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a b s t r a c t

Inversions are a class of chromosomal mutations, widely regarded as one of the major
mechanisms for reorganizing the genome.

In this paper we present a new algorithm for the approximate string matching
problem allowing for non-overlapping inversions which runs in O(nm) worst-case time
and O(m2) space, for a character sequence of size n and pattern of size m. This improves
upon a previous O(nm2)-time algorithm.

In additionwe present a variant of our algorithmwith the same complexity in theworst
case, but with a O(n) time complexity in the average case.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Retrieving information and teasing out the meaning of biological sequences are central problems in modern biology.
Generally, basic biological information is stored in strings of nucleic acids (DNA, RNA) or amino acids (proteins). Aligning
sequences helps in revealing their shared characteristics, whilematching sequences can infer useful information from them.
With the availability of large amounts of DNA data, matching of nucleotide sequences has become an important application
and there is an increasing demand for fast computer methods for data analysis and retrieval.

Approximate string matching is a fundamental problem in text processing. It consists in finding approximate matches of
a pattern in a text. The precision of a match is measured in terms of the sum of the costs of the edit operations necessary to
convert the string into an exact match.

Most classical models, for instance the Levenshtein or Damerau edit distance, assume that changes between strings
occur only locally (for an in-depth survey on approximate string matching, see [10]). However, evidence shows that large
scale changes, like duplications, translocations, and inversions, are common events in genetic evolution [5]. For instance,
chromosomal inversions are rearrangements in which a segment of a chromosome is reversed end to end. Notice that
inversions do not involve any loss of genetic information.

When an inversion takes place, a segment of DNA is replaced with its reverse complement, meaning that a segment
reverses its orientation and each nucleotide is complemented (where nucleotide C (A) is the complement of G (T)).

In this paper we are interested in the approximate string matching problem allowing for non-overlapping inversions.
Much work has been done on the closely related sequence alignment problem with inversions. Although no polynomial
algorithm is known for the latter problem in its full generality, in the restricted case of non-overlapping inversions
polynomial solutions have beenproposed. A first solutionwas given by Schöniger andWaterman [11]. Their algorithm, based
on dynamic programming, runs inO(n2m2) time andO(n2m2) space on input sequences of length n andm. Later, Chen et al.
[3] developed a space-efficient variant which requires only O(nm) space (and still O(n2m2) time). More recently, Vellozo
et al. [12] proposed a O(nm2)-time and O(nm)-space algorithm, within the more general framework of an edit graph.

Although proposed for the sequence alignment problem, the algorithm by Vellozo et al. could also be adapted to the
approximate string matching problemwith non-overlapping inversions, yielding a O(nm3)-time and O(m2)-space solution
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to the latter problem. A more efficient solution, which runs in O(nm2) time and O(m2) space, was presented by Cantone
et al. [2]. They actually addressed a slightly more general problem, allowing also for translocations of equal length adjacent
factors besides non-overlapping inversions. A very recent algorithm by Grabowski et al. [6] solves the same matching
problem, i.e., when translocations and non-overlapping inversions are allowed, in O(nm2) time and O(m) space, obtaining
better performance in practical cases.

In this paper we present an algorithm for the approximate string matching problem with non-overlapping inversions
which runs in O(nm) worst-case time and O(m2) space. Additionally, we also provide a variant of our algorithm which has
the same complexity in the worst case, but in the average case has a O(n) time complexity, for σ ≥

5c
c−1 and sufficiently

largem > σ c , for any constant c > 1, where σ is the size of the common alphabet.
For the sake of simplicity, throughout the paper we will consider standard match between characters, even when

substrings are involved in inversions. The case in which matches of complemented characters must be taken into account
could be solved by using a different match table for inverted substrings.

The paper is organized as follows. In Section 2 we provide the basic terminology and definitions. Next, in Section 3 we
present a general O(nm2)-time and O(m2)-space algorithm for the approximate matching problem with non-overlapping
inversions, based on the dynamic programming approach. Such algorithmwill then be refined in Section 4, yielding aO(nm)-
time and O(m2)-space algorithm. A further refinement of our algorithm, which has the same worst-case complexity but is
linear on average, is presented in Section 5. Finally we draw our conclusions in Section 6.

2. Basic notions and properties

A string p of length m ≥ 0 is represented as a finite array p[0 . . . m − 1]. In such a case we also write |p| = m,
thus overloading the absolute-value operator | · |. In particular, for m = 0 we obtain the empty string, denoted by ε. The
concatenation of strings p and q is denoted as p.q or,more simply, as pq.We denote by pR the reversal of p, i.e., string pwritten
in reverse order. Notice that |p| = |pR

| and (pR)
R

= p. Moreover, for any two strings p and q, we have that (p.q)R = (qR.pR).
Given a nonempty string p and an integer i, we denote by p[i] the (i + 1)th symbol of p from left to right, if 0 ≤ i < |p|,

otherwise we consider p[i] as undefined.1 Likewise, we denote with p[i . . . j] the substring of p contained between the
(i+1)th and the (j+1)th symbol of p (both inclusive), for 0 ≤ i ≤ j < |p|. Moreover, we put pj = p[0 . . . j], for 0 ≤ j < |p|.

For a string p and character c , we write occp(c) to denote the number of occurrences of c in p. Occasionally, we will write
simply occ(c), to mean occp(c), when the string p is clear from the context.

