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This article addresses the online exact string matching problem which consists in finding all occurrences of a
given pattern p in a text ¢. It is an extensively studied problem in computer science, mainly due to its direct
applications to such diverse areas as text, image and signal processing, speech analysis and recognition,
information retrieval, data compression, computational biology and chemistry.

In the last decade more than 50 new algorithms have been proposed for the problem, which add up to
a wide set of (almost 40) algorithms presented before 2000. In this article we review the string matching
algorithms presented in the last decade and present experimental results in order to bring order among the
dozens of articles published in this area.
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1. INTRODUCTION

Given a text ¢ of length n and a pattern p of length m over some alphabet X of size o, the
string matching problem consists in finding all occurrences of the pattern p in the text
t. String matching is a very important subject in the wider domain of text processing
and algorithms for the problem are also basic components used in implementations of
practical softwares existing under most operating systems. Moreover, they emphasize
programming methods that serve as paradigms in other fields of computer science.
Finally they also play an important role in theoretical computer science by providing
challenging problems.

Although data are memorized in various ways, text remains the main form to ex-
change information. This is particularly evident in literature of linguistics where data
are composed of huge corpus and dictionaries. This applies as well to computer science
where a large amount of data are stored in linear files. And this is also the case, for
instance, in molecular biology because biological molecules can often be approximated
as sequences of nucleotides or amino acids.
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Applications require two kinds of solutions depending on which string, the pattern
or the text, is given first. Algorithms based on the use of automata or combinatorial
properties of strings are commonly implemented to preprocess the pattern and solve
the first kind of problem. This kind of problem is generally referred to as online string
matching. The notion of indexes realized by trees or automata is used instead in the
second kind of problem, generally referred to as offline string matching. In this article
we are only interested in algorithms of the first kind.

Online string matching algorithms (hereafter simply string matching algorithms)
can be divided into five classes: algorithms which solve the problem by making use
only of comparisons between characters, algorithms which make use of determinis-
tic automata, algorithms which simulate nondeterministic automata, constant-space
algorithms, and real-time algorithms.

The worst-case lower bound of the string matching problem is O(n). The first al-
gorithm to reach the bound was given by Morris and Pratt [1970] later improved by
Knuth et al. [1977]. The reader can refer to Section 7 of Knuth et al. [1977] for historical
remarks. Linear algorithms have been developed also based on bit-parallelism [Baeza-
Yates and Gonnet 1992; Wu and Manber 1992]. An average lower bound in O(nlog m/m)
(with equiprobability and independence of letters) has been proved by Yao [1979].

Many string matching algorithms have been also developed to obtain sublinear per-
formance in practice (see Charras and Lecroq [2004] for the most recent survey). Among
them the Boyer-Moore algorithm [Boyer and Moore 1977] deserves a special mention,
since it has been particularly successful and has inspired much work. Among the most
efficient comparison-based algorithms we mention the well-known Horspool [1980] and
Quick-Search [Sunday 1990] algorithms which, despite their quadratic worst-case time
complexity, show a sublinear behavior.

Automata-based solutions have been also developed to design algorithms which
have optimal sublinear performance on average. This is done by using factor au-
tomata [Blumer et al. 1983; Allauzen et al. 1999], data structures which identify all
factors of a word. Among them the Backward-Oracle-Matching algorithm [Allauzen
et al. 1999] is one of the most efficient algorithms especially for long patterns.

Another algorithm based on the simulation of the nondeterministic factor automaton,
and called Backward Nondeterministic Dawg Match algorithm [Navarro and Raffinot
1998] (BNDM), is very efficient for short patterns.

Two of the most important subdomains of string matching are constant-space string
matching, which aims to solutions which use only constant extra space, and real-time
string matching where the time difference between the processing of two consecutive
text characters must be bounded by a constant.

In the case of constant-space string matching the two main algorithms are the
Galil and Seiferas algorithm [Galil and Seiferas 1983] and the Two Way algorithm
by Crochemore and Perrin [1991]. The main technique for performing string matching
in real time is due to Galil [1981].

In this article we review the string matching algorithms which have been proposed
in the last decade (2000-2010) and present experimental results in order to bring or-
der among the dozens of articles published in recent years. For simplicity we divide
the discussion into four main sections: algorithms based on characters comparison,
automata-based algorithms, algorithms based on bit-parallelism, and constant-space
algorithms. (No real-time string matching has been designed in the last decade.) Fig-
ure 1 shows a comprehensive list of the algorithms presented in the last decade.

Specifically in Section 2 we introduce basic definitions and the terminology used
along the article. In Section 3 we survey the most classical string matching algorithms
designed before year 2000. In Section 4 we survey the most recent algorithms designed
after 2000. Experimental data obtained by running under various conditions all the
algorithms reviewed are presented and compared in Section 5.
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Algorithms based on characters comparison

Ahmed-Kaykobad-Chowdhury Ahmed et al. [2003] Sec. 4.1.1
Fast-Search Cantone and Faro [2003a] Sec. 4.1.1
Forward-Fast-Search Cantone and Faro [2005] Sec. 4.1.1
Backward-Fast-Search, Fast-Boyer-Moore Cantone and Faro [2005] Sec. 4.1.1
Sheik-Sumit-Anindya-Balakrishnan-Sekar Sheik et al. [2004] Sec. 4.1.1
Thathoo-Virmani-Sai-Balakrishnan-Sekar Thathoo et al. [2006] Sec. 4.1.1
Boyer-Moore-Horspool using Probabilities Nebel [2006] Sec. 4.1.1
Franek-Jennings-Smyth Franek et al. [2007] Sec. 4.1.1
2-Block Boyer-Moore Sustik and Moore [2007] Sec. 4.1.1
Two-Sliding-Window Hudaib et al. [2008] Sec. 4.1.2
Wu-Manber for Single Pattern Matching Lecroq [2007] Sec. 4.1.3
Boyer-Moore-Horspool with g-grams Kalsi et al. [2008] Sec. 4.1.3
Genomic Rapid Algo for String Pm Deusdado and Carvalho [2009] Sec. 4.1.3
SSEF Kiilekei [2009] Sec. 4.1.4
Algorithms based on automata

Extended Backward Oracle Matching Faro and Lecroq [2008] Sec. 4.2.1
Simplified Extended Backward Oracle Matching Fan et al. [2009] Sec. 4.2.1
Forward Backward Oracle Matching Faro and Lecroq [2008] Sec. 4.2.1
Simplified Forward Backward Oracle Matching Fan et al. [2009] Sec. 4.2.1
Double Forward DAWG Matching Allauzen and Raffinot [2000] Sec. 4.2.2
Wide Window He et al. [2005] Sec. 4.2.3
Linear DAWG Matching He et al. [2005] Sec. 4.2.3
Improved Linear DAWG Matching Liu et al. [2006] Sec. 4.2.3
Improved Linear DAWG Matching 2 Liu et al. [2006] Sec. 4.2.3
Algorithms based on bit-parallelism

