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In this note we present three efficient variations of the occurrence heuristic, adopted by 
many exact string matching algorithms and first introduced in the well-known Boyer–
Moore algorithm. Our first heuristic, called improved-occurrence heuristic, is a simple 
improvement of the rule introduced by Sunday in his Quick-Search algorithm. Our 
second heuristic, called worst-occurrence heuristic, achieves its speed-up by selecting the 
relative position which yields the largest average advancement. Finally, our third heuristic, 
called jumping-occurrence heuristic, uses two characters for computing the next shift. 
Setting the distance between these two characters optimally allows one to maximize the 
average advancement. The worst-occurrence and jumping-occurrence heuristics tune their 
parameters according to the distribution of the characters in the text. Experimental results 
show that the newly proposed heuristics achieve very good results on average, especially 
in the case of small alphabets.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Given a text t and a pattern p over some alphabet Σ , the string matching problem consists in finding all occurrences of the 
pattern p in the text t . In a computational model in which the matching algorithm is restricted to reading all the characters 
of the text one by one, the optimal worst-case complexity is O(n). However, in several practical cases it is not necessary to 
read all text characters, achieving sublinear performances on average. The optimal average-case complexity is O(n/m log σ)

[16] and it is interesting to note that many such algorithms have O(nm)-time complexity in the worst case [10].
This is the case for the celebrated Boyer–Moore (BM) algorithm [2], the progenitor of several algorithmic variants which 

aim at efficiently computing shift increments close to optimal. The Boyer–Moore algorithm computes shift increments as 
the maximum of the values suggested by the good-suffix heuristic and the occurrence heuristic, provided that both of them 
are applicable. However, many subsequent efficient variants of the Boyer–Moore algorithm just dropped the good-suffix 
heuristic and based the calculation of the shift increments only on variants of the occurrence heuristic. Some variants are 
still considered among the most efficient algorithms in practical cases (see [10]).

In general, most string matching algorithms work as follows. They scan the text by sliding a text window whose size is 
generally equal to m. For each text window, its characters are compared with the corresponding characters of the pattern 
or suitable transitions are performed on some kind of automaton (this specific phase is called a matching attempt). After a 
complete match of the pattern is found or a mismatch is detected, the current window is shifted to the right by a certain 
number of positions. This phase is usually referred to as the sliding window mechanism. When the search starts, the left 

✩ A conference version of the results presented in this paper has been previously published in [7].
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end of the text and of the current window are aligned. Subsequently, the sliding window mechanism is repeated until the 
right end of the window goes past the right end of the text. Each matching attempt can be naturally associated with the 
position s in the text where the current window t[s .. s + m − 1] is positioned.

The occurrence heuristic uses a single character for shifting. Specifically, it states that when a mismatch is found at 
a given position j of the text, then the pattern can be safely shifted in such a way that its rightmost occurrence of the 
mismatching character in the text, if present, is aligned with the relative position j in the text.

In this paper we present three improvements of the occurrence heuristic which turn out to be more efficient in practical 
cases, especially in the case of small alphabets. In particular, we will introduce the following heuristics:

1. the improved-occurrence heuristic, which is based on the match of the rightmost character of the pattern with the 
corresponding character in the text;

2. the worst-occurrence heuristic, which selects a relative position yielding the largest average advancement according to 
the text characters’ distribution;

3. the jumping-occurrence heuristic, which uses two characters for computing the shift advancements in the searching 
phase. The relative distance between the two characters is computed so as to maximize the average shift advancements, 
based on the text characters’ distribution.

The paper is organized as follows. Some useful notations and terminology are preliminarily recalled in Section 2. Then, 
in Section 3 we briefly revise the occurrence heuristic and some of its variants. In Section 4 we present the first of our 
proposed occurrence heuristics, namely the improved-occurrence heuristic, and in Sections 5 and 6 we introduce the 
worst-occurrence and the jumping-occurrence heuristics, respectively. Finally, in Section 7 we present and comment on 
experimental results on the performance of our proposed heuristics in comparison with the best known algorithms present 
in literature based on the occurrence heuristic. Finally, we draw our conclusions in Section 8.

2. Notation and terminology

A string p of length |p| = m ≥ 0 over a finite alphabet Σ is represented as a finite array p[0 .. m − 1]. By p[i] we denote 
the (i +1)-st character of p, for 0 ≤ i < m. Likewise, by p[i .. j] we denote the substring of p contained between the (i +1)-st 
and the ( j + 1)-st characters of p (including the boundaries), where 0 ≤ i ≤ j < m.

Let t be a text of length n and let p be a pattern of length m. If the character p[0] is aligned with the character t[s] of 
the text, so that p[i] is aligned with t[s + i], for 0 ≤ i ≤ m − 1, we say that the pattern p has shift s in t . In this case, the 
substring t[s .. s + m − 1] is called the current window of the text. If t[s .. s + m − 1] = p, we say that the shift s is valid. Then 
the string matching problem consists in finding all valid shifts of p in t , for a pattern p and a text t .