We say that p is a prefix (resp., suffix) of q, and write p ⊑ q (resp., p ⊒ q), if there is a string s such that q = p.s (resp.,
q = s.p). A string p is a border of q if both p ⊑ q and p ⊒ q hold. The set of the borders of p is denoted by borders(p). For
instance, given the string p = abacdaba, we have that ab ⊑ p, daba ⊒ p, while aba is a border of p. Moreover we have
borders(p) = {a, aba}.

For a set S of strings, we denote by ∥S∥ the collection of the lengths of the strings belonging to S, i.e. ∥S∥ =Def {|p| : p ∈ S}.
For example, given the set S = {aba, a, abacd} we have ∥S∥ = {3, 1, 5}.

For strings p and q, we denote by ⟨p, q⟩ the set of all suffixes s of p such that sR is a suffix of q, i.e., ⟨p, q⟩ =Def {s : s ⊒

p and sR ⊒ q}. For example if p = abcabab and q = ccababa then ⟨p, q⟩ = {ab, abab}.
The following lemma states useful properties of the set of borders of two strings.

Lemma 1. For all strings p, q, v, w, and z, and every alphabet symbol c, the following facts hold:

(a) if v, w ∈ ⟨p, q⟩, then either v ∈ borders(w) or w ∈ borders(v);
(b) if v, w ∈ ⟨p, q⟩ and |v| ≥ |w|, then w ∈ borders(v);
(c) if v ∈ ⟨p, q⟩ and w ∈ borders(v), then w ∈ ⟨p, q⟩;
(d) if z is the longest string belonging to ⟨p, q⟩, then ⟨p, q⟩ = borders(z);
(e) ⟨p, q.c⟩ = {c.s : s ∈ ⟨p, q⟩ and c.s ⊒ p} ∪ {ε};
(f) ∥⟨p, q.c⟩∥ = {ℓ + 1 : ℓ ∈ ∥⟨p, q⟩∥ and p[|p| − 1 − ℓ] = c} ∪ {0}.

Proof. First of all we notice that (b) and (f) are immediate consequences of (a) and (e), respectively; similarly, (d) follows
plainly from (b) and (c). Thus, we only need to prove (a), (c), and (e).

We begin with (a). Let v, w ∈ ⟨p, q⟩. By the very definition of ⟨p, q⟩ we have

v ⊒ p, vR
⊒ q, w ⊒ p, and wR

⊒ q.

Without loss of generality, let us assume that |v| ≤ |w|. Then, from v ⊒ p andw ⊒ pwe have v ⊒ w; likewise, from vR
⊒ q

and wR
⊒ q we have vR

⊒ wR. The latter implies v ⊑ w, which, together the previously established relation v ⊒ w, yields
v ∈ borders(w), proving (a).

Concerning (c), let v ∈ ⟨p, q⟩ and w ∈ borders(v). Then we have v ⊒ p and w ⊒ v, so that w ⊒ p. Likewise, we have
vR

⊒ q and w ⊑ v. The latter is equivalent to wR
⊒ vR, so that wR

⊒ q. From w ⊒ p and wR
⊒ q it follows that w ∈ ⟨p, q⟩,

proving (c).

1 When p[i] is undefined, the condition p[i] = c , for any character symbol c , will be regarded as false, whereas the condition p[i] ≠ c will be regarded
as true.
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Fig. 1. Two cases considered in Lemma 2.

Finally, we turn to the proof of (e). Let v ∈ ⟨p, q.c⟩, where c is a character. Then v ⊒ p and vR
⊒ q.c. If v ≠ ε, then

v = c.s, for a string s such that s ⊑ qR. But then s ⊒ (qR)R = q, which, together with s ⊒ p, implies

⟨p, q.c⟩ ⊆ {c.s : s ∈ ⟨p, q⟩ and c.s ⊒ p} ∪ {ε}.

To show the converse inclusion, we observe preliminarily that ε ∈ ⟨p, q.c⟩. Let s ∈ ⟨p, q⟩ such that c.s ⊒ p. Then sR ⊒ q,
which implies (c.s)R = sR.c ⊒ q.c . The latter, together with c.s ⊒ p, implies c.s ∈ ⟨p, q.c⟩. Thus

{c.s : s ∈ ⟨p, q⟩ and c.s ⊒ p} ∪ {ε} ⊆ ⟨p, q.c⟩,

which together with the previously established inclusion proves (e). �

Definition 1. Given two strings p and q of the same length m, an inverted decomposition of p and q is a sequence
(ℓ1, ℓ2, . . . , ℓk) of lengths, with k ≥ 0, such that:

(a) 1 ≤ ℓi ≤ m, for 1 ≤ i ≤ k;
(b)

k
i=1 ℓi = m;

(b) p[Lj . . . Lj+1 − 1] = (q[Lj . . . Lj+1 − 1])R, for 0 ≤ j < k, and where Lj =
j

i=1 ℓi (so that L0 = 0).

When p and q admit an inverted decomposition, we write p ◃▹ q.

Observe that an inverted decomposition (ℓ1, ℓ2, . . . , ℓk) of p and q induces a sequence of strings (s1, s2, . . . , sk) such
that s1s2 · · · sk = p and sR1s

R
2 · · · sRk = q, and conversely. Thus, we plainly have that p ◃▹ q iff q ◃▹ p. Additionally, the following

property can be easily proved.