Simplified BNDM Peltola and Tarhio [2003] Sec. 4.3.1
BNDM with loop-unrolling Holub and Durian [2005] Sec. 4.3.1
Simplified BNDM with loop-unrolling Holub and Durian [2005] Sec. 4.3.1
BNDM with Horspool Shift Holub and Durian [2005] Sec. 4.3.1
Horspool with BNDM test Holub and Durian [2005] Sec. 4.3.1
Forward SBNDM Faro and Lecroq [2008] Sec. 4.3.1
Forward Non-deterministic DAWG Matching Holub and Durian [2005] Sec. 4.3.2
Two-Way Non-deterministic DAWG Matching Peltola and Tarhio [2003] Sec. 4.3.2
Bit parallel Wide Window He et al. [2005] Sec. 4.3.3
Bit-Parallel® Wide-Window Cantone et al. [2010b] Sec. 4.3.3
Bit-Parallel Wide-Window? Cantone et al. [2010b] Sec. 4.3.3
Small Alphabet Bit-Parallel Zhang et al. [2009] Sec. 4.3.3
Shift Vector Matching Peltola and Tarhio [2003] Sec. 4.3.4
Fast Average Optimal Shift-Or Fredriksson and Grabowski [2005]  Sec. 4.3.5
Average Optimal Shift-Or Fredriksson and Grabowski [2005]  Sec. 4.3.5
Bit-Parallel Length Invariant Matcher Kiilekei [2008] Sec. 4.3.5
BNDM for Long patterns Navarro and Raffinot [2000] Sec. 4.3.5
Long patterns BNDM Peltola and Tarhio [2003] Sec. 4.3.5
Factorized BNDM Cantone et al. [2010a] Sec. 4.3.5
Factorized Shift-And Cantone et al. [2010a] Sec. 4.3.5
BNDM with g-grams Durian et al. [2009] Sec. 4.3.6
Simplified BNDM with ¢-grams Durian et al. [2009] Sec. 4.3.6
Shift-Or with ¢g-grams Durian et al. [2009] Sec. 4.3.6
Constant-space string matching algorithms

Tailed-Substring Cantone and Faro [2004] Sec. 4.4.1

Fig. 1.
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2. BASIC DEFINITIONS AND TERMINOLOGY

We consider a text ¢ of length n and a pattern p of length m over some alphabet T
of size o. A string p of length m is represented as a finite array p[0..m — 1], with
m > 0. In particular, for m = 0 we obtain the empty string, also denoted by . By
pli]l we denote the (i + 1)-st character of p, for 0 < i < m. Likewise, by pli .. j] we
denote the substring of p contained between the (i + 1)-st and the (j + 1)-st characters
of p, for 0 < i < j < m. Moreover, for any i, j € Z, we put pli..jl = ¢ ifi > j and
pli .. jl = plmax(i, 0), min(j, m—1)] ifi < j. A substring of a given string p is also called
a factor of p. We denote by Fact(p) the set of all the factors of the string p. A substring of
the form p[0..:7] is called a prefix of p and a substring of the form p[i .. m— 1] is called a
suffix of p for 0 < i < m—1. We denote by Suff{p) the set of all the suffixes of the string p.
For simplicity in most cases we write p; to indicate the prefix of p oflength j+1, that is,
p;j = pl0..j]. For any two strings v and w, we write w 1 u to indicate that w is
a suffix of u. Similarly, we write w C u to indicate that w is a prefix of u. A sub-
string u of p is a border if u is both a prefix and a suffix of p. A integer % is a
period of a word w if for i, 0 < i < m — k, wli] = wli + k]. The smallest period
of w is called the period of w, it is denoted by per(w). A word w is basic if it can-
not be written as a power of another word: there exist no word z and no integer %
such that w = z*. The reverse of a string p[0..m — 1] is the string, denoted by p,
built by the concatenation of its letters from the last to the first: p[m — 1lp[m —2]---
pl1]p[0].

For any two strings v and w of X*, we define the function endpos, (v) which returns
the set of all positions j > |u| — 1 such that w[j — |u| + 1.. j] = u. Moreover we define
the relation ~ by u ~, v if and only if endpos,(u) = endpos,(v)

A Finite State Automaton is a tuple A = {@Q, qo, F, Z,8}, where @ is the set
of states of the automaton, gy € @ is the initial state, F C @ is the set
of accepting states, ¥ is the alphabet of characters labeling transitions, and
8 : (@ x ) —» Q is the transition function. If §(q, ¢) is not defined for a state ¢ € @
and a character ¢ € X we say that 8(g,c) is an undefined transition and write
8(g,c) =1.

The transition function §, naturally induces final state function, §* : ¥* — @, defined
recursively by §*(w) = §(6*(w’), ¢), for each w = w'c, with w’ € £*,¢c € X.

Let ¢ be a text of length n and let p be a pattern of length m. When the character
pl0] is aligned with the character ¢[s] of the text, so that the character pli] is aligned
with the character ¢[s +i], fori =0, ..., m — 1, we say that the pattern p has shift s in
t. In this case the substring ¢[s..s + m — 1] is called the current window of the text. If
tls..s + m— 1] = p, we say that the shift s is valid. Thus the string matching problem
can be rephrased as the problem of finding all valid shifts of a pattern p relative to a
text ¢.

Most string matching algorithms generally work as follows. They scan the text with
the help of a window of the text whose size is generally equal to m. For each window
of the text they check the occurrence of the pattern (this specific work is called an
attempt) by comparing the characters of the window with the characters of the pattern,
or by performing transitions on some kind of automaton, or by using some kind of
filtering method. After a whole match of the pattern or after a mismatch they shift
the window to the right by a certain number of positions. This mechanism is usually
called the sliding window mechanism. At the beginning of the search they align the
left ends of the window and the text, then they repeat the sliding window mechanism
until the right end of the window goes beyond the right end of the text. We associate
each attempt with the position s in the text where the window is positioned, that is,
tls..s+m—1].
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3. ALGORITHMS DESIGNED BEFORE 2000

In this section we survey the most classical string matching algorithms that have been
designed before year 2000. In particular we present in Section 3.1 the algorithms based
on comparisons and in Section 3.2 the algorithms based on automata. Then in Sec-
tion 3.3 the algorithms based on bit-parallelism are presented. Finally, constant-space
algorithms and real-time algorithms are presented in Section 3.4 and in Section 3.5,
respectively.

3.1. Comparison-Based Algorithms

Most of the comparison-based algorithms presented in the last ten years are obtained by
improving or combining the ideas of previously published algorithms. In the following
we briefly review the state-of-the-art until 2000 and the main ideas and the algorithms
to which the new solutions refer.

One of the first algorithms to solve the string matching problem in linear time is due
to Knuth et al. [1977]. The search is done by scanning the current window of the text
from left to right character by character and, for each text position j, remembering the
longest prefix of the pattern which is also a suffix of ¢[s .. j]. Specifically, if a mismatch
occurs with the character of position i in the pattern, the Knuth-Morris-Pratt algorithm
advances the shift s of exactly i — 7, (i) characters to the right, where 7,(0) = —1 and

np(i):max<{0<k<i | plO..k—1l=pli —k..i —1] andp[k];ﬁp[i]}U{—l}) (D

is the length of the longest border of p[0..i — 1] followed by a character different from
pli] for 0 < i < m — 1. When an occurrence of the pattern is found, which means
that i = m then the window is shifted using 7,(m) = max{0 <k <m | p[0..k - 1] =
pli—k..m—1]}.

Then the next window alignment starts at position s’ = s +i — 7,(i) in the text and
the reading resumes from character ¢[s’ + 7, (i)].

The Boyer-Moore algorithm [Boyer and Moore 1977] is the progenitor of several
algorithmic variants which aim at computing close to optimal shift increments very
efficiently. Specifically, the Boyer-Moore algorithm checks whether s is a valid shift
by scanning the pattern p from right to left and, at the end of the matching phase,
computes the shift increment as the maximum value suggested by the good suffix rule
and the bad character rule given shortly using the functions gs, and bc, respectively,
provided that both of them are applicable.

