm for 12 ≤ m ≤ 14 and to the SSECP 
algorithm when m = 6. Observe however that the EPSM algorithm is (up to 2 times) faster than the SSECP algorithm in 
most cases.

When searching on a natural language text the EPSM algorithm obtains in most cases the best results, and is second to 
BNDM based algorithms only for 20 ≤ m ≤ 22.

For increasing lengths of the pattern the performances of the EPSM algorithm remain stable, underlining a linear trend 
on average. However, the performances of other algorithms based on shift heuristics, slightly increase. This is more evident 
when searching on a protein sequence, where the algorithms based on bit-parallelism and q grams turn out to be the faster 
solutions for longer patterns. However, in this latter cases the EPSM algorithm is always very close the best solutions.

It is interesting to observe that the EPSM algorithm is faster than the SSECP algorithm in almost all cases, and the gap 
is more evident in the case of longer patterns. In fact, despite its optimal worst case time complexity, the SSECP algorithm 
shows an increasing trend on average, while the EPSM algorithm shows a linear behavior.

2 Actually, using (α/2) term instead of α directly stems from the limitation in practice that, the crc value can be computed on 64 bits rather than 128
bits in the current SSE instruction sets. Thus, any crc of a block defines the crc of the largest possible initial portion of the block.
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Table 1
Experimental results for searching short (on top) and long (on bottom) patterns on a genome sequence. Running times are expressed in hundredths of 
seconds, best results have been boldfaced and underlined.

m 2 4 6 8 12 16 20 24

HASHq – 10.87(3) 7.98(3) 7.40(3) 5.78(3) 4.57(3) 4.05(3) 3.70(5)

EBOM 8.01 7.76 7.96 7.61 7.62 6.68 6.08 5.52
FS-Wh 12.73(2) 9.70(2) 8.67(2) 8.33(4) 7.71(4) 7.84(4) 7.44v 7.61(4)

TVSBS-Wh 11.93(2) 9.72(2) 8.75(2) 8.34(2) 7.62(2) 7.81(2) 7.38(2) 7.54(2)

SO 7.86 7.80 7.91 7.89 7.77 7.93 7.80 7.88
FAOSOq – 10.65(2) 8.19(2) 6.35(2) 5.55(2) 4.40(4) 3.65(4) 3.46(4)

QFqs – 7.54(3,3) 6.12(4, 3) 5.04(4, 3) 3.11(4, 3) 2.65(4, 3) 2.42(4, 3) 2.22(6, 2)

FSBNDMqf 10.38(2,0) 7.61(4,2) 5.98(4, 1) 4.71(4, 1) 3.58(4, 1) 3.06(6, 2) 2.67(6, 2) 2.44(6, 2)

UFNDMq 8.54(2) 6.12(4) 4.71(4) 4.07(4) 3.30(6) 2.84(6) 2.55(6) 2.36(6)

SSECP 2.65 2.87 3.17 3.60 6.53 5.96 5.80 5.72
EPSM 2.09(a) 2.27(b) 3.23(b) 3.25(b) 3.28(b) 2.39(b) 2.47(c) 1.91(c)

m 32 64 128 256 512 1024 2048 4096

HASHq 3.10(5) 2.61(5) 2.15(5) 1.84(5) 1.66(5) 1.56(5) 1.54(5) 1.53(5)

EBOM 4.85 3.48 2.56 2.13 1.99 2.17 2.81 4.26
FS-Wh 7.86(2) 7.37(2) 7.04(2) 6.11(2) 5.99(2) 5.32(2) 4.97(2) 4.61(2)

TVSBS-Wh 7.15(2) 6.62(2) 6.69(2) 6.52(2) 6.52(2) 6.66(2) 6.59(2) 6.58(2)

SO 7.80 6.68 6.77 6.70 6.71 6.54 6.49 6.62
FAOSOq 4.30(4) 4.33(4) 4.34(4) 4.31(4) 4.35(4) 4.32(4) 4.34(4) 4.33(4)

QFqs 1.99(6, 2) 1.66(6, 2) 1.40(6, 2) 1.26(6, 2) 1.20(6, 2) 1.17(6, 2) 1.13(6, 2) 1.13(6, 2)

FSBNDM-Wh 3.56(2) 3.55(2) 3.57(2) 3.55(2) 3.55(2) 3.56(2) 3.57(2) 3.55(2)