3. The occurrence heuristic and some of its variants

The well-known occurrence heuristic was introduced in [2] as one of the shift rules used by the Boyer–Moore algorithm. 
The work in [15,8] provides a uniform framework for describing all safe shifts provided by the Boyer–Moore-type pattern 
matching algorithms. Specifically, during a matching attempt the Boyer–Moore algorithm scans the current window (of the 
text) from right to left and, at the end of the matching phase, it computes the shift increment as the larger value given by 
the good-suffix and the occurrence heuristics (see Fig. 1).

The occurrence heuristic states that if c = t[s + i] �= p[i] is the first mismatching character (with 0 ≤ i ≤ m − 1), while 
scanning p and t (with shift s) from right to left, then p can be safely shifted in such a way that its rightmost occurrence 
of c, if present, is aligned with position (s + i) in t (provided that such an occurrence lies in p[0 .. i − 1], otherwise the 
occurrence heuristic has no effect). In the case in which c does not occur in p, then p can be safely shifted just past position 
(s + i) in t . More formally, the shift increment suggested by the occurrence heuristic is given by (bcp(t[s + i]) − (m − 1 − i)), 
where, for c ∈ Σ ,

bcp(c) =Def min
({

k
∣∣ 0 ≤ k ≤ m − 1 and p[m − 1 − k] = c

} ∪ {m}).
Notice that when bcp(t[s + i]) < m − i − 1, the occurrence heuristic is not applicable, as it would suggest a negative shift 

increment.
Observe that the table bcp of the occurrence heuristic, for a given a pattern p of length m, can be computed in O(m +σ)

time and O(σ ) space, where σ is the size of the alphabet Σ .
Due to the simplicity and ease of implementation of the occurrence heuristic, some variants of the Boyer–Moore al-

gorithm were based just on it, dropping the good-suffix heuristic. For instance, Horspool [11] suggested the following 
simplification of the original Boyer–Moore algorithm, which performs better in practical cases. He just dropped the good-
suffix heuristic and proposed to compute shift advancements in such a way that the rightmost character c = t[s + m − 1] of 
the current window is aligned with its rightmost occurrence on p[0 .. m − 2], if present; otherwise the pattern is advanced 
just past the window. This amounts to advance the shift by hbcp(t[s + m − 1]) positions, where

hbcp(c) =Def min
({

m − 1 − k
∣∣ 0 ≤ k < m − 1 and p[k] = c

} ∪ {m}).
The resulting algorithm performs well in practice and is easy to implement.
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BoyerMoore(p,m, t,n)

1. gsp ← PrecomputeGS(p,m)

2. bcp ← PrecomputeBC(p,m)

3. s ← 0
4. while (s ≤ n − m) do
5. i ← m − 1
6. while (i ≥ 0 and p[i] = t[s + i]) do
7. i ← i − 1
8. if (i < 0) then
9. Output(s)

10. s ← s + gsp(0)

11. else s ← max{gsp(i + 1),bcp(t[i])}

Fig. 1. The Boyer–Moore string matching algorithm.

The Quick-Search algorithm, presented in [14], also uses a modification of the original occurrence heuristic, much along 
the same lines as the Horspool algorithm. Specifically, it is based on the following observation: when a mismatching charac-
ter is encountered, the pattern is always shifted to the right by at least one character, but never by more than m characters. 
Thus, the character c = t[s + m] is always involved in testing for the next alignment. So, one can apply the bad character 
rule to t[s +m], rather than to the mismatching character, possibly obtaining larger shift advancements. This corresponds to 
advance the shift by qbcp(t[s + m]) positions, where

qbcp(c) =Def min
({

m − k
∣∣ 0 ≤ k < m and p[k] = c

} ∪ {m + 1}).
Experimental tests have shown that the Quick-Search algorithm is very fast especially for short patterns (cf. [10]).

Finally, the Smith algorithm [13] computes its shift advancements by taking the largest value suggested by the Horspool 
and the Quick-Search bad character rules. Its preprocessing phase is performed in O (m + σ)-time and O (σ )-space com-
plexity, while its search phase has O (mn) worst case time. Although the role of the good-suffix heuristic in practical string 
matching algorithms has recently been reappraised [3–5], also in consideration of the fact that often it is as effective as the 
bad character heuristic, especially in the case of non-periodic patterns, the bad character heuristic is still considered one of 
the most powerful method for speeding up the performance of string matching algorithms (see for instance [10,9]).

Other efficient variants of the Boyer–Moore algorithm extend the previous algorithms in that their occurrence heuristics 
use two characters rather than just one. For instance the Zhu–Takaoka algorithm [17] extends the Horspool algorithm by 
using the last two characters t[s + m − 2] and t[s + m − 1] in place of only t[s + m − 1]. A more effective algorithm, due 
to Berry and Ravindran [1], extends the Quick-Search algorithm in a similar manner, by using the characters t[s + m] and 
t[s + m + 1] in place of only t[s + m].

It is to be noted, though, that the precomputation of the table used by an occurrence heuristic based on two text 
characters requires O(σ 2)-space and O(m + σ 2)-time complexity.