Lemma 2. For all strings p and q, we have that p ◃▹ q holds iff (exactly) one of the following two conditions holds:

(a) p = q = ε, or
(b) p = v.z and q = w.zR, for a string z ≠ ε and strings v and w such that v ◃▹ w.

Proof. We first show that if either one of (a) and (b) holds, then p ◃▹ q follows. If (a) holds, then the empty sequence of
lengths is an inverted decomposition of p and q, so that we have p ◃▹ q in this case. On the other hand, if (b) holds, let z ≠ ε
be such that p = v.z and q = w.zR, and let (ℓ1, ℓ2, . . . , ℓk) be an inverted decomposition of v and w. Plainly, |p| = |q|. Let
ℓk+1 =Def |z|. We show that (ℓ1, ℓ2, . . . , ℓk, ℓk+1) is an inverted decomposition of p and q. Trivially, we have 1 ≤ ℓk+1 ≤ |p|
and

k+1
i=1 ℓi = |p|. In addition, we have

p[|v|, . . . |v| + ℓk+1 − 1] = z = (zR)R = (q[|w|, . . . |w| + ℓk+1 − 1])R,

which, together with the fact that v ◃▹ w, yields p ◃▹ q (see Case 1 in Fig. 1).
Next, suppose that p ◃▹ q and that |p| = |q| > 0. We show that (b) must hold. Let (ℓ1, ℓ2, . . . , ℓk) be an inverted

decomposition of p and q, with k ≥ 1, and let z = Def p[Lk−1 . . . Lk − 1], where Lj = Def

j
i=1 ℓi, for 0 ≤ j ≤ k. Then

zR = q[Lk−1 . . . Lk − 1], so that p = v.z and q = w.zR, where v =Def p[0 . . . Lk−1 − 1] and w =Def q[0 . . . Lk−1 − 1]. To
complete the proof of the present case, it is now enough to observe that z ≠ ε (since |z| = ℓk ≥ 1) and that v ◃▹ w (in fact,
it is an easy matter to verify that (ℓ1, ℓ2, . . . , ℓk−1) is an inverted decomposition of v and w); see Case 2 in Fig. 1. �

Given a text t of length n, a pattern p of length m ≤ n is said to match with non-overlapping inversions (or to have
an occurrence with non-overlapping inversions) at location i of t if p ◃▹ t[i . . . i + m − 1], i.e., if there exists an inverted
decomposition of p and t[i . . . i + m − 1].

The approximate matching problem with non-overlapping inversions is to find all locations i in a given text t at which a
given pattern p matches with non-overlapping inversions.

For the sake of simplicity, in the rest of the paper we will refer to non-overlapping inversions simply as inversions, since
this will generate no confusion.
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Fig. 2. The algorithm DPInversionMatcher for the matching problem with inversions.

3. A general dynamic programming approach

In this section we present a general dynamic programming algorithm for the pattern matching problemwith inversions.
Our algorithm, which will be named DPInversionMatcher, is characterized by a O(nm2) time and a O(m2) space complexity,
where m and n are the length of the pattern and text, respectively. In the next section we will then show how it can be
refined so as to improve its time complexity to O(nm).

As above, let t be a text of length n and p a pattern of length m. The algorithm DPInversionMatcher solves the matching
problem with inversions by computing the occurrences of all prefixes of the pattern in continuously increasing prefixes
of the text using a dynamic programming approach. That is, during its (i + 1)th iteration, for i = 0, 1, . . . , n − m, our
algorithm establishes whether pj ◃▹ t[i . . . i + j], for each j = 0, 1, . . . ,m − 1, exploiting information gathered during
previous iterations.
Definition 2. We denote byM(j, i) the set of all integral values k, with 0 ≤ k ≤ j, such that the prefix pk has an occurrence
with inversions at location i of the text, or more formally

M(j, i) =Def


{0 ≤ k ≤ j : pk ◃▹ t[i . . . i + k]} ∪ {−1} if i ≥ 0 and j ≥ 0
{−1} otherwise,

for −m ≤ i ≤ n − m and 0 ≤ j < m.
Observe that we have M(j, i) = {−1} if i < 0 or j < 0 (note that the string pk, with k < 0, represents the empty prefix

of p).
Notice also that pj ◃▹ t[i . . . i + j] iff j ∈ M(j, i) and hence p ◃▹ t[i . . . i + m − 1] iff m − 1 ∈ M(m − 1, i). Thus the

matching problem with inversions can be solved by computing the setsM(m − 1, i), for increasing values of i.
Definition 3. We define R(j, i) as the set of the lengths of all strings s such that s ⊒ pj and sR ⊒ ti+j, or more formally

R(j, i) =Def


∥⟨pj, ti+j⟩∥ if 0 ≤ j < m and 0 ≤ i ≤ m − n
{0} otherwise.