FSBNDMqf 2.15(6, 1) 2.16(6, 1) 2.16(6, 1) 2.15(6, 1) 2.15(6, 1) 2.16(6, 1) 2.16(6, 1) 2.01(6, 2)

UFNDMq 2.24(6) 2.24(6) 2.23(6) 2.23(6) 2.23(6) 2.23(6) 2.24(6) 2.24(6)

SSEF 2.91 2.03 1.53 1.33 1.26 1.31 1.37 1.49
SSECP 5.52 5.32 5.20 5.18 5.17 5.10 5.20 5.26
EPSM 1.75(c) 1.46(c) 1.26(c) 1.21(c) 1.19(c) 1.21(c) 1.26(c) 1.43(c)

Table 2
Experimental results for searching short (on top) and long (on bottom) patterns on a protein sequence. Running times are expressed in hundredths of 
seconds, best results have been boldfaced and underlined.

m 2 4 6 8 12 16 20 24

HASHq – 10.70(3) 7.86(3) 7.63(3) 5.30(3) 4.23(3) 3.62(3) 3.31(3)

EBOM 6.54 3.58 2.83 2.62 2.33 2.20 2.11 2.03
FS-Wh 7.40(6) 5.07(6) 4.00(6) 3.42(6) 2.85(6) 2.60(6) 2.46(6) 2.40(6)

TVSBS-Wh 7.45(4) 6.16(6) 4.89(6) 4.24(6) 3.45(6) 2.56(6) 2.68(6) 2.50(6)

SO 7.88 7.91 7.83 7.78 7.79 8.03 7.79 7.99
FAOSOq – 6.14(2) 5.50(2) 4.22(4) 3.41(4) 3.37(4) 2.77(6) 2.72(6)

QFqs – 4.72(2,8) 3.25(2, 6) 2.96(3, 4) 2.49(3, 4) 2.18(3, 4) 2.00(3, 4) 1.89(3, 4)

FSBNDM-Wh 8.66(8) 5.52(4) 4.24(4) 3.61(4) 3.03(4) 2.74(4) 2.54(4) 2.40(4)

FSBNDMqf 7.80(2, 1) 4.53(2,0) 3.11(2, 0) 3.00(3, 1) 2.42(3, 1) 2.11(3, 1) 1.96(3, 1) 1.88(3, 1)

UFNDMq 6.95(2) 4.53(2) 3.55(2) 3.13(2) 2.63(2) 2.37(2) 2.18(4) 2.04(4)

SSECP 2.67 2.87 3.17 3.62 3.97 3.70 3.55 3.47
EPSM 2.11(a) 1.95(b) 2.26(b) 2.25(b) 2.24(b) 2.37(b) 2.44(c) 1.91(c)

m 32 64 128 256 512 1024 2048 4096

HASHq 2.91(3) 2.55(5) 2.06(5) 1.78(5) 1.59(5) 1.52(5) 1.52(5) 1.53(5)

EBOM 1.93 1.77 1.65 1.61 1.65 1.94 2.67 4.19
FS-Wh 2.31(6) 2.17(6) 2.04(6) 1.98(6) 1.95(6) 1.94(6) 1.92(6) 1.92(6)

TVSBS-Wh 2.27(6) 2.02(6) 1.71(6) 1.53(6) 1.44(6) 1.41(6) 1.39(6) 1.38(6)

SO 7.90 7.62 6.72 6.74 6.36 6.75 6.68 6.77
FAOSOq 4.30(4) 4.27(4) 4.31(4) 4.33(4) 4.35(4) 4.29(4) 4.27(4) 4.33(4)

QFqs 1.75(3, 4) 1.50(4, 3) 1.28(4, 3) 1.16(4, 3) 1.09(4, 3) 1.07(4, 3) 1.07(4, 3) 1.06(4, 3)

FSBNDM-Wh 2.21(4) 2.22(4) 2.20v 2.22(4) 2.21(4) 2.21(4) 2.22(4) 2.21(4)

FSBNDMqf 1.74(3, 1) 1.74(3, 1) 1.74(3, 1) 1.74(3, 1) 1.74(3, 1) 1.74(3, 1) 1.75(3, 1) 1.74(3, 1)