4. A simple improved occurrence heuristic

For a given shift s, the Horspool and the Quick-Search algorithms compute their shift advancements by applying the 
occurrence heuristic on a fixed position s + q of the text, with q = m − 1 and q = m, respectively. We refer to the value q as 
the occurrence relative position.

In favorable conditions, it may be possible to use an occurrence relative position q > m, which may lead to even larger 
advancements, provided that no matching can ever possibly be skipped. In such a situation, we say that the occurrence 
relative position q is safe (for shifting).

To this purpose, we begin by introducing the generalized occurrence function gbcp(i, c). Suppose the pattern p has shift 
s in the text t . For a given occurrence relative position 0 ≤ i ≤ 2m − 1, gbcp(i, t[s + i]) is the shift advancement such that 
the character t[s + i] is aligned with its rightmost occurrence in p[0 .. min(i, m) − 1], if present; otherwise gbcp(i, t[s + i])
evaluates to i + 1 (this corresponds to advancing the pattern just past position s + i of the text). This amounts to putting

gbcp(i, c) =Def min
({

i − k
∣∣ 0 ≤ k < min(i,m) and p[k] = c

} ∪ {i + 1}),
for c ∈ Σ and i ≥ 0.1

It is clear that, gbcp(i, c) ≥ 1 always holds. Additionally, the shift rules of the Horspool and Quick-Search algorithms 
can be expressed in terms of the generalized occurrence function by hbcp(c) = gbcp(m − 1, c) and qbcp(c) = gbcp(m, c), 
respectively, for c ∈ Σ .

We will define our improved occurrence heuristic (IOH) in terms of the generalized occurrence function gbcp(i, c). Let 
again s be the shift of the current text window. We distinguish the following two cases:

1 A restricted variant of the generalized occurrence function gbcp was presented in [6].
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PrecomputeIOH(p,m, step)

1. for each c ∈ Σ do
2. ibc[c] ← step + 1
3. for i ← 0 to m − 1 do
4. ibc[p[i]] ← step − i
5. return ibc

ImprovedOccurrenceMatcher(p,m, t,n)

1. step1 ← step2 ← 2m − 1
2. for i ← 0 to m − 2 do
3. if p[i] = p[m − 1] then
4. then step1 ← 2m − i − 2
5. else step2 ← 2m − i − 2
6. ibc1 ← PrecomputeIOH(p,m, step1)

7. ibc2 ← PrecomputeIOH(p,m, step2)

8. s ← 0
9. while (s ≤ n − m) do

10. if (p[m − 1] = t[s + m − 1]) then
11. i ← 0
12. while (i < m and p[i] = t[s + i]) do
13. i ← i + 1
14. if (i = m) then Output(s)
15. s ← s + ibc1[t[s + step1]]
16. else s ← s + ibc2[t[s + step2]]

Fig. 2. A string matching algorithm based on the heuristic IOH.

Case p[m − 1] = t[s + m − 1]: Let i0 be the rightmost position in the substring p[0 .. m − 2] such that p[i0] = p[m − 1], 
provided that p[m − 1] occurs in p[0 .. m − 2]; otherwise let i0 be −1. Then the occurrence relative position 
q1 = 2m − i0 − 2 is safe for shifting, since no occurrence of the character p[m − 1] exists from position i0 + 1 to 
position m − 2. More formally, q1 can be defined as

q1 =Def min
({

2m − i − 2
∣∣ p[i] = p[m − 1] and 0 ≤ i ≤ m − 2

} ∪ {2m − 1}).
Case p[m − 1] �= t[s + m − 1]: In this case, let i0 be the rightmost position in p[0 .. m − 2] such that p[i0] �= p[m − 1], 

provided that p[0 .. m − 2] contains some character distinct from p[m − 1], otherwise let i0 be −1. Then the 
occurrence relative position q2 = 2m − i0 − 2 is safe for shifting, since no character different from p[m − 1] exists 
from position i0 + 1 to position m − 2. More formally, q2 is defined as

q2 =Def min
({

2m − i − 2
∣∣ p[i] �= p[m − 1] and 0 ≤ i ≤ m − 2

} ∪ {2m − 1}).
The two occurrence relative positions q1 and q2 are then used by our heuristic IOH to calculate the shift advancements 

during the search phase of the algorithm ImprovedOccurrenceMatcher in Fig. 2, based on the following two occurrence 
functions

ibc1p(c) =Def gbcp(q1, c), ibc2p(c) =Def gbcp(q2, c).

These are computed by procedure PrecomputeIOH, shown in Fig. 2, in O(m + σ) time and O(σ ) space.

5. A self-tuned occurrence heuristic

For a pattern p of length m, a text t , and a shift s, the heuristic IOH presented in the previous section computes 
shift advancements using the rule ibc1p or ibc2p , based on two different relative positions, according to whether the last 
character of the pattern p matches its corresponding text character t[s + m − 1] or not. Differently, the Horspool and the 
Quick-Search algorithms compute their shift advancements by applying the occurrence heuristic on a fixed position s + q of 
the text, with q equal, respectively, to m − 1 and to m. In this section we will show that, given a pattern p and a text t
with known character distribution, we can compute efficiently an occurrence relative position, to be called worst-occurrence 
relative position, which ensures the largest shift advancement on the average. The worst-occurrence heuristic (WOH) is then 
the corresponding occurrence heuristic based on the worst-occurrence relative position.