We obtain the following lemma which easily follows from Lemma 2.
Lemma 3. For each 0 ≤ j < m and −m ≤ i ≤ n − m, the computation of the set M(j, i) can be reduced to the computation of
the sets M(j − 1, i) and R(j, i), by using the following recursive relation

M(j, i) =


M(j − 1, i) ∪ {j} if j − ℓ ∈ M(j − 1, i), for some ℓ ∈ R(j, i)
M(j − 1, i) otherwise. �

Likewise the following lemma follows from Lemma 1(f).
Lemma 4. For each 0 ≤ j < m and 0 < i ≤ n − m, the sets R(j, i) can be computed by the recursive relation

R(j, i) = {0} ∪ {ℓ + 1 : ℓ ∈ R(j, i − 1) and p[j − ℓ] = t[i + j]}. �

The above considerations translate directly into the algorithmDPInversionMatcher in Fig. 2. Sets R(j, i) aremaintained by
an array R of dimensionm; more precisely, just after iteration i of the for-loop at line 3, we have that R[j] = R(j, i). Similarly,
sets M(j, i) are maintained by a single set(-variable) M, which is initialized to {−1} at the beginning of iteration i of the
for-loop at line 3 (this corresponds to the setM(−1, i)). Then, during the execution of the subsequent for-loop at line 5, the
set M is expanded so as to take in sequence the relevant elements M(0, i),M(1, i), . . . ,M(m − 1, i); more precisely, just
after the execution of iteration j of the for-loop at line 5, we have that M = M(j, i).

The set M can be implemented as a linear array A of lengthm + 1 of Boolean values such that

A[j] =Def


true, if j − 1 ∈ M
false, otherwise,

for 0 ≤ j ≤ m. Likewise, each set R[j] can be implemented as a linked list (or possibly as an array of lengthm+ 1 of Boolean
values, as well). Then it follows easily that the algorithm DPInversionMatcher in Fig. 2 has a O(m2) space complexity and a
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O(nm2) time complexity. Indeed, the computation of the set R[j] at line 6 and the conditional test at line 7 requireO(j) time,
for 0 ≤ j < m.

4. The algorithm InversionSampling

In this sectionwepresent a refinement of the algorithmDPInversionMatcherpresented before. The newalgorithm, named
InversionSampling, achieves a O(nm) worst-case time complexity and, as before, requires O(m2) additional space.

The main idea upon which the new algorithm is based is that we do not need to maintain explicitly the whole set R(j, i)
to evaluate the conditional test at line 7. In particular we show that by efficiently computing the values in the set R(j, i),
each conditional test at line 7 can be performed in amortized O(1) time.

Specifically, as will be proved in Lemma 7 below, during each iteration of the algorithm DPInversionMatcher, just before
the execution of the conditional test at line 7, the following condition holds

either {ℓ ∈ R(j, i) : j − ℓ ∈ M(j − 1, i)} = ∅ (when the test is false),
or {ℓ ∈ R(j, i) : j − ℓ ∈ M(j − 1, i)} = R(j, i) \ {0}. (1)

Thus it follows that, for each 0 < j < m and −m ≤ i ≤ n − m, if max(R(j, i)) ∈ M(j − 1, i) then {ℓ ∈ R(j, i) : j − ℓ ∈

M(j − 1, i)} = R(j, i) \ {0}.
Since just before the execution of the conditional test at line 7 of the algorithm DPInversionMatcher we have that

j /∈ M(j − 1, i), the condition ‘(∃ℓ ∈ R[j] : j − ℓ ∈ M)’ at line 7 can be replaced by the condition ‘j − e(R[j]) ∈ M’, for
any function e(·) such that e(R[j]) ∈ (R[j] \ {0}) ∪ {max(R[j])} holds, without affecting the correctness of the algorithm.
In particular, we choose e(·) ≡ max(·) and describe an efficient way to compute the value max(R(j, i)), which allows us to
reduce the time complexity of the searching-phase of the algorithm to O(nm).

Recalling that R(j, i) = ∥⟨pj, ti+j⟩∥, it turns out that the maximum of the set R(j, i), for −m < i ≤ n − m and 0 ≤ j < m,
can be computed from the maximum of the set R(j, i− 1), without any need to compute explicitly the whole set R(j, i). This
can be done by using the following relation:

max(∥⟨pj, ti+j⟩∥) = max{ℓ + 1 : ℓ ∈ ⟨pj, ti+j−1⟩ and p[j − ℓ] = t[i + j]}, (2)

which will be proved in Lemma 8 below.
Let ∥⟨pj, ti+j−1⟩∥ be the set {ℓ1, ℓ2, . . . , ℓk}, with ℓi > ℓi+1, for all 0 < i < k, and ℓk = 0. For the computation of the set

max(∥⟨pj, ti+j⟩∥) we start from the value ℓ1 = max(∥⟨pj, ti+j−1⟩∥), and examine in sequence the items ℓ1, ℓ2, . . . , ℓk until
we find a value ℓi such that p[j− ℓi] = t[i+m−1] or we reach ℓk = 0. If ℓ is the value obtained by such a scanning process,
we check whether p[j − ℓ] = t[i + j] and, in this case, we conclude that max(∥⟨pj, ti+j⟩∥) = ℓ + 1; otherwise we conclude
that max(∥⟨pj, ti+j⟩∥) = 0.

The above procedure requires that one knows in advance the set ∥⟨pj, ti+j−1⟩∥. To this purpose let us put

π(pj, h) =Def


max(∥borders(p[h . . . j]) \ {p[h . . . j]}∥) if 0 ≤ h ≤ j
−1 otherwise.