Ifthe first mismatch occurs at position i of the pattern p, the good suffix rule suggests
to align the substring ¢[s+i+1..s+m—1] = pli+1..m—1] with its rightmost occurrence
in p preceded by a character different from pli]. If such an occurrence does not exist,
the good suffix rule suggests a shift increment which allows to match the longest suffix
of t[s +i + 1..s + m — 1] with a prefix of p. Specifically, if the first mismatch occurs
at position i of the pattern p, the good suffix rule states that the shift can safely be
incremented by gs,(i + 1) positions, where

gs,(j)=min{0 <k<m | plj—k.m—k—-1]3p
and (k <j—1— plj—11# plj -1k}

for j = 0,1, ..., m. (The situation in which an occurrence of the pattern p is found can
be regarded as a mismatch at position —1.)

The bad character rule states that if ¢ = t[s + i] # pli] is the first mismatching
character, while scanning p and ¢ from right to left with shift s, then p can safely be
shifted in such a way that its rightmost occurrence of ¢, if present, is aligned with

(2)
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position (s + i) in ¢. In the case in which ¢ does not occur in p, then p can safely be
shifted just past position (s + i) in ¢. More formally, the shift increment suggested by
the bad character rule is given by the expression (i — bc,(¢[s + i])), where

be,(c) =max({0 <k <m | plkl =c}U{-1}) , (3)

for ¢ € X, and where we recall that ¥ is the alphabet of the pattern p and text ¢. Notice
that there are situations in which the shift increment given by the bad character rule
can be negative.

Horspool in [1980] suggested a simplification of the original Boyer-Moore algorithm,
defining a new variant which, though quadratic in the worst case, performs better in
practical cases. He just dropped the good suffix rule and proposed to compute the shift
advancement in such a way that the rightmost character ¢[s + m — 1] is aligned with its
rightmost occurrence in p[0..m— 2], if present; otherwise the pattern is advanced just
past the window. This corresponds to advance the shift by hbc,(¢[s + m — 1]) positions
where, for allc € &

hbc,(c) =min({1 <k <m | plm—1-kl=c}U{m}) . (4)

The resulting algorithm performs well in practice and can be immediately translated
into programming code.

The Quick-Search algorithm [Sunday 19901, is a very simple variation of the Horspool
algorithm. After each attempt the shift is computed according to the character which
immediately follows the current window of the text, that is, the character t[s + m]
(in many subsequent articles referred as the forward character). This corresponds to
advance the shift by qbc, (¢[s + m]) positions, where

qbc,(c) =min({l<k<m | plm—kl=c}U{m+1}) (5)
forallc € X.

Finally in the Berry-Ravindran algorithm [Berry and Ravindran 1999] (BR for short),
which is an improvement of the Quick-Search algorithm, after each attempt the pattern
is advanced so that the substring of the text t[s + m..s + m + 1] is aligned with its
rightmost occurrence in p. This corresponds to advance the shift by brbc, (t[s +ml, ¢[s +
m+ 1]) positions where, for allc € &

brbc,(c1,c2) =min ({1<k<m | plm—k—1] =c; and plm — k] = ca}

U ik | k=mand pl0] = g} U {m+ 1)) . 6)

More effective implementations of the algorithms based on a bad character rule can
be obtained by making use of a fast loop (or character unrolling cycle). This technique
has been introduced first in the Tuned-Boyer-Moore algorithm [Hume and Sunday
1991], and then largely used in almost all algorithms based on a bad character rule. It
simply consists in applying rounds of several blind shifts (based on the bad character
rule) while needed. The fact that the blind shifts require no checks is at the heart of the
very good practical behavior of such algorithms. Moreover, in order to compute the last
shifts correctly it is necessary to add a copy of p at the end of the text ¢, as a sentinel.

3.2. Algorithms Based on Deterministic Automata

Automata play a very important role in the design of efficient string matching algo-
rithms. The first linear algorithm based on deterministic automata is the Automaton
Matcher [Aho et al. 1974]. Such algorithm makes use of the String Matching Automa-
ton (SMA for short) D(p) for a given pattern p of length m. Specifically the SMA D(p)
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is a quintuple D(p) = {Q, qo, F, X, 8} where @ = {qo, q1. - ... qn} is the set of states; g,
is the initial state; F' = {q,,} is the set of accepting states, and § : @ x ¥ — @ is the
transition function defined as

8(g;. c) = | i+t ifc = pli + 1]
9i-¢) = qx, where £ is the longest border of p[0..i — 1]c otherwise

for 0 <i < mand ¢ € . The language recognized by D(p) is L(D(p)) = Z*p.

The Automaton Matcher simply scans the text character by character, from left to
right, performing transitions on the automaton D(p). If the final state is reached after
the character ¢[] is read, then a match is reported at position (j —m+ 1). Simon [1993]
noticed that this automaton only has m— 1 backward significant transitions not leading
to the initial state. Thus it is possible to represent it in linear size independently from
the underlying alphabet. The resulting string matching algorithm has been studied by
C. Hancart [1993].

Automata-based solutions have been also developed to design algorithms which have
optimal sublinear performance on average. This is done by using factor automata
[Blumer et al. 1983; 1985; Crochemore 1985] and factor oracles [Allauzen et al. 1999].

The factor automaton of a pattern p, Dawg(p), is also called the factor DAWG of p
(for Directed Acyclic Word Graph). Such an automaton recognizes all the factors of p.
Formally the language recognized by Dawg(p) is the set Fact(p).

In some cases we add to the previous definition of the automaton a failure function,
Fail : Fact(p) \ {¢} — Fact(p), defined, for every nonempty factor v of p, as the longest
u € Suff(v) such that u ~, v.

The factor oracle of a pattern p, Oracle(p), is a very compact automaton which
recognizes at least all the factors of p and slightly more other words. Formally
Oracle(p) is an automaton {@, q,», @, X, 8} such that @ contains exactly m+1 states, say
® = {90,91.92,qs, - .., qm}, gm 1s the initial state, all states are final and the language
accepted by Oracle(p) is such that L(Dawg(p)) C L(Oracle(p)).

Despite the fact that the factor oracle is able to recognize words that are not factors
of the pattern [Mancheron and Moan 2005], it can be used to search for a pattern in a
text since the only factor of p of length greater or equal to m which is recognized by the
oracle is the pattern itself. The computation of the factor automaton and factor oracle
is linear in time and space in the length of the pattern.

The factor automaton is used in Crochemore and Rytter [1994] and Crochemore
[1986] for a forward search of a pattern in a text, by reading the letters of the text one
after the other. The algorithm is called Forward-DAWG-Matching (FDM for short). For
each position j in the text, we compute the length of the longest factor of p that is a
suffix of the prefix ¢;. We first build the factor automaton Dawg(p) and initialize the
current length ¢ to 0. We then read the characters one by one, updating the length ¢
for each letter. Assume that the algorithm reads the text until j and that it arrives
in a state g with some value ¢. It reads character ¢[j + 1] and updates ¢ and ¢ in the
following way: if there is a transition from g by ¢[j + 1] to a state f, then the current
state becomes f and ¢ is incremented by 1; if not, we go down the failure path of ¢ until
we find a state which has an existing transition by ¢[j + 1]. Two cases may occur: If
there is such a state d that has a transition to a state r by ¢[j + 1], then the current
state becomes r and ¢ is updated to length d + 1; if not, the current state is set to the
initial state of Dawg(p) with £ set to 0.