5.1. Finding the worst-occurrence relative position

Again, let t and p be respectively a text and a pattern over a common alphabet Σ and let f : Σ → [0, 1] be the relative 
frequency function of the characters of t , so that 

∑
c∈Σ f (c) = 1 holds.

For a given occurrence relative position 0 ≤ i ≤ m, the average shift advancement of the generalized occurrence function 
gbcp is given by the function

advp, f (i) =Def

∑
c∈Σ

f (c) · gbcp(i, c). (1)

We then define the worst-occurrence relative position q∗ as the smallest position 0 ≤ q ≤ m which maximizes advp, f (q), i.e.,
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FindWorstOccurrence(p,m,Σ, f )
1. for each c ∈ Σ do
2. lp[c] ← −1
3. adv ← 1
4. max ← 1
5. q ← 0
6. for i ← 1 to m do
7. gbc ← i − lp[p[i − 1]] − 1
8. adv ← adv − f (p[i − 1]) · gbc + 1
9. lp[p[i − 1]] ← i − 1

10. if (adv > max) then
11. max ← adv
12. q ← i
13. return q

PrecomputeWOH(p,m,q)
1. for each c ∈ Σ do
2. wo[c] ← q + 1
3. for i ← 0 to q − 1 do
4. wo[p[i]] ← q − i
5. return wo

WorstOccurrenceMatcher(p,m, t,n)
1. q ← FindWorstOccurrence(p,m,Σ, f )
2. wo ← PrecomputeWOH(p,m,q)

3. s ← 0
4. while (s ≤ n − m) do
5. i ← 0
6. while (i < m and p[i] = t[s + i]) do
7. i ← i + 1
8. if (i = m) then Output(s)
9. s ← s + wo[t[s + q]]

Fig. 3. The procedure FindWorstOccurrence, the procedure PrecomputeWOH and the algorithm WorstOccurrenceMatcher.

q∗ =Def min
{

q
∣∣ 0 ≤ q ≤ m and advp, f (q) = max

0≤i≤m
advp, f (i)

}
.

Procedure FindWorstOccurrence in Fig. 3 computes efficiently the position q∗ , by exploiting the recurrence

advp, f (i) =
{

1 if i = 0
advp, f (i − 1) − f (p[i − 1]) · gbcp(i − 1, p[i − 1]) + 1 if 1 ≤ i ≤ m

for the calculation of the function advp, f (lines 3 and 8), which, in turn, is based on the recurrence

gbcp(i, c) =
{

1 if i = 0 or c = p[i − 1]
gbcp(i − 1, c) + 1 otherwise,

for 0 ≤ i ≤ m and c ∈ Σ .
Notice that the entries of the generalized occurrence function gbcp present in the above recurrence relation for advp, f

are only of the form gbcp( j, p[ j]). These can be expressed readily in terms of the last-position functions lpi
p : Σ →

{−1, 0, . . . , m − 1}, defined (for i = 0, 1, . . . , m) by

lpi
p(c) =Def max

({
j
∣∣ 0 ≤ j < i and p[ j] = c

} ∪ {−1}),
i.e., lpi

p(c) is the rightmost position of c in p[0 .. i − 1], if c is present in p[0 .. i − 1], otherwise lpi
p(c) is −1. In fact, we have

gbcp

(
i, p[i]) = i − lpi

p

(
p[i]),

for 0 ≤ i ≤ m − 1 (cf. line 7 of the for-loop).
The last-position functions can efficiently be computed during a left to right scanning of the pattern. These are main-

tained as a single array lp of size σ by the procedure FindWorstOccurrence. The array lp is initialized at lines 1–2 and 
subsequently updated at line 9 of the for-loop, by resorting to the recursive relation

lpi
p(c) =

⎧⎨⎩
−1 if i = 0
i − 1 if i > 0 ∧ c = p[i − 1]
lpi−1(c) if i > 0 ∧ c �= p[i − 1].
p
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It is easy to observe that the procedure FindWorstOccurrence has an overall O(m +σ)-time and O(σ )-space complex-
ity.

5.2. The worst-occurrence heuristic

The worst-occurrence heuristic uses the position q∗ computed by the procedure FindWorstOccurrence to calculate shift 
advancements during the search phase in such a way that the character t[s + q∗] is aligned with its rightmost occurrence 
on p[0 .. q∗ − 1], if present; otherwise the pattern is advanced just past position s + q∗ of the text. This corresponds to 
advancing the shift by wop(t[s + q∗]) positions, where

wop(c) =Def min
({

i
∣∣ 1 ≤ i ≤ q∗ and p

[
q∗ − i

] = c
} ∪ {

q∗ + 1
})

.

Observe that, for q∗ = 0, the advancement is equal to 1. See Fig. 2 for a simple implementation of the resulting algorithm. 
The procedure PrecomputeWOH, shown in Fig. 3, computes the table which implements the worst-occurrence heuristic in 
O(m + σ) time and O(σ ) space.