For i = 1, . . . , k, let us also put vi = p[j + 1 − ℓi . . . j].
In words, π(pj, h) is the length of the longest border of a proper suffix of the string p[h . . . j]. For instance if p[h . . . j] =

acabbaabb then the proper suffix of the string, with the longest border is abbaabb with a border of length 3.
Then, since vi+1 is a border of vi (by Lemma 1(b)), we have that ℓi+1 = π(pj, j + 1 − ℓi), for 0 < i < k.
Such values can be precomputed and collected into a table W of dimensions (m + 1) × (m + 1), where W[0, 0] = −1

and W[h, k] = π(pk−1, h), for 0 < k ≤ m and 0 ≤ h ≤ k (the values of the remaining entries of W are not relevant).
TableW can be computed inO(m2) time and space bymeans of the procedure procMPT in Fig. 3, which is a generalization

of the procedure used by the Morris–Pratt algorithm [9] for computing the length of the longest proper border of s[0 . . . j],
for a given string swith 0 ≤ j < |s| (see also [4], where this function is called the prefix function of the pattern).

The resulting algorithm, InversionSampling, is presented in Fig. 3. The algorithm makes use of a vector K such that
K[j] := max(R(j, i)). The part of the code from line 7 up to line 10 computes the value of K[j].

4.1. Correctness issues

In this section we prove the validity of (1) and (2), upon which the correctness of the algorithm InversionSampling is
based. In particular, it will turn out that they are direct consequences of Lemmas 7 and 8, respectively.

We first state and prove two useful properties related to the suffixes of inverted strings, which will be used in our main
results.

Lemma 5. Let p and q be strings such that p ⊒ p.qR. Then there exist two strings q1 and q2 such that

(a) q = q1.q2, and
(b) p.qR = qR1 .q

R
2 .p.
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Fig. 3. (On the left) the procedure for computing the table W, and (on the right) the variant InversionSampling of the algorithm DPInversionMatcher.

Fig. 4. The three cases considered in Lemma 5.

Proof. Let p ⊒ p.qR. To begin with, notice that if |q| = 0, the lemma follows trivially. So, let us suppose that |q| > 0 and
assume inductively that the lemma holds for any pair p′, q′ of strings such that |p′

| < |p| and p′
⊒ p′.q′R.

We distinguish the following three cases depicted in Fig. 4.
Case 1: |p| ≤ |q|. From p ⊒ p.qR and |p| ≤ |q|, it follows that p ⊒ qR, so that qR = z.p, for some string z. Putting q1 = pR

and q2 = zR, we then have

q1.q2 = pR.zR = (z.p)R = (qR)R = q

and

p.qR = p.z.p = (pR)
R
.(zR)R.p = qR1 .q

R
2 .p,

and therefore (a) and (b) are both satisfied in the present case.
Case 2: |q| < |p| ≤ 2|q|. Let z be the suffix of p such that |z| = |p| − |q| ≤ |q|. Observe that 2|z| ≤ |z| + |q| = |p|, so that
|z| ≤ ⌊|p|/2⌋. Therefore p can be decomposed as p = v.w.z, with |v| = |z| and |w.z| = |q|. But since p ⊒ p.qR, we have
v = z and qR = w.z. If we put q1 = zR and q2 = wR, so that z = qR1 and w = qR2 , we have

q = (qR)R = (w.z)R = (qR2 .q
R
1)

R
= (qR1)

R
.(qR2)

R
= q1.q2

and

p.qR = (z.w.z).(w.z) = (z.w).(z.w.z) = z.w.p = qR1 .q
R
2 .p,

proving (a) and (b) in the present case.
Case 3: 2|q| < |p|. Let v and z be, respectively, the prefix and the suffix of p such that |v| = |z| = |q|. Plainly, z = qR, as
p ⊒ p.qR. In addition, since |v| + |z| = 2|q| < |p|, it follows that p = v.w.z, for a nonempty string w. Let us put p′

= v.w,
so that p = p′.z. Observe that |p′

| = |p| − |q| < |p|, since |q| > 0. We have also p′
⊒ p′.z, so by induction zR = q1.q2 (i.e.,

q = q1.q2) and p′.z = qR1 .q
R
2 .p

′, for some strings q1 and q2. Hence,

p.qR = (v.w.z).qR = (p′.z).qR = (qR1 .q
R
2 .p

′).qR

= qR1 .q
R
2 .(p

′.qR) = qR1 .q
R
2 .(p

′.z) = qR1 .q
R
2 .p,

so that (a) and (b) hold in this last case too, completing the proof of the lemma. �

Lemma 6. Let p and q be strings of the same length. Then we have p.z ◃▹ q.zR if and only if p ◃▹ q, for every string z.
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Fig. 5. The two cases considered in Lemma 6.