The factor automaton and factor oracle are used respectively in Crochemore et al.
[1994], Crochemore and Rytter [1994], and in Allauzen et al. [1999] to get optimal
pattern matching algorithms on the average. The algorithm which makes use of the
factor automaton of the reverse pattern is called Backward-DAWG-Matching algorithm
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(BDM for short) while the algorithm using the factor oracle is called Backward-Oracle-
Matching (BOM for short). Such algorithms move a window of size m on the text. For
each new position of the window, the automaton of the reverse of p is used to search
for a factor of p from the right to the left of the window. The basic idea of the BDM and
BOM algorithms is that if the backward search failed on a letter ¢ after the reading of
a word u then cu is not a factor of p and moving the beginning of the window just after
¢ is secure. If a factor of length m is recognized then an occurrence of the pattern was
found. The Reverse Factor [Crochemore et al. 1994] and the Backward Suffix Oracle
Matching [Allauzen et al. 1999] algorithms work as the BDM and BOM algorithm,
respectively, but compute the shifts according to the longest prefix of the pattern that
is a suffix of the window at each attempt.

3.3. Bit-Parallel Algorithms

Bit-parallelism is a technique first introduced in Démolki [1968], and later revisited
in Baeza-Yates and Gonnet [1992] and Wu and Manber [1992]. It takes advantage of
the intrinsic parallelism of the bit operations inside a computer word, allowing to cut
down the number of operations that an algorithm performs by a factor up to w, where
w is the number of bits in the computer word. Bit-parallelism is particularly suitable
for the efficient simulation of nondeterministic automata.

The algorithms reviewed in this section make use of bitwise operations, that is,
operations which operate on one or more bit vectors at the level of their individual bits.
On modern architectures bitwise operations have the same speed as addition but are
significantly faster than multiplication and division.

We use the C-like notations in order to represent bitwise operations. In particular:

“|”

represents the bitwise operation oR;
“&” represents the bitwise operation AND;
“\” represents the bitwise operation Xor;
represents the one’s complement;
“«” represents the bitwise left shift; and
“>” represents the bitwise right shift.

3 ”»
~

All operations listed use a single CPU cycle to be computed. Moreover some of the
algorithms described shortly make use of the following, nontrivial, bitwise operations:

“reverse” represents the reverse operation;
“bsf” represents the bit scan forward operation; and
“popcount” represents population count operation.

Specifically, for a given bit vector B, the reverse operation inverts the order of the bits
in a bit vector B and can be implemented efficiently with O(log,(length(B)))-time, the
bsf operation counts the number of zeros preceding the leftmost bit set to one in B, while
the popcount operation counts the number of bits set to one in B and can be performed
in O(log,(length(B)))-time. (See Arndt [2009] for the detailed implementation of the
operations listed before).

The first solutions based on bit-parallelism were the Shift-And [Wu and Manber
1992] (SA for short), Shift-Or [Baeza-Yates and Gonnet 1992] (SO for short), and
BNDM [Navarro and Raffinot 1998] algorithms.

The Shift-And [Wu and Manber 1992] algorithm simulates the behavior of the
nondeterministic string matching automaton (NSMA, for short) that recognizes the
language * p for a given string p of length m, early described in its deterministic form
in Section 3.2.

More precisely, given a string p € X™, the nondeterministic automaton for the lan-
guage X*p is the automaton NSMA(p) = (@, X, 8, qo, F) which recognizes all words in
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¥* ending with an occurrence of p, where @ = {qo,q1, ..., qm}, Qo is the initial state,
F = {qg,,} is the set of final states, and the transition function § : @ x ¥ — 2(Q) is
defined by

{go,q1} ifi =0 andc = pl0]
{qo} ifi = 0 and ¢ # pl0]
{gi+1} if1<i <mandc = plil
] otherwise.

8(ql’ C) ~Def

The valid configurations §*(qo, x) reachable by the automata NSMA(p) on input x €
¥* are defined recursively as follows.

0, %7 =ou Uyesigorn 8@ ¢)  if x = x'c for some c € £ and x’ € T*.

The bit-parallel representation of the automaton NSMA(p) uses an array B of o bit
vectors, each of size m, where the i-th bit of Blc] is set iff §(q;, ¢) = g; 11 or equivalently
iff pli]l = ¢, for c € X, 0 < i < m. Automaton configurations §*(qg, S) on input S € X*
are then encoded as a bit vector D of m bits (the initial state does not need to be
represented, as it is always active), where the i-th bit of D is set iff state g;,1 is active,
that is, ¢;11 € 6*(go, S), for i = 0,...,m — 1. For a configuration D of the NFA, a
transition on character ¢ can then be implemented by the bitwise operations.

D~ ((D«1l | 1) & Blcl.

The bitwise or with 1 (represented as 0" 11) is performed to take into account the
self-loop labeled with all the characters in ¥ on the initial state. When a search starts,
the initial configuration D is initialized to 0™. Then, while the text is read from left
to right, the automaton configuration is updated for each text character, as described
before. If the final state is active after reading character at position j in the text a
match at position j — m+ 1 is reported.

The Shift-Or algorithm [Baeza-Yates and Gonnet 1992] uses the complementary
technique of the Shift-And algorithm. In particular an active state of the automaton
is represented with a zero bit while ones represent nonactive states. The algorithm
updates the state vector D in a similar way as in the Shift-And algorithm, but is based
on the following basic shift-or operation.

D« (D<«x1 | Blcl

Then an occurrence of the pattern is reported if the bit which identifies the final state
is set to 0. Both Shift-And and Shift-Or algorithms achieve O(n[m/w]) worst-case time
and require O(o [m/w]) extra-space.

The Backward-Nondeterministic-DAWG-Matching algorithm (BNDM) simulates the
nondeterministic factor automaton for p with the bit-parallelism technique, using an
encoding similar to the one described before for the Shift-And algorithm.

The nondeterministic factor automaton (NDawg(p)) of a given string p is an NFA
with e-transitions that recognize the language Fact(p). More precisely, for a string
p € ™, NDawg(p) = (Q, ,6, 1, F), where @ = {I,qo,q1, ...,qn}, I is the initial state,
F = {q,,} is the set of final states and the transition function § : @ x (L U {¢}) — ()
is defined by

{gis1) ifg=q; andc = pli] (0<i <m)
8(q,¢) =p 3 {90.91,....9m} ifg=Iandc=c¢
@ otherwise.
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The BNDM algorithm encodes configurations of the automaton in a bit vector D of m
bits (the initial state and state gy are not represented). The i-th bit of D is set iff state
g;+1 1s active, fori = 0,1,...,m— 1, and D is initialized to 1™, since after the ¢-closure
of the initial state I all states q; represented in D are active. The first transition on
character ¢ is implemented as D <« (D & Blc]), while any subsequent transition on
character ¢ can be implemented as

D« (D1 & Blc).

The BNDM algorithm works by shifting a window of length m over the text. Specif-
ically, for each window alignment, it searches the pattern by scanning the current
window backwards and updating the automaton configuration accordingly. Each time
a suffix of p (i.e., a prefix of p) is found, namely when prior to the left shift the m-th
bit of D& Blc] is set, the window position is recorded. An attempt ends when either
D becomes zero (i.e., when no further prefixes of p can be found) or the algorithm
has performed m iterations (i.e., when a match has been found). The window is then
shifted to the start position of the longest recognized proper prefix. The time and space
complexities of the BNDM algorithm are O([m?/w]) and O(c [m/w]), respectively.