5.3. Finding the relative frequency of characters

The frequency of characters in texts has often been used in string matching algorithms for speeding up the searching 
process [14,1,12]. Such an approach is particularly useful when one is searching texts in natural languages, whose character 
distributions are well studied, and therefore known in advance. However, also in the case of texts in natural languages, 
the exact character distribution cannot be predicted, since character frequencies may depend both on the writer and on 
the subject. The situation may become even worse in the case of other types of sequences. In such contexts, different 
approaches can be adopted for retrieving good approximations of the frequency of characters in order to apply accurately 
the worst-occurrence heuristic presented above. Here we propose some of them.

(i) In a preprocessing phase, compute the character frequencies of an initial segment of the text (say of no more than γ
characters).

(ii) Run the first γ iterations of the algorithm WorstOccurrenceMatcher, assuming a priori a default distribution of char-
acters (e.g., the uniform distribution). At the same time, compute the relative frequency of the first γ characters and 
then recompute the occurrence heuristic according to the estimated frequency.

(iii) While running the algorithm WorstOccurrenceMatcher, keep updating the relative frequencies of the characters. At 
regular intervals (say of γ characters), or when the difference between the current relative frequencies and the one 
used in the worst-occurrence heuristic exceeds a threshold, recompute the heuristic.

From our tests, it turns out that when the distribution of characters does not vary very much along the text, a good 
approximation of the frequencies can be computed even for quite small values of γ in the case of strategies (i) and (ii). For 
instance, in our experiments reported in Section 7 we used the value γ = 100, in combination with strategy (i). When the 
character frequencies tend to vary very much along the text (for instance, in the case of multi-language texts or in musical 
sequences), strategy (iii) might be preferable. However, one must keep in mind that the overhead can sensibly affect the 
algorithm performance.

6. A jumping-occurrence heuristic

We recall that, for a pattern p of length m, the occurrence heuristics of the Zhu–Takaoka [17] and the Berry–
Ravindran [1] algorithms are based on two consecutive characters, starting at positions m − 2 and m, respectively. In both 
cases, the distance between the two characters involved in the occurrence heuristics is 1. We refer to such a distance as the 
occurrence jump distance.

It may be possible that other occurrence jump distances generate larger shift advancements. We will show in this section 
how, given a pattern p and a text t with known character distribution, we can compute efficiently an optimal occurrence 
jump distance which ensures the largest shift advancements on the average. The jumping-occurrence heuristic will be then 
the occurrence heuristic based on two characters with optimal occurrence jump distance.

6.1. Finding the optimal occurrence jump distance

Again, let p be a pattern of length m. To begin with, we introduce the generalized double occurrence function
gbc2

p(i, j, c1, c2) relative to p, with 0 ≤ i ≤ m, 1 ≤ j ≤ m and c1, c2 ∈ Σ , intended to calculate the largest safe shift ad-
vancement for p compatible with the constraints t[s + i] = c1 and t[s + i + j] = c2, when p has shift s with respect to a 
text t . Thus, we formally define gbc2

p(i, j, c1, c2) as:
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Fig. 4. The four cases of the generalized double occurrence heuristic. In Case 1 only character c1 is involved in the computation of the shift advancement. 
In Case 2 both characters c1 and c2 occur in the pattern p, whereas in Case 3 only character c2 is involved in the shift. Finally, Case 4 corresponds to a 
maximal shift advancement.

min
({

i − k
∣∣ m − j ≤ k < i ∧ p[k] = c1

}
(Case 1)

∪ {
i − k

∣∣ 0 ≤ k < min(m − j, i) ∧ p[k] = c1 ∧ p[k + j] = c2
}

(Case 2)

∪ {
i + j − k

∣∣ 0 ≤ k < j ∧ p[k] = c2
}

(Case 3)

∪ {i + j + 1}) (Case 4)

where the set in Case 1 describes the case of small advancements, when only the character c1 is involved; the set in Case 2 
describes the case when both c1 and c2 are involved in the advancement; the set in Case 3 describes the case of a large 
shift, when only character c2 is involved; finally the set in Case 4 describes the case when the pattern is advanced by the 
maximal amount of characters. The four cases are depicted in Fig. 4.

Clearly, gbc2
p(i, j, c1, c2) ≥ 1 always holds and it can easily be checked that

gbcp(i, c1) < i + j − m + 1 �⇒ gbc2
p(i, j, c1, c2) = gbcp(i, c1). (2)

Additionally, the shift rules of the Zhu–Takaoka and Berry–Ravindran algorithms can be expressed in terms of the general-
ized double occurrence function as, respectively, gbc2

p(m − 2, 1, c1, c2) and gbc2
p(m, 1, c1, c2).

In the following we will refer to the parameters i and j of gbc2
p as the relative occurrence position and the occurrence jump 

distance, respectively. For fixed values of the relative occurrence position and the occurrence jump distance, the generalized 
double occurrence function can be computed in O(σ 2 + mσ) time and O(σ 2) space.