UFNDMq 1.94(4) 1.94(4) 1.95(4) 1.95(4) 1.95(4) 1.95(4) 1.95(4) 1.95(4)

SSEF 2.90 2.02 1.57 1.35 1.29 1.30 1.36 1.50
SSECP 3.35 3.28 3.24 3.21 3.20 3.22 3.24 3.27
EPSM 1.73(c) 1.45(c) 1.24(c) 1.18(c) 1.17(c) 1.19(c) 1.25(c) 1.41(c)
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Table 3
Experimental results for searching short (on top) and long (on bottom) patterns on a natural language text (English). Running times are expressed in 
hundredths of seconds, best results have been boldfaced and underlined.

m 2 4 6 8 12 16 20 24

HASHq – 10.43(3) 7.79(3) 7.59(3) 5.31(3) 4.23(3) 3.67(3) 3.29(3)

EBOM 7.14 4.42 3.76 3.45 3.25 3.08 2.98 2.87
FS-Wh 7.44(6) 6.11(6) 5.02(6) 4.36(6) 3.48(6) 3.24(6) 3.02(6) 2.87(6)

TVSBS-Wh 7.49(6) 6.42(6) 5.34(6) 4.74(6) 3.68(6) 3.25(6) 2.94(6) 2.74(6)

SO 7.88 7.66 7.87 7.73 7.81 7.69 7.84 7.95
FAOSOq – 7.05(2) 5.75(2) 4.75(4) 3.49(4) 3.40(4) 2.82(6) 2.73(6)

QFqs – 5.93(2,6) 4.38(2, 6) 3.67(3, 4) 2.85(4, 3) 2.41(4, 3) 2.20(4, 3) 2.08(4, 3)

FSBNDM-Wh 8.53(1) 6.65(2) 5.31(2) 4.56(4) 3.80(4) 3.39(4) 3.16(4) 2.93(4)

FSBNDMqf 7.75(2, 0) 5.77(2,0) 4.04(2, 0) 3.60(3, 1) 3.01(3, 1) 2.65(3, 1) 2.40(4, 1) 2.22(4, 1)

UFNDMQ4 7.23(2) 5.12(2) 4.23(4) 3.54(4) 2.91(4) 2.55(4) 2.33(4) 2.18(4)

SSECP 2.66 2.87 3.17 3.62 4.64 4.17 4.05 3.90
EPSM 2.11(a) 2.29(b) 2.58(b) 2.58(b) 2.57(b) 2.41(b) 2.48(c) 1.93(c)

m 32 64 128 256 512 1024 2048 4096

HASHq 2.92(3) 2.65(5) 2.11(5) 1.80(3) 1.59(3) 1.47(3) 1.42(3) 1.40(3)

EBOM 2.75 2.46 2.14 1.91 1.88 2.12 2.80 4.24
FS-Wh 2.68(6) 2.39(6) 2.05(6) 1.85(6) 1.71(6) 1.60(6) 1.55(6) 1.52(6)

TVSBS-Wh 2.49(6) 2.23(6) 1.87(6) 1.64(6) 1.52(6) 1.43(6) 1.40(6) 1.38(6)

SO 7.86 6.62 6.91 6.79 6.69 6.80 6.67 6.80
FAOSOq 4.27(4) 4.31(4) 4.35(4) 4.29(4) 4.31(4) 4.34(4) 4.32(4) 4.38(4)

QFq, s 1.91(4, 3) 1.62(4, 3) 1.38(4, 3) 1.08(6, 2) 1.15(6, 2) 1.11(6, 2) 1.09(6, 2) 1.08(6, 2)

FSBNDM-Wh 2.72(4) 2.72(4) 2.72(4) 2.73(4) 2.73(4) 2.74(4) 2.72(4) 2.74(4)

FSBNDMqf 2.07(4, 1) 2.07(4, 1) 2.07(4, 1) 2.08(4, 1) 2.08(4, 1) 2.08(4, 1) 2.07(4, 1) 2.08(4, 1)

UFNDMQ4 2.08 2.08 2.07 2.09 2.09 2.08 2.08 2.08

SSEF 2.89 2.00 1.48 1.30 1.26 1.32 1.36 1.50
SSECP 3.79 3.31 3.03 2.85 2.86 2.85 2.85 2.86
EPSM 1.76(c) 1.47(c) 1.26(c) 1.19(c) 1.18(c) 1.20(c) 1.26(c) 1.44(c)

5.2. Flexibility

Flexibility is used as an attribute of various types of systems. In the field of string matching, it refers to algorithms that 
can adapt when changes in the input data occur. Thus a string matching algorithm can be considered flexible when, for 
instance, it maintains good performances for both short and long patterns, or in the case of both small and large alphabets.