Bit-parallel algorithms are extremely fast as long as the pattern fits in a computer
word. Specifically, when m < w, the Shift-And and BNDM algorithms achieve O(n) and
O(nm) time complexity, respectively, and require O(o) extra space.

When the pattern size mis larger than o, the configuration bit vector and all auxiliary
bit vectors need to be split over [m/w] multiple words. For this reason the performance
of the Shift-And and BNDM algorithms, and of bit-parallel algorithms more in general,
degrades considerably as [m/w] grows.

3.4. Constant-Space Algorithms

The requirement for constant-space string matching is to use only variables in addition
to the inputs p and ¢. The two main constant-space string matching algorithms are the
Galil and Seiferas algorithm [Galil and Seiferas 1983] (GS for short) and the Two-Way
String Matching Algorithm by Crochemore and Perrin [1991].

The GS algorithm uses a constant £ (Galil and Seiferas suggest that practically this
constant could be equal to 4).

They make use of a function reach which is defined for 0 < i < m as follows.

reach(i) =i +max{i’ <m—1i | pl0..i'l =pli+1..7" +i+ 1]}

Then a prefix pl0..i] of p is a prefix period if it is basic and reach(i) > k x 1.

The preprocessing phase of the Galil-Seiferas algorithm consists in finding a decom-
position uv of x such that v has at most one prefix period and |u| = O(per(v)). Such a
decomposition is called a perfect factorization.

Then the searching phase consists in scanning the text ¢ for every occurrence of v
and when v occurs to check naively if u occurs just before in ¢.

The aim of the preprocessing phase is to find a perfect factorization uv of x where
u=pl0..s—1land v = p[s..m—1].

At the beginning of the searching phase one of the following conditions holds:

(i) pls..m — 1] has at most one prefix period;

(i1) if p[s..m — 1] does have a prefix period, then its length is ps;
(iii) pls..s+ p1 + g1 — 1] has shortest period of length p;;
(iv) pls..s + p1 + q1] does not have period of length p;.

The pattern p is of the form p[0..s — 1]pls..m — 1] where p[s..m — 1] is of the form
2'z'az" with z basic, |z| = p1, 2’ prefix of 2, 2/a not a prefix of z and |2°2/| = p1 + q1.
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It means that when searching for p[s..m — 1] in ¢, if p[s..s + p1 + g1 — 1] has been
matched a shift of length p; can be performed and the comparisons are resumed with
character pls + q1]; otherwise if a mismatch occurs with pls + gl with ¢ # p1 + ¢1
then a shift of length g/% + 1 can be performed and the comparisons are resumed with
pl0].This gives an overall linear number of text character comparisons.

The preprocessing phase of the Galil-Seiferas algorithm is in O(m) time and constant
space complexity. The searching phase is in O(n) time complexity. At most 5n text
character comparisons can be done during this phase.

For the Two-Way algorithm the pattern p is factorized into two parts p, and p, such
that p = p;p-. Then the searching phase consists in comparing the characters of p,
from left to right and then, if no mismatch occurs during that first stage, in comparing
the characters of p, from right to left in a second stage.

The preprocessing phase of the algorithm consists then in choosing a good factoriza-
tion pyp,. Let (u, v) be a factorization of p. A repetition in (u, v) is a word w such that
the two following properties hold:

(7). w is a suffix of u or u is a suffix of w;
(ii). w is a prefix of v of v is a prefix of w.

In other words w occurs at both sides of the cut between u and v with a possible
overflow on either side. The length of a repetition in (u, v) is called a local period and
the length of the smallest repetition in (u, v) is called the local period and is denoted by
r(u, v).

Each factorization (u, v) of p has at least one repetition. It can be easily seen that
1 <r(u,v) <m.

A factorization (u, v) of p such that r(u, v) = per(p) is called a critical factorization of
p. If (u, v) is a critical factorization of p then at the position |u| in p the global and the
local periods are the same. The Two-Way algorithm chooses the critical factorization
(pe¢, pr) such that |py| < per(p) and |p;| is minimal.

To compute the critical factorization (p,, p,) of p the algorithm first computes the
maximal suffix z of p for the order < and the maximal suffix Z for the reverse order of
<. Then (py, p,) is chosen such that | p,| = max{|z|, |Z|}. The preprocessing phase can be
done in O(m) time and constant space complexity.

The searching phase of the Two-Way algorithm consists in first comparing the char-
acter of p, from left to right, then the character of p, from right to left. When a mismatch
occurs when scanning the k-th character of p,, then a shift of length % is performed.
When a mismatch occurs when scanning p, or when an occurrence of the pattern is
found, then a shift of length per(p) is performed.

Such a scheme leads to a quadratic worst-case algorithm; this can be avoided by
a prefix memorization: when a shift of length per(p) is performed, the length of the
matching prefix of the pattern at the beginning of the window (namely m — per(p)) after
the shift is memorized to avoid scanning it again during the next attempt.

The searching phase of the Two-Way algorithm can be done in O(n) time complexity.
The algorithm performs 2n — m text character comparisons in the worst case. Bres-
lauer [1996] designed a variation of the Two-Way algorithm which performs less than
2n — m comparisons in the worst case using constant space.

3.5. Real-Time Algorithms

For real-time string matching the time difference between the processing of two consec-
utive text characters must be bounded by a constant. In Galil [1981], Galil introduced
a predictability condition which is a sufficient condition for an online algorithm to be
transformable into a real-time algorithm. He then showed that the KMP algorithm
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satisfies the predictability condition. So does, for instance, the Simon algorithm. More
recently Gasieniec and Kolpakov [2004] designed a real-time string matching algorithm
using sublinear extra space.

4. ALGORITHMS AFTER 2000

We are now ready to present the most recent string matching algorithms. In addition
to the classification used in the previous section (comparison based, automata based,
bit-parallel, constant-space, and real time) we also classify these recent algorithms
according to the main idea that leads to them. We retain nine main categories: variants
of the Boyer-Moore algorithm, variants of the Backward-Oracle-Matching algorithm,
variants of the Backward-Nondeterministic-Dawg-Matching algorithm, hashing and
g-grams, partitioning of the pattern, large window, two windows, two automata, and
SIMD. Note, however, that these categories are not exclusive but we classify each
algorithm into its main category.

Section 4.1 presents the algorithms based on comparisons. Section 4.2 contains the
algorithms based on automata. In Section 4.3 the algorithms based on bit-parallelism
are presented and Section 4.4 presents constant-space algorithms.

4.1. Comparison-Based Algorithms

We now present the most recent string matching based on character comparisons.
Section 4.1.1 presents variants of the Boyer-Moore algorithm. Section 4.1.2 presents
an algorithm using two windows on the text in parallel. Section 4.1.3 presents algo-
rithms using hashing or g-grams and Section 4.1.4 presents an algorithm using SIMD
instructions that proves to be very efficient in practice for long patterns.

4.1.1. Variants of the Boyer-Moore Algorithm. In this section we present recent string
matching algorithms based on character comparisons that are variants of the clas-
sical Boyer-Moore algorithm. Specifically we present the following algorithms.