Let us fix, momentarily, the relative occurrence position i to m − 1 and let f : Σ → [0, 1] be the relative frequency of the 
characters in the text t . For a given 1 ≤ � ≤ m, the probability that the generalized occurrence function gbcp yields a shift 
advancement of length at least � when inspecting the character at relative position m − 1 is

Pr
{

gbcp(m − 1, c) ≥ �
∣∣ c ∈ Σ

} =
∑
c∈Σ

gbcp(m−1,c)≥�

f (c).

Example 1. Let p = ACGAACT be a pattern of m = 7 characters over the alphabet Σ = {A, C, G, T} of four elements with a 
relative frequency f such that f (A) = 0.3, f (C) = 0.1, f (G) = 0.4 and f (T) = 0.2. The shift advancements given by each 
character at the relative occurrence position m − 1 = 6 are gbcp(6, A) = 2, gbcp(6, C) = 1, gbcp(6, G) = 4, and gbcp(6, T) = 7, 
respectively. Thus, advp, f (6) = 3.7.

The probabilities to have a shift advancement of length at least �, for 1 ≤ � ≤ 8, are given by the following values

Pr
{

gbcp(6, c) ≥ 1
∣∣ c ∈ Σ

} = f (A) + f (C) + f (G) + f (T) = 1;
Pr

{
gbcp(6, c) ≥ 2

∣∣ c ∈ Σ
} = f (A) + f (G) + f (T) = 0.9;

Pr
{

gbcp(6, c) ≥ 3
∣∣ c ∈ Σ

} = f (G) + f (T) = 0.6;
Pr

{
gbcp(6, c) ≥ 4

∣∣ c ∈ Σ
} = f (G) + f (T) = 0.6;

Pr
{

gbcp(6, c) ≥ 5
∣∣ c ∈ Σ

} = f (T) = 0.2;
Pr

{
gbcp(6, c) ≥ 6

∣∣ c ∈ Σ
} = f (T) = 0.2;

Pr
{

gbcp(6, c) ≥ 7
∣∣ c ∈ Σ

} = f (T) = 0.2;
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Pr
{

gbcp(6, c) ≥ 8
∣∣ c ∈ Σ

} = 0.

Let j be a fixed relative jump distance to be used by the generalized double occurrence function gbc2
p with relative 

occurrence position m − 1. In order for the character t[s + m − 1 + j], at the relative position m − 1 + j, to be involved in 
the computation of the shift advancement by the function gbc2

p , we must have

gbcp
(
m − 1, t[s + m − 1]) ≥ j

(cf. (2)). Thus, for a fixed bound 0 ≤ β ≤ 1, the computation of the shift advancement will involve the second character with 
a probability of at least β if and only if its jump distance j satisfies

Pr
{

gbcp(m − 1, c) ≥ j
∣∣ c ∈ Σ

} ≥ β.

This suggests the use of the following relative jump distance

j∗β =Def max
{
�

∣∣ 1 ≤ � ≤ m and Pr
{

gbcm − 1c ≥ �
∣∣ c ∈ Σ

} ≥ β
}

in the jumping-occurrence heuristic to be presented in the next section, at least in the case in which the relative occurrence 
position i is m − 1. Plainly, the same argument can be generalized to any relative occurrence position.

In Example 1, if we set the bound β = 0.5, we obtain a relative jump distance j∗0.5 = 4. In other words, for the relative 
jump distance j∗0.5 = 4, the character t[s + 10] will be involved in the computation of the shift advancement in at least 
50% of the times, whereas in the remaining cases only the first character t[s + 6] will be involved. In practical cases we set 
β = 0.9. This will yield, in Example 1, a relative jump distance j∗0.9 = 2.

6.2. The jumping-occurrence heuristic

For a pattern p of length m, the jumping-occurrence heuristic makes use of the occurrence relative position q∗ returned 
by the procedure FindWorstOccurrence described in Section 5.1. Such a position q∗ and the corresponding jump distance 
j∗β computed by procedure FindJumpDistance are then used by the jumping-occurrence heuristic to calculate shift advance-
ments during the search phase in such a way that the characters t[s +q∗] and t[s +q∗ + j∗β ] are aligned with their rightmost 
occurrence in p. In particular, this corresponds to advance the shift by jbcp,β (t[s + q∗], t[s + q∗ − j∗β ]) positions, where

jbcp,β(c1, c2) =Def gbc2
p

(
q∗, j∗β, c1, c2

)
.

The resulting algorithm is shown in Fig. 5. The procedure PrecomputeJOH computes the table which implements the 
jumping-occurrence heuristic in O(σ 2 + mσ) time and O(σ 2) space.