Proof. To begin with, notice that if p ◃▹ q then, plainly, p.z ◃▹ q.zR. Thus, it is enough to prove the converse implication,
namely that p.z ◃▹ q.zR implies p ◃▹ q. So, let p, q, and z be nonempty strings such that p.z ◃▹ q.zR and assume inductively
that the lemma is true for all triplets p′, q′, z ′, with |z ′

| < |z|, such that p′.z ′
◃▹ q′.z ′R. By Lemma 2, there are strings u, v, and

w ≠ ε such that u ◃▹ v, p.z = u.w, and q.zR = v.wR.
We consider first the case in which |z| ≤ |w| (this is illustrated in Fig. 5, on the left). Since z ⊒ u.w and zR ⊒ v.wR, we

have that z ⊒ w and zR ⊒ wR. Let s be the string such thatw = s.z. Then, zR ⊒ wR
= (s.z)R = zR.sR and hence, by Lemma 5,

there are strings s1 and s2 such that s1.s2 = s (which implies that w = s1.s2.z) and zR.sR = sR1 .s
R
2 .z

R, i.e., wR
= sR1 .s

R
2 .z

R.
Therefore, we have that p.z = u.s1.s2.z and q.zR = v.sR1 .s

R
2 .z

R. These equalities imply, respectively, that p = u.s1.s2 and
q = v.sR1 .s

R
2 , and hence, as u ◃▹ v, by a double application of Lemma 2, we get p ◃▹ q.

Let us consider next the case in which |w| < |z| (this is illustrated in Fig. 5, on the right). Since w ⊒ p.z and wR
⊒ q.zR,

in this case we have that w ⊒ z and wR
⊒ zR. Let s be the string such that z = s.w. Then, wR

⊒ zR = (s.w)R = wR.sR, and
hence, by Lemma 5, there are strings s1 and s2 such that s1.s2 = s (which implies that z = s1.s2.w) and wR.sR = sR1 .s

R
2 .w

R,
i.e., zR = sR1 .s

R
2 .w

R. Therefore, we have that p.z = p.s1.s2.w and q.zR = q.sR1 .s
R
2 .w

R, which imply, respectively, that
u.w = p.s1.s2.w and v.wR

= q.sR1 .s
R
2 .w

R, so that u = p.s1.s2 and v = q.sR1 .s
R
2 . Since |s2| < |z|, by induction we deduce

p.s1 ◃▹ q.sR1 from p.s1.s2 = u ◃▹ v = q.sR1 .s
R
2 . Likewise, since |s1| < |z|, again by induction we deduce p ◃▹ q from p.s1 ◃▹ q.sR1 .

Thus, p ◃▹ q holds even when |w| < |z|, concluding the proof of the lemma. �

Correctness of (1) is a direct consequence of the following lemma.

Lemma 7. Let D(j, i) = {ℓ ∈ R(j, i) : j− ℓ ∈ M(j− 1, i)}, for 0 < j < m and −m ≤ i ≤ n−m. Then we have either D(j, i) = ∅

or D(j, i) = R(j, i) \ {0}.

Proof. First of all, note that if D(j, i) ≠ ∅ then j ∈ M(j, i), i.e., pj ◃▹ t[i . . . i + j], so that by Lemma 6, we must have
pj−k ◃▹ t[i . . . i + j − k] for all k ∈ R(j, i) \ {0}. But pj−k ◃▹ t[i . . . i + j − k], with k ≠ 0, implies that j − k ∈ M(j − 1, i), and
thus R(j, i) \ {0} ⊆ D(j, i). The converse implication, i.e., D(j, i) ⊆ R(j, i) \ {0}, holds trivially, since j /∈ M(j − 1, i). �

Finally, relation (2), which allows us to compute the maximum of the set R(j, i) from the maximum of the set R(j, i − 1),
is established in the following lemma.

Lemma 8. Given two strings p and q, with |p| = m, and a character c, we have

max(∥⟨p, q.c⟩∥) = max{|v| + 1 : v ∈ ⟨p, q⟩ and p[m − 1 − |v|] = c}.

Proof. Let z be the longest string belonging to ⟨p, q⟩, so that |z| = max(∥⟨p, q⟩∥), and let v1, v2, . . . , vk be the borders of z,
ordered by their decreasing lengths. Observe that if v, w ∈ ⟨p, q⟩, then v ⊒ p and w ⊒ p, so that if v and w have the same
length they must coincide. Hence, the set ⟨p, q⟩ cannot contain any two distinct strings of the same length. It also follows
that the longest string belonging to ⟨p, q⟩ is well (and uniquely) defined. Also, note that a string z cannot have two distinct
borders of the same length. Thus we have

|v1| > |v2| > · · · > |vk|,

with v1 = z and vk = ε. Then, from Lemma 1(d), it follows that ⟨p, q⟩ = {v1, v2, . . . , vk} which, by Lemma 1(d), yields

∥⟨p, q.c⟩∥ = {|v| + 1 : v ∈ {v1, . . . , vk} and p[m − 1 − |v|] = c} ∪ {0},

completing the proof of the lemma. �

4.2. Worst-case time analysis

We show now that the worst-case time complexity T (n,m) of the algorithm InversionSampling reported in Fig. 3 is
O(nm), for an input text t of length n and pattern p of lengthm.

To begin with, we observe that the preprocessing phase of the algorithm requires O(m2) time (and space), due to the
computation of the table W and the initialization at line 2.