—The AKC algorithm, a variant of the Apostolico-Giancarlo algorithm [Apostolico and
Giancarlo 1986] remembers all the suffixes of the pattern found in the text and
computes the shifts accordingly at the end of each attempt.

—Algorithms in the Fast-Search family are based on the fact that at the end of each
attempt the shift is computed with the bad character rule only if the first comparison
of the attempt is a mismatch and the shift is computed using the good suffix rule
otherwise.

—The SSABS and TVSBS algorithms scan first the rightmost character of the pattern,
then the leftmost and finally the remaining characters of the pattern.

—The Boyer-Moore Horspool algorithm uses probabilities and scans the characters of
the pattern according to their frequencies.

—The FJS algorithm is a hybrid between KMP and QS algorithms.

—The 2Block algorithm keeps track of all the previously matched characters within
the current window and does not move the reading position unconditionally to the
end of the pattern when a mismatch occurs.

The AKC Algorithm. The AKC algorithm [Ahmed et al. 2003] is a variant of the
Apostolico-Giancarlo algorithm [Apostolico and Giancarlo 1986]. At each attempt it
scans the characters of the window from right to left and remembers every factor of
the text that matches a suffix of the pattern during previous attempts. So at the end
of each attempt when the pattern is shifted, the AKC algorithm guarantees that each
text factor that already matched a suffix of the pattern still matches a factor of the
pattern.
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More specifically assume that the pattern is aligned with ¢[s..s+m—1]. Let t[s..s+
m — 1] = ukkalbkflukfl s vlblulvobouo be such that u;, v; € E*, bi € X for 0 < i<k
and up € ¥*. Suppose moreover that, for 0 < i < &, y; is a suffix (possibly empty) of p
matched during the previous and the current attempts while b;u; is not a suffix of p.
Let also spos(u;) = s + |ug| + le;i1+1(|vgbgu£|) + |v;b;] and epos(u;) = spos(u;) + |u;| — 1 be
respectively the starting and ending positions of ; in the text, for 0 <i < 4.

Then the AKC algorithm shifts the window by the smallest amount § such that
plhl = tls + h] whenever 0 < spos(i;) —s + 68 < h < epos(u;) —s + 8 < m for some
0 < i < k. This kind of information cannot be preprocessed so the actual shift is
computed after each attempt. This improves the shift length upon the Apostolico-
Giancarlo and ensures that the u;’s can be unconditionally jumped over during next
attempts thus leading to at most n comparisons of text characters overall. However,
the computation of a single shift can be performed in O(m?) in the worst case. This
would lead to a shift of length m. Thus overall the computation of all the shifts can
be performed in O(mn). Then the time complexity of the searching phase of the AKC
algorithm is O(mn) while the preprocessing phase can be performed in O(m + o) space
and time.

Fast-Search Algorithms. The family of Fast-Search algorithms [Cantone and Faro
2005] consists in three different variants of the Boyer-Moore algorithm. The progen-
itor of this family of algorithms, the Fast-Search algorithm (F'S for short), was pre-
sented in Cantone and Faro [2003a] and is a very simple, yet efficient variant of the
Boyer-Moore algorithm. During each attempt the pattern is compared with the cur-
rent window proceeding from right to left. Then the Fast-Search algorithm computes
its shift increments by applying the Horspool bad character rule (4) if and only if a
mismatch occurs during the first character comparison, namely, while comparing char-
acters p[lm — 1] and t[s + m — 1], where s is the current shift. Otherwise it uses the
good suffix rule (2). A more effective implementation of the Fast-Search algorithm is
obtained by making use of a fast-loop, based on the Horspool bad character rule, in
order to locate an occurrence of the rightmost character of the pattern. Then the sub-
sequent matching phase can start with the (m — 1)-st character of the pattern. At the
end of the matching phase the algorithm uses the good suffix rule for shifting.

The Backward-Fast-Search algorithm (BFS for short) is the second algorithm of the
Fast-Search family. It has been presented in Cantone and Faro [2003b] and indepen-
dently developed in Crochemore and Lecroq [2008]. The algorithm makes use of the
backward good suffix rule, which can be obtained by merging the standard good suffix
rule (2) with the bad character rule (3) as follows. If, for a given shift s, the first mis-
match occurs at position i of the pattern p, thatis, pli+1..m—1] =¢[s+i+1..s+m—1]
and pli] # t[s + i], then the backward good suffix rule proposes to align the substring
tls+i+1..s+m—1] with its rightmost occurrence in p preceded by the backward char-
acter t[s+i]. If such an occurrence does not exist, the backward good suffix rule proposes
a shift increment which allows to match the longest suffix of t[s+i+1..s+m—1] with a
prefix of p. More formally, this corresponds to increment the shift s by bgsp(i +1, tls+1]),
where

bgsp(j,c):min{lgkém | plj— k. m—k—-113p
and(k<j—1— plj—-1=¢)} ,
for j=0,1,...,mandc € X.

Finally the Forward-Fast-Search algorithm [Cantone and Faro 2004] (FF'S for short)
maintains the same structure as the Fast-Search algorithm, but it is based upon a
modified version of the good suffix rule, called forward good suffix rule, which uses a
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look-ahead character to determine larger shift advancements. Thus, if the first mis-
match occurs at positioni < m—1 of the pattern p, the forward good suffix rule suggests
to align the substring ¢[s +i + 1..s + m] with its rightmost occurrence in p preceded
by a character different from pl[i]. If such an occurrence does not exist, the forward
good suffix rule proposes a shift increment which allows to match the longest suffix
of tls+i+ 1..s + m] with a prefix of p. This corresponds to advance the shift s by
fgsp(i + 1, t[s + m]) positions, where

fas (o) = min({(l1 <k<m | plj—k.m—k-12p

and (k< j—1— plj—11# plj —1—F])
and plm—kl=c} U {m+1})) ,

for j=0,1,...,mandc € X.

The backward good suffix rule and the forward good suffix rule require tables of size
m - o, which can be constructed in time O(m - max(m, o)). In Crochemore and Lecroq
[2008] the authors proposed an algorithm for computing the backward good suffix rule
in O(m) time for a pattern of length m.

SSABS and TVSBS Algorithms. The SSABS algorithm [Sheik et al. 2004] was pre-
sented as a mix of the shifting strategy of the Quick-Search algorithm [Sunday 1990]
and the testing strategy of the Raita algorithm [Raita 1992].

Specifically the order of comparisons between the pattern and the current window
of the text is carried out, in accordance with the Raita algorithm, by comparing first
the rightmost character of the window against its counterpart in the pattern, and after
a match, by further comparing the leftmost character of the window and the leftmost
character of the pattern. By doing so, an initial resemblance can be established between
the pattern and the window, and the remaining characters are compared from right to
left until a complete match or a mismatch occurs.

After each attempt, the shift of the window is gained by the Quick-Search bad char-
acter rule (5) for the character that is placed next to the window.

According to the authors the reason for successively comparing the rightmost and
leftmost characters first, and then continuing the comparison of the other characters,
is mainly due to the fact that the dependency of the neighboring characters is strong
compared to the other characters. Hence, it is always better to postpone the comparisons
on the neighboring characters.

The performance of the SSABS algorithm was later improved in the TVSBS algo-
rithm [Thathoo et al. 2006] which uses the shift proposed by the Berry-Ravindran bad
character rule (6), leading to lesser number of characters comparisons and greater shift
advancements.