6.3. Approximating the optimal jump distance

If one knows in advance the character distribution of a given text, procedure FindJumpDistance in Fig. 5 provides an 
efficient way for computing the optimal jump distance. Otherwise, one can adopt any of the three different approaches 
outlined in Section 5.3 for computing an approximated character distribution, and then, based on this, calculate the cor-
responding optimal occurrence relative position and jump distance. A somewhat simplified approach, still based on the 
strategy (ii) presented in Section 5.3, which bypasses the call to procedure FindJumpDistance, can be summarized in the 
following steps:

• initialize to 0 an array scnt (shifts counter) of length m;
• compute the worst-occurrence heuristic and run the first γ iterations of the algorithm by using such a rule for shifting; 

in the meantime, count the shift advancements of length � occurring in this phase, for each length � = 1, . . . , m, by 
updating accordingly the entries of the array scnt;

• compute an approximation of the value j∗β by putting

j̃∗β =Def min

{
j

∣∣∣∣ 1

γ

j∑
i=1

scnt[i] ≥ β

}
;

• compute the jumping-occurrence heuristic, based on the value j̃∗β , and resume the search from the last shift position 
which has been checked, using such a rule for shifting.

It turns out that a good approximation of the optimal jump distance can be obtained even with small values of the 
parameter γ .
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PrecomputeJOH(p,m, i, j)
1. for each a ∈ Σ do
2. for each b ∈ Σ do
3. jbc(a,b) ← i + 1 + j
4. for each a ∈ Σ do
5. for k ← 0 to j − 1 do
6. jbc(a, p[k]) ← i + j − k
7. for k ← 0 to i − j do
8. jbc(p[k], p[k + len]) ← i − k
9. for k ← i + 1 − j to m − 1 do

10. for each a ∈ Σ do
11. jbc(p[k],a) ← i − j

FindJumpDistance(p,m, i,Σ, f , β)
1. for each c ∈ Σ do v[c] ← 1
2. frq ← j ← 1
3. while (frq ≥ β and j ≤ i + 1) do
4. if (v[p[i + 1 − j]] = 1) then
5. v[p[i + 1 − j]] = 0
6. frq ← frq − f (p[i + 1 − j])
7. j ← j + 1
8. return j − 1

JumpingOccurrenceMatcher(p,m, t,n)

1. i ← FindWorstOccurrence(p,m,Σ, f )
2. j ← FindJumpDistance(p,m, i,Σ, f ,0.9)

3. jbc ← PrecomputeJOH(p,m, i, j)
4. s ← 0
5. while (s ≤ n − m) do
6. k ← 0
7. while (k < m and p[k] = t[s + k]) do k ← k + 1
8. if (k = m) then Output(s)
9. s ← s + jbc(t[s + i], t[s + i + j])

Fig. 5. The procedure PrecomputeJOH (for computing the table implementing the jumping-occurrence heuristic), the procedure FindJumpDistance (for 
computing the jump relative distance for a pattern p and a relative frequency function f ), and the algorithm JumpingOccurrenceMatcher.

7. Experimental results

We evaluated experimentally the impact of our proposed variants of the occurrence heuristics (in combination with their 
corresponding matchers):

• Improved-Occurrence Matcher (in short, IOM), described in Section 4,
• Worst-Occurrence Matcher (in short, WOM), described in Section 5.2,
• Jumping-Occurrence Matcher (in short, JOM), described in Section 6.2,

by testing them against the following algorithms based on the best known implementations of the occurrence heuristic2:

• Horspool algorithm (in short, HOR), which uses a single character occurrence heuristic and whose advancements are 
computed by gbcp(m − 1, t[s + m − 1]);

• Quick Search algorithm (in short, QS), which uses a single character occurrence heuristic and whose advancements are 
computed by gbcp(m, t[s + m]);

• Smith algorithm (SMITH), which uses a single character heuristic, whose advancements are computed by max(gbcp(m,

t[s + m]), gbcp(m − 1, t[s + m − 1]));
• Berry–Ravindran algorithm (in short, BR), which uses two characters for shifting and whose advancements are com-

puted by gbc2
p(m, 1, t[s + m], t[s + m + 1]);

• Zhu–Takaoka algorithm (in short, ZT), which uses two characters for shifting and whose advancements are computed 
by gbc2

p(m, 1, t[s + m − 2], t[s + m − 1]).

Our implementation of the WOM algorithm computes the frequency of characters in the searched text by using the 
strategy (i) described in Section 5.3, with the parameter γ = 100, whereas our implementation of the JOM algorithm is 
based on the approach described in Section 6.3, with the same parameter γ = 100.

2 For each algorithm we indicate the corresponding function used for shifting when the pattern of length m is aligned with the text at a given shift s.
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Fig. 6. Running times of the Jumping-Occurrence Matcher for different values of the parameter β and pattern length m.

All algorithms have been implemented in the C programming language and have been compiled with the GNU C Com-
piler gcc version 4.2.1 (Apple LLVM version 5.1), using the optimization options -O3. All experiments have been executed 
locally on a MacBook Pro with 4 Cores, a 2 GHz Intel Core i7 processor, 4 GB RAM 1333 MHz DDR3, 256 KB of L2 Cache, 
and 6 MB of L3 Cache. They have been evaluated in terms of the average shift advancements and running times, including 
all preprocessing time, measured with a hardware cycle counter available on modern CPUs. The tests have been run on 
text buffers over small and large alphabets. However we report in this paper only experimental results relative to small 
alphabets, since the gain in running time obtained when searching texts over large alphabets is negligible. In particular, we 
report experimental evaluations on a random sequence over an alphabet of 2 characters, a genome sequence, and a protein 
sequence, all sequences of 4 MB. All sequences, provided by the Smart research tool,3 are available online for download. 
Patterns of length m were randomly extracted from the sequences, with m ranging over the set of values {2i | 1 ≤ i ≤ 12}. 
For each case, the mean over the running times, expressed in hundredths of seconds, of 500 runs has been reported. Fig. 6
shows the running times of the Jumping-Occurrence Matcher with different values of the parameter β , whereas Fig. 7 re-
ports the running times of the algorithms HOR, QS, SMITH, BR, ZT, and the matchers IOM, WOM, and JOM, implementing 
our new proposed occurrence heuristics. The running times in Fig. 7 of the JOM algorithm correspond to an implementation 
with the parameter β = 0.9.