Most string matching algorithms obtain good performances only in the case of long patterns sacrificing their performance 
for short ones. This is a common behavior, for instance, for all algorithm which make use of a sliding window approach 
(Hashq, EBOM, FS-Wh and TVSBS-Wh). Such approach allows the pattern to slide along the text by performing subsequent 
shifts. Each shift can be at most as long as the length of the pattern. It turns out that statistically the shift increases when 
the length of the pattern increases, or when the size of the alphabet increases.

A decreasing trend in running times can be observer also in the case of suffix automata based algorithms (FSBNDM-Wh,
FSBNDMqf and QFqs). Although bit-parallel algorithms are designed to be extremely efficient in the case of short patterns, 
also this class of algorithms suffers of a lack in flexibility.

Only packed string matching algorithms turn out to have good performances for short patterns. This is the case of the 
SSECP algorithm whose performances, unfortunately, degrade when the length of the pattern increases.

On the contrary, the performances of the EPSM algorithm do not depend on pattern lengths and thus it is the only algo-
rithm which maintains very good performances for both short and long patterns. The performances of the EPSM algorithm 
are maintained also when the size of the alphabet decreases.

Thus we can state that the EPSM algorithm is the most flexible algorithm among the best solutions known in literature 
to date.

5.3. Stability

We evaluate the stability of an algorithm as the standard deviation of running times observed during the evaluation. 
Algorithm stability is an important feature in string matching when real time processing is needed. Such value shows how 
much variation exists from the average, i.e. the mean of the running times. A low standard deviation indicates that the 
running times tend to be very close to the mean, underlying a high stability of the algorithm. On the other hand an high 
standard deviation indicates that the running times are spread out over a large range of values, thus indicating a low 
stability. See Tables 4–6.
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Table 4
Values of standard deviation observed while searching short patterns on a genome sequence. Values are expressed in hundredths of seconds, best results 
have been boldfaced and underlined.

m 2 4 6 8 10 12 14 16 18 20 24 28

HASHq – 2.35 2.43 1.93 0.94 0.67 0.43 0.54 0.26 0.33 0.30 0.21
EBOM 2.58 2.65 2.55 2.43 2.14 1.67 1.59 1.27 0.93 0.87 0.79 0.68
FS-Wh 2.47 2.57 2.61 2.71 2.50 2.56 2.52 2.79 2.60 2.64 2.55 2.50
TVSBS-Wh 2.42 2.31 2.23 2.56 2.48 2.45 2.53 2.33 2.14 2.07 1.84 1.65

SO 2.47 2.52 2.42 2.50 2.46 2.48 2.51 2.46 2.49 2.49 2.52 2.47
FAOSOq – 2.48 2.38 1.10 0.58 0.71 0.74 0.60 0.72 0.67 0.63 0.18
QFqs – 2.45 1.01 0.66 0.34 0.14 0.14 0.14 0.14 0.09 0.12 0.08
FSBNDMqf 2.36 2.41 1.00 0.40 0.28 0.29 0.21 0.14 0.17 0.10 0.13 0.09
UFNDMq 2.55 0.86 0.57 0.27 0.22 0.11 0.11 0.14 0.11 0.11 0.14 0.11

SSECP 0.05 0.07 0.09 0.25 2.44 1.97 1.68 1.50 1.35 1.19 0.95 0.88
EPSM 0.09 0.11 0.34 0.36 0.34 0.33 0.33 0.11 0.10 0.07 0.10 0.07

Table 5
Values of standard deviation observed while searching short patterns on a protein sequence. Values are expressed in hundredths of seconds, best results 
have been boldfaced and underlined.