Next we evaluate the complexity of the searching phase, namely of the for-loop at line 4. Let us denote by A the set of
pairs {−m+1, . . . , n−m}×{0 . . . ,m−1}. For each pair (i, j) ∈ A, we let C1(i, j) be the number of times that thewhile-loop
at line 7 is executed during iteration i of the for-loop at line 4, and we let K(i, j) be the value contained in K[j] just after the
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termination of such iteration; in addition, we put C2(i, j) = 1, if the assignment instruction at line 10 is executed during
iteration i, otherwise we put C2(i, j) = 0. Plainly, we have that

T (n,m) = O


n−m

i=−m+1

m−1
j=0


C1(i, j) + 1


, (3)

and therefore it is enough to prove that the double summation in (3) is asymptotically bounded above by the product nm.
Since C2(i, j) ≤ 1 for each (i, j) ∈ A, we have that, for 0 ≤ j < m,

n−m
i=−m+1

C2(i, j) ≤ n. (4)

On the other hand, we have also that

K(i + 1, j) − C2(i + 1, j) ≤ K(i, j) − C1(i + 1, j), (5)

for all (i, j) ∈ A such that i < n − m. Indeed, during iteration i, the value contained in K[j] just after the execution of the
while-loop at line 7 (i.e., K(i + 1, j) − C2(i + 1, j)) can never exceed the value contained in K[j] just before this execution
minus the number of times that the while-loop iterates (i.e., K(i, j) − C1(i + 1, j)), since K[j] is decremented at least by one
unit during each iteration of the while-loop at line 7. Thus it follows that

0 ≤ K(h, j) ≤

h
i=−m+1

C2(i, j) −

h
i=−m+1

C1(i, j), (6)

for all (h, j) ∈ A, as can be verified by induction on h, using (5). From (6) it follows that

m−1
j=0

n−m
i=−m+1


C1(i, j) + 1


≤

m−1
j=0

n−m
i=−m+1


C2(i, j) + 1


,

and thus, using (4), we finally obtain that

m−1
j=0

n−m
i=−m+1


C1(i, j) + 1


≤ (n + 1)m,

which in turn, by (3), yields T (n,m) = O(nm).
In the following section we present an efficient variant of our algorithm InversionSampling that has the same O(nm)

worst-case time complexity, but exhibits a linear-time complexity on the average case.

5. The InversionFilter&Sample algorithm

The new algorithm, named InversionFilter&Sample algorithm, improves the searching strategy introduced in the
InversionSampling algorithm by making use of an efficient filter method recently used in [6] by Grabowsky et al. in the
case of the string matching problem allowing for inversions and translocations. Such a filter technique, usually referred to
as the counting filter, is known in the literature [7,8,1] and has been used for the k-mismatches and k-differences string
matching problem.

The idea behind this filtering technique is straightforward and is based upon the observation that (in our problem)
if a pattern p has an occurrence (possibly involving inversions) starting at position s of a text t , then the |p|-substring
t[s . . . s + |p| − 1] of the text is a permutation of the pattern p.

Here we follow much the same line of arguments as presented in [6].
As above, we assume that p and t are strings of lengthm and n, respectively, over a common alphabetΣ = {c0, . . . , cσ−1}.

Additionally, we assume that σ = O(n).
The InversionFilter&Sample algorithm firstly identifies the set Γp,t of all candidate positions s in the text such that the

substring t[s . . . s+m−1] is a permutation of the characters in p and, subsequently, for each such candidate position s ∈ Γp,t ,
it executes a verification procedure to check whether p and t[s . . . s + m − 1] match, up to non-overlapping inversions.

Specifically, for each position 0 ≤ s ≤ n − m, we define the function Gs : Σ → Z , by putting

Gs(c) =Def occp(c) − occt(s,m)(c),

for c ∈ Σ and where t(s,m) denotes the substring t[s . . . s + m − 1].
We also define, for each position s, the distance value δs as follows

δs =Def δ(p, ts) =


c∈Σ

|occp(c) − occt(s,m)(c)| =


c∈Σ

|Gs(c)|.
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Fig. 6. Four working steps of the InversionFilter&Sample algorithm for a pattern of lengthm = 5. Sampled positions are identified by bullets. Steps 1 and 4:
a candidate position s is found and a new sampling is started from position s − m + 1. Steps 2 and 3: a new candidate position s is found and the sampling
is continued from the previous candidate position s′ .

Then it is easy to see that the set Γp,t of all candidate positions in the text can be defined as

Γp,t =Def {s : 0 ≤ s ≤ n − m and δs = 0}.

Observe that values δs+1 and δs can differ only in the number of occurrences of characters t[s] and t[s + m]. Thanks to
this property, Gs+1(c) can be computed in constant time from Gs(c) and, similarly, δs+1 can be computed from δs in constant
time. It follows that O(n) time is needed for computing all values δs for s = 0, . . . , n − m.

When a candidate position s (such that δs = 0) is found, a verification procedure is run. The verification procedure used
by the InversionFilter&Sample algorithm is named Sample and is based on the InversionSampling algorithm.

Roughly speaking the Sample procedure, when called for a particular position s of the text, executes the
InversionSampling algorithm in order to search for occurrences of the pattern starting from position s − m + 1 to position
s of the text, provided that none of such positions have been already sampled in a previous verification phase (it consists in
searching t[s − m + 1 . . . s + m − 1] for occurrences of p).

When a verification phase stops, the algorithm remembers the last sampled position s′ of the text (s′ is initialized to−m)
and stores the last values of the vector K[j], for j = 0, . . . ,m− 1. When starting a new verification phase at position s of the
text, the algorithm checks whether position s′ is less than s−m. If this is the case, the algorithm restarts a new sample phase
from position s − m + 1, so that positions from s′ to s − m are not verified (steps 1 and 4 of Fig. 6). Otherwise the previous
sampling is continued from position s′ + 1 (steps 2 and 3 of Fig. 6). In both cases, the sample phase stops at position s of the
text. Then the filter phase restarts from position s + 1.