7.1. Running times evaluation

The experimental results in Fig. 6 show that the choice of β = 0.9 is the best one for the jumping-occurrence heuristic 
in most cases. The gain in performance is more evident in the case of small alphabets or in the case of long patterns. In this 
latter case, the JOM algorithm with β = 0.9 is up to 50% faster. It is to be noted, though, that in the case of large alphabets 
the improvement in running times is negligible.

From the experimental data in Fig. 7, it follows that our proposed occurrence heuristics obtain always the best results. 
In particular the JOM algorithm is always the best choice for large alphabets. However, its speed-up is almost negligible 
in the case of large alphabets and long patterns, whereas it becomes more evident for very small alphabets, exhibiting a 
speed-up of more than 50% with respect to the best known algorithms. The IOM algorithm shows a very good behavior for 
short patterns. In fact, it turns out that it is the best solution in the case of short patterns and small alphabets, where it is 
more than 20% faster than other algorithms based on single character heuristics. However, its performance degrades as the 
length of the pattern increases. The WOM algorithm turns out to the best algorithm when the pattern is not short. Among 
the algorithms based on a single character occurrence heuristic, it shows an extremely fast behavior and for long patterns it 
is up to 50% faster than previous existing solutions. It is to be noted that its running times are very close to those obtained 
by the JOM algorithm, which, however, is based on a two-characters heuristic.

7.2. Stability evaluation

It is also useful to find out how accurately repeatable the results are. If only average running times are considered, 
some important details may be hidden. The Smart tool computes the stability of an algorithm as the standard deviation of 
the running times of the tests. The standard deviation measures the amplitude of the variation from the average, i.e., the 
mean of the running times. A low standard deviation indicates that the running times tend to be very close to the mean, 
underlying a high stability of the algorithm. On the other hand, a high standard deviation indicates that the running times 
are spread out over a large range of values, thus indicating a low stability.

Fig. 8 reports the standard deviation of the running times observed in our tests. It turns out that the WOM and the JOM
heuristics appear more stable than the remaining algorithms in the case of long patterns and small alphabets.

3 The Smart tool is available online at http :/ /www.dmi .unict .it /~faro /smart/.

http://www.dmi.unict.it/~faro/smart/
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Fig. 7. Running times obtained by comparing several efficient algorithms based on the occurrence heuristic shifting strategy. The x-axis represents length of 
patterns.

Fig. 8. Standard Deviation of running times obtained by comparing several efficient algorithms based on the occurrence heuristic shifting strategy. The 
x-axis represents length of patterns.

While standard algorithms based on the one-character occurrence heuristic (as, for instance, HOR, QS and SMITH) be-
come less stable as the length of the pattern increases, in some cases the algorithms based on our proposed occurrence 
heuristics show an opposite behavior, i.e., they become more stable as the length of the pattern increases. In particular, the
IOM algorithm turns out to be the most stable algorithm in the case of short patterns, but it becomes less stable for long 
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patterns. The converse behavior can be noticed in the case of the WOM algorithm, though we notice that the improvement 
in stability becomes negligible in the case of large alphabets.

7.3. Flexibility evaluation

Flexibility is an important attribute of various types of systems. In the field of string matching, it refers to algorithms 
that can adapt when changes in the input data occur. Thus a string matching algorithm can be considered flexible when, for 
instance, it maintains good performance for both short and long patterns, or in the case of both small and large alphabets. 
By analyzing the running times reported in Fig. 7, it turns out that the JOM algorithm is the most flexible one among the 
algorithms which have been tested, as it shows very good performance for all the lengths of the patterns and different 
sizes of the alphabet. The IOM algorithm turns out to be very efficient only for short patterns (and in some cases it is even 
more efficient than the JOM algorithm), but its performance degrades as the length of the pattern increases. An opposite 
observation can be done for the WOM algorithm, which maintains good performance only for medium and long patterns.

8. Conclusions

In this paper we have presented three new variations of the occurrence heuristic based on a smart computation of 
the relative position of the character used for computing the shift advancement. The proposed variations yield the largest 
average advancement, according to the character distribution in the text. We have also shown experimental evidence that 
the new variants of the occurrence heuristics achieve very good results in practice, especially in the case of long patterns 
or small alphabets. We plan to conduct a probabilistic and a combinatorial analysis of the newly proposed rules directed at 
giving theoretical support to the experimental evidence reported in the present work.
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