Both SSABS and TVSBS algorithms have an O(nm) worst-case time complexity and
require O(c) and O(02) additional space, respectively, for computing the shift tables.

Boyer-Moore-Horspool Algorithm Using Probabilities. A modified version of the Hor-
spool algorithm making use of the probabilities of the symbols within the pattern has
been presented in Nebel [2006]. Provided that we have different probabilities for dif-
ferent symbols, like for natural language texts or biological data, the algorithm tries
to decrease the number of comparisons needed for searching the pattern in the text. A
similar modification of the Boyer-Moore algorithm has been presented in the Optimal-
Mismatch algorithm [Sunday 1990].

Specifically the idea consists in changing the order in which the symbols of the
pattern are compared to the symbols of the current window of the text such that
the probability of a mismatch is statistically maximized. To proceed this way it is
necessary to perform an additional preprocessing step which takes O(mlog m) time and
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O(m) space. The author presented also an analysis of the algorithm in the average case
showing that, in favorable cases, the new solution needs less than 80% of running time
of the original Horspool algorithm.

Franek-Jennings-Smyth Algorithm. The Franek-Jennings-Smyth string matching
algorithm [Franek et al. 2007] (FJS for short) is a simple hybrid algorithm which
mixes the linear worst-case time complexity of Knuth-Morris-Pratt algorithm and the
sublinear average behavior of Quick-Search algorithm.

Specifically the FJS algorithm searches for matches of p in ¢ by shifting a window
of size m from left to right along ¢. Each attempt of the algorithm is divided into two
steps. During the first step, in accordance with the Quick-Search approach, the FJS
algorithm first compares the rightmost character of the pattern, p[m — 1], with its
corresponding character in the text, that is, #[s +m — 1]. If a mismatch occurs, a Quick-
Search shift (5) is implemented, moving p along ¢ until the rightmost occurrence in p of
the character t[s +m] is aligned with position s + min the text. At this new location, the
rightmost character of p is again compared with the corresponding text position. Only
when a match is found the FJS algorithm invokes the second step. Otherwise another
Quick-Search shift occurs.

The second step of the algorithm consists in a Knuth-Morris-Pratt pattern matching
starting from the leftmost character p[0] and, if no mismatch occurs, extending as far
as p[m — 2]. Then whether or not a match of p is found, a Knuth-Morris-Pratt shift is
eventually performed followed by a return to the first step.

The preprocessing time of the algorithm takes O(m) time for computing the failure
function of Knuth-Morris-Pratt, and O(m + o) time in order to compute the Quick-
Search bad character rule. The authors showed that the worst-case number of character
comparisons is bounded by 3n— 2m, so that the corresponding searching phase requires
O(n) time. The space complexity of the algorithm is O(m + o).

2Block Algorithm. In Sustik and Moore [2007] the authors proposed a new string
matching algorithm inspired by the original Boyer-Moore algorithm. The two key ideas
of their improved algorithm are to keep track of all the previously matched characters
within the current window and not to move the reading position unconditionally to the
end of the pattern when a mismatch occurs. The resulting algorithm, named 2Block
algorithm, has an increased average shift amounts and guarantees that any character
of the text is read at most once.

Specifically the 2Block algorithm remembers two matching blocks of characters, the
left and the right block. The left block always starts at the beginning of the pattern and
the number of characters contained in it is indicated by £. The right block is described
by its endpoints, rs (right start) and r, (right end). For each alignment at position s of
the text t[s..s+¢— 1] =pl0..¢ — 1] and ¢t[s +rs..7. — 1] = plry..r. — 1].

The algorithm attempts to extend the right block with every read. If possible, the
right block is extended to the right. In case of an empty right block (rs; = r.), the
character aligned with the rightmost character of the pattern is read. Both blocks may
degenerate into the empty string (¢ = 0 and r; =re).

When the text character specified by the current alignment and the relative reading
position does not agree with the pattern, the 2Block algorithm shifts with the small-
est possible value, such that in the new alignment the pattern agrees with all the
previously read characters. For an efficient implementation, the algorithm builds in a
preprocessing phase a state transition table that only implicitly contains the informa-
tion on the two blocks of already matched characters.

The 2Block algorithm has a linear worst-case time complexity but performs especially
well when the alphabet size is small. In addition the state transition table requires
O(om?) extra space to be stored and can be naively computed in polynomial time.
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4.1.2. Two Windows. In this section we present a recent string matching algorithm,
named Two-Sliding-Windows, based on character comparisons and which uses two
text windows while searching for all occurrences of the pattern. It scans in parallel the
left part and the right part of the text and uses a shift rule of the Berry-Ravindran
algorithm.

Two-Sliding-Windows Algorithm. The Two-Sliding-Windows string matching algo-
rithm [Hudaib et al. 2008] (TSW for short) is an efficient variation of the Berry-Ravin-
dran algorithm [Berry and Ravindran 1999].

Specifically the TSW algorithm divides the text into two parts of size [n/2] and
searches for matches of p in ¢ by shifting two windows of size m along ¢ simultaneously.
The first window scans the left part of the text, proceeding from left to right, while
the second window slides from right to left scanning the right part of the text. The
two windows search the text in parallel, which makes the TSW algorithm suitable for
parallel processors structures.

The TSW algorithm uses a shift rule which is based on the Berry-Ravindran bad
character rule (6) to get better shift values during the searching phase. However, the
TSW algorithm computes the shift values only for the pattern characters using, for
each text window, an array of size m — 1. This is in contrast with the original Berry-
Ravindran algorithm which uses a two-dimensional array of dimension O(¢2). This
reduces the memory requirements needed to store the shift values but postpones a bit
of work to the next searching phase.

More formally during the preprocessing phase the algorithm computes two tables of
size m — 1, nextl and nextr, to be used for shifting in the left and the right part of the
text, respectively. If we indicate with p the reverse of the pattern, then we have for
0<i<m-1

nextl[i] = brbc,(plil, pli +11), and nextrim—1—il = brbc,(plil, pli + 1.

The two tables can be computed in O(m) time and space.

Then the searching phase can be divided into two steps. During the first step the
two windows are naively compared with the pattern in order to report an occurrence,
proceeding from right to left (for the leftmost window) and from left to right (for the
rightmost window ). Let s and s’ be the two shift alignments at the end of the first step,
so that the pattern is aligned with the windows ¢[s..s +m — 1] and ¢[s’..s’ + m — 1],
with s < s’. Then the leftmost window is shifted to the right by an amount equal to
shiftllt[s + m], t[s + m + 1]] where, for a, b € X, we define

1 if plm—1] =a
. . nextl[i] if plil=aand pli + 1] =6
shiftlla, b] = min m 1 if pl0] = b
m+ 2 otherwise

Similarly the rightmost window is shifted to the left by an amount equal to shiftr(t[s’ —
1], ¢t[s’ — 2]] where the symmetrical function, shiftr, can be obtained from the function
defined before, by substituting nextr, in place of nextl, and p in place of p. The TSW
algorithm requires O(m) worst-case time for computing the shift advancement in each
step of the searching phase.

Both steps are repeated until both windows are positioned beyond position [r/2]. An
additional comparison is performed in the case an occurrence of the pattern is found
in the middle of the text. The TSW algorithm has a O(nm?) worst-case time complexity
and requires O(m) additional space.

4.1.3. Hashing and g-Grams. In this section we present the following string matching
algorithms based on character comparisons that use hashing or g-grams.
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—The Hashq family of algorithms an adaptation of the Wu-Manber algorithm to single
pattern matching.