Fig. 7 shows the code of the InversionFilter&Sample algorithm and its verification phase.
Approximate occurrences of the pattern are reported only during the sample phase of the algorithm.
A single run of the Sample procedure takes at most O(m2) time, as for a pattern p of length m and a text t of length n,

the InversionSampling algorithm has a O(mn) worst-case time complexity. However, since each text position is sampled
at most once by the Sample procedure, in the worst case the verification phase of the InversionFilter&Sample algorithm
performs exactly the same amount of work of the DPInversionMatcher algorithm. Thus the overall complexity due to
the verification phase is at most O(nm). Moreover, as remarked above, the filtering phase takes at most O(n) time for
scanning the whole text. We conclude that the total worst-case time complexity of the InversionFilter&Sample algorithm is
O(nm) + O(n) = O(nm).

In the next sectionwe show that, despite its quadraticworst-case time complexity, the InversionFilter&Sample algorithm
shows a linear behavior on average.

5.1. Average-case time analysis

In the following analysis we assume the uniform distribution and independence of characters.
The verification procedure takes at most O(m2) (worst-case) time per location. Thus, to obtain a linear average-time

bound, it is enough to bound with O(1/m2) the probability of finding permuted subsequences of lengthm.
In [6], Grabowsky et al. proved this bound for m = ω(σO(1)) and σ = Ω(logm/ log log1−ε m). Much the same analysis

could be carried out also in our case. However, in the followingwe prove a somewhat slightly stronger result. More precisely,
we derive a linear average-time bound for our algorithm, for sufficiently large m > σ c and any alphabet size σ ≥

5c
c−1 , for

any given constant c > 1.
Let Pr{s ∈ Γp,t} be the probability that a given position s is a candidate position to be verified. Since the preprocessing

and a single verification phase of the algorithm takeO(m2) time, the average time complexity of the InversionFilter&Sample
algorithm can be expressed as

T (n,m, σ ) = O(m2) +

n−m
s=0

Pr{s ∈ Γp,t} · O(m2). (7)
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Fig. 7. Top: the InversionFilter&Sample algorithm for the approximate string matching problem with inversions. Bottom: the verification procedure based
on the InversionSampling algorithm.

Thus, letm > σ c , for some constant c > 1.Without loss of generality, we assume thatσ dividesm andweputα =Defm/σ .
For each text position s, with 0 ≤ s ≤ n − m, the probability that the m-substring of the text, beginning at position s, is a
permutation of the pattern p is exactly

Pr{s ∈ Γp,t} =

 m
occ(c0)

m−occ(c0)
occ(c1)

m−occ(c0)−occ(c1)
occ(c2)


. . .
occ(cσ−1)
occ(cσ−1)


σm

=
m!

σm · occ(c0)! · occ(c1)! · · · · · occ(cσ−1)!
. (8)

Expression (8) is maximized when occ(ci) = α, for all i = 0, . . . , σ − 1. Thus, we have:

Pr{s ∈ Γp,t} ≤
m!

(α!)σ σm
.

Wemake use of Stirling’s approximation form! and α!, where we recall that α = m/σ :

m!

(α!)σ σm
= Θ

 √
2πm(m/e)m

(
√
2πm/σ(m/(eσ))m/σ )σ σm


= Θ

 √
2πm√

2π(m/σ)
σ


.

Since
√
2π/(

√
2π)σ ≤ 1, we have:
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Θ

 √
2πm√

2π(m/σ)
σ


= Θ

 √
m√

m/σ
σ


= Θ


σ σ/2

m(σ−1)/2


.

If we take σ ≥
5c
c−1 , then σ ≤ c(σ − 5), so that

σ σ
≤ σ c(σ−5)

≤ mσ−5.

Therefore we get

σ σ/2

m(σ−1)/2
≤

1
m2

,

since, plainly,

m(σ−5)/2
=

m(σ−1)/2

m2
.

Thus, we have

Pr{s ∈ Γp,t} = O(1/m2), (9)

for any σ ≥
5c
c−1 and sufficiently largem > σ c , with c > 1.

The overall average-time complexity of the InversionFilter&Sample algorithm given in (7), assuming σ ≥
5c
c−1 , is equal

to

T (n,m, σ ) = O(m2) +

n−m
s=0

Pr{s ∈ Γp,t} · O(m2)

= O(m2) + (n − m + 1) · O(1/m2) · O(m2) = O(m2
+ n),

which, in view of (9), yields T (n,m, σ ) = O(m2
+ n).

6. Conclusions and future work

In this paper we have presented two efficient algorithms to solve the pattern matching problem under a string
distance which allows inversions of non-overlapping factors. The first algorithm, named InversionSampling, has worst-case
O(nm) time andO(m2) space complexity,wherem and n are the length of the pattern and the length of the text, respectively.
The second algorithm, named InversionFilter&Sample, has the same worst-case complexity as the InversionSampling
algorithm, but shows a O(n) average-case time complexity for σ ≥

5c
c−1 and sufficiently largem > σ c , with c > 1.

We are currently working on an efficient variant of the present algorithms with a sublinear average time complexity.
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