m 2 4 6 8 10 12 14 16 18 20 24 28

HASHq – 2.57 2.46 1.41 0.86 0.62 0.41 0.29 0.25 0.33 0.08 0.11
EBOM 1.34 0.18 0.39 0.13 0.11 0.15 0.11 0.09 0.12 0.09 0.11 0.07
FS-Wh 2.23 0.91 0.52 0.37 0.32 0.30 0.25 0.24 0.23 0.23 0.23 0.21
TVSBS-Wh 2.60 1.21 0.81 0.56 0.46 0.33 0.31 0.77 0.22 0.21 0.19 0.15

SO 2.52 2.52 2.49 2.44 2.50 2.44 2.52 2.45 2.43 2.41 2.44 2.49
FAOSOq – 1.13 2.58 0.44 0.40 0.24 0.17 0.18 0.29 0.13 0.14 0.09
QFqs – 1.47 0.21 0.08 0.09 0.10 0.09 0.09 0.09 0.09 0.08 0.10
FSBNDM-Wh – 1.30 0.65 0.38 0.26 0.22 0.17 0.16 0.14 0.14 0.11 0.13
FSBNDMqf 2.75 0.68 0.50 0.12 0.09 0.10 0.10 0.09 0.09 0.09 0.09 0.08
UFNDMq 1.33 0.40 0.33 0.15 0.20 0.16 0.11 0.11 0.11 0.10 0.09 0.08

SSECP 0.06 0.15 0.09 0.22 2.15 1.72 1.29 1.24 1.06 0.96 0.78 0.60
EPSM 0.11 0.53 0.10 0.10 0.10 0.13 0.10 0.09 0.08 0.08 0.07 0.06

Table 6
Values of standard deviation observed while searching short patterns on a natural language text (English). Values are expressed in hundredths of seconds, 
best results have been boldfaced and underlined.

m 2 4 6 8 10 12 14 16 18 20 24 28

HASHq – 2.16 2.54 1.48 0.89 0.63 0.49 0.29 0.24 0.16 0.18 0.13
EBOM 1.68 1.32 1.02 0.89 0.78 0.74 0.61 0.60 0.56 0.51 0.45 0.41
FS-Wh 3.16 2.36 1.58 1.27 1.05 0.92 0.82 0.77 0.71 0.65 0.59 0.52
TVSBS-Wh 3.08 2.63 1.94 1.50 1.16 0.96 0.82 0.78 0.68 0.60 0.50 0.43

SO 2.47 2.53 2.47 2.49 2.51 2.56 2.47 2.44 2.40 2.51 2.40 2.42
FAOSOq – 1.90 0.85 0.55 0.72 0.77 0.52 0.82 0.67 0.64 0.57 0.18
QFqs – 2.31 1.03 0.85 0.67 0.23 0.18 0.16 0.17 0.14 0.12 0.11
FSBNDMqf – 2.23 0.76 0.55 0.34 0.31 0.25 0.24 0.23 0.21 0.17 0.16
UFNDMq 2.13 0.94 0.36 0.30 0.12 0.08 0.10 0.15 0.10 0.12 0.11 0.10

SSECP 0.10 0.11 0.10 0.14 2.03 1.74 1.44 1.28 1.22 1.17 1.09 1.02
EPSM 0.11 0.13 0.82 0.84 0.79 0.78 0.77 0.12 0.08 0.12 0.07 0.10

It turns out from our observations that almost all algorithms have a low stability for short patterns while their stability 
increases when the length of the pattern increases. Such behavior becomes more evident for larger alphabets.

Sometimes an opposite behavior can be observed when searching on texts over a small alphabet like DNA sequences. 
This is the case, for instance, of FS-Wh and TVSBS-Wh algorithms, whose stability decreases for small alphabets when the 
length of the pattern gets longer. Observe also that the SSECP algorithm shows such behavior for both small and large 
alphabets.

6. Conclusions

We presented a new packed exact string matching algorithm based on the Intel streaming SIMD extensions technology. 
The presented algorithm, named EPSM, is based on three auxiliary algorithms which are used when 0 < m < 4, m ≥ 4, and 
m ≥ 16, respectively. Despite the O(nm)-worst case time complexity the resulting algorithm turns out to be very fast in 
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the case of very short patterns. From our experimental results it turns out that the EPSM algorithm is in general the best 
solutions when m ≤ 32. It could be interesting to investigate the possibility to improve the performances of packed string 
matching algorithms by introducing shift heuristics.
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