—The Boyer-Moore Horspool algorithm with g-grams enhances the Horspool algorithm
by using a hash function on the rightmost g characters of the window at each attempt.

—The Genomic-Oriented Rapid Algorithm hashes every 2-grams on the underlying
pattern.

Hashing Algorithms. Algorithms in the Hashg family have been introduced in Lecroq
[2007] where the author presented an adaptation of the Wu and Manber multiple string
matching algorithm [Wu and Manber 1994] to the single string matching problem.

The idea of the Hashg algorithm is to consider factors of the pattern of length ¢.
Each substring w of such a length ¢ is hashed using a function 4 into integer values
within 0 and K — 1, where K is a parameter of the algorithm which strongly affects the
performance and the resulting complexity.

Then the algorithm computes in a preprocessing phase a function

shift : {0,1,..., K—1} - {0,1,...,m—q}
where for each 0 < ¢ < K the value shifi(c) is defined by

shift(c)zmin<{0<k<m—q | h(p[m—k—q..m—k—1])=c}U{m—q}> .

The time complexity of the preprocessing phase is equal to O(K+mx T (h)), where T (h)
is the time complexity required for computing the hash value for a string of length q.
The space complexity required for storing the shift table is O(K).

Then the Hashq algorithm searches for matches of p in ¢ by shifting a window of size
m from left to right along ¢. For each shift s of the pattern in the text, the algorithm
reads the substring w = t[s+m—¢q ..s+m— 1] of length ¢ and computes the hash value
h(w). If shift[h(w)] > 0 then a shift of length shift[h(w)] is applied. Otherwise, when
shift[h(w)] = 0 the pattern p is naively checked in the text. In this case, at the end of
the test, a shift of length (m — 1 — «) is applied where

a=max{0<j<m—q | Mplj..j+q—1D) =h(plm—q+1..m—1]1}.

The search of the Hashq algorithm has a O(n(T (h) + m)) time complexity.

In Lecroq [2007] the author succeeded to obtain algorithms with very good perfor-
mance by computing the hash value with K = 256, thus using a single byte to store each
hash entry. Moreover the hash function 4 is computed in a very simple, yet efficient
way by using the following formula, for a string w of length g

h(w) = 297 w[0] + 29 2w (1] + - - - + 2wlg — 2] + wlg — 1]
which turns out to be easily implemented into C-programming code.

Boyer-Moore Horspool with q-grams. The BMHgq algorithm [Kalsi et al. 2008] is
an efficient modification of the Horspool algorithm for the DNA alphabet. Instead
of inspecting a single character at each alignment of the pattern, their algorithm
reads a g-gram and computes an integer called fingerprint from it. The idea is simple
and consists in mapping the ASCII codes of characters in the DNA alphabet, that is,
a, ¢, g, and ¢ to a range of 4 characters. Specifically the algorithm uses a mapping
r:{a,c,g, t} — {0,1,2, 3}, in order to limit the computation to the effective alphabet of
four characters.

The fingerprint computed for a g-gram is simply a reversed number of base 4. A sepa-
rate transformation table A; is used for each position ¢ in the g-gram and multiplications
are incorporated during preprocessing into the tables: k;(c) = r(c)4’,forallc € {a, c, g, t}.
For g = 4, the fingerprint of cocicacs is computed as Ag(co) + hi(c1) + holes) + hs(cs).
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At each alignment of the pattern the last g-gram of the pattern is compared with the
corresponding g-gram in the current window of the text by testing the equality of their
fingerprints. If the fingerprints match, a potential occurrence has been found, which
has to be naively checked. However, observe that we need to check only the first m — ¢
characters of the pattern because our fingerprint method does not cause hash collisions
(if the searched text contains only DNA characters).

The g-gram approach is valid also for larger alphabets, although with a larger al-
phabet the optimal value of g is smaller. A new variation BMH2 was created based on
BMHg. The range of the ASCII code mapping r was increased from 4 to 20, to cover
the amino acid alphabet instead of the DNA alphabet.

The BMHgq algorithm needs O(m + o) extra space and has a O(nm) worst-case time
complexity, although sublinear in the average.

The Genomic-Oriented Rapid Algorithm. The Genomic-oriented Rapid Algorithm for
String Pattern-match [Deusdado and Carvalho 2009] (GRASPm for short) is an algo-
rithm which uses a shifting method based on the Horspool bad character rule (4) and
a filtering method based on hash function computed on 2-grams in the pattern.

During the preprocessing phase the GRASPm algorithm stores, for each character
¢ of the alphabet, the list of all positions in p where the rightmost character of p is
preceded by the character c. Formally the algorithm computes a function z : ¥ —
Pow{0,1,...,m— 1} where, for allc € X

2e)={0<i<m | (pli — 1] =cori=0) and pli] = plm—1]}.

Then, during the searching phase, the algorithm uses a fast loop based on the bad
character rule for locating in the text ¢ an occurrence of the rightmost character of the
pattern. When an occurrence of p[m — 1] is located at position j in # the GRASPm algo-
rithm aligns p according to the positions in the list z(¢[j — 1]), reporting the occurrences
of p, if any. Specifically for each position % in the list z(¢[j — 1]) the algorithm naively
checks if p is equal to ¢[j — k.. j — k+ m — 1]. Then it shifts the pattern by m positions
to the right.

The resulting algorithm has an O(nm) worst-case time complexity and requires O(o +
m) space for computing the hash table z and the bad character shift table.

4.1.4. SIMD. In this section we present a recent string matching algorithm based on
character comparisons that use SIMD instructions. The resulting algorithm, named
SSEF, turns out to be very fast in practice, especially for long patterns. However, the
SSEF algorithm does not run for patterns with a length less than 32 characters.

SSEF Algorithm. SIMD instructions exist in many recent microprocessors support-
ing parallel execution of some operations on multiple data simultaneously via a set of
special instructions working on a limited number of special registers. The algorithm in-
troduced in Kiilekci [2009] is referred as SSEF algorithm and uses the Intel streaming
SIMD extensions technology (SSEF is for Streaming SIMD Extension Filtering).

The SSEF algorithm is designed to be effective on long patterns, where the lower
limit for m is 32 (m > 32). Although it is possible to adapt the algorithm for lesser
lengths, the performance gets worse under 32.

Given a text ¢t and a pattern p of lengths n and m (bytes) respectively, the number of
16-byte blocks in ¢ and p are denoted by N = [n/16] and M = [m/16] respectively. Let
T and P be the 16-byte sequence relative to ¢ and p, respectively, with |T'| = N and
|P| = M. In addition let L = |m/16] — 1 be the zero-based address of the last 16-byte
block of P whose individual bytes are totally composed of pattern bytes without any
padding.
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The corresponding filter of a 16-byte sequence is the 16 bits formed by concatenating
the sign bits (i.e., the leftmost bits) of each byte after shifting left each block of K bits,
where the value K depends on the alphabet size and character distribution of the text.
For instance, while searching on a DNA sequence, the author suggested that setting
K = 5 would be a good choice.

The preprocessing stage of the SSEF algorithm consists of computing all possible
filter values of the pattern according to the all possible alignments of the pattern with
the text. Such values are stored in a linked list, named FList.

In particular the computation of the filter f of a 16-byte block B is performed
by 2 SSE intrinsic functions as f = mm_movemask_epi8(mm_slli_epi64(B, K)), where
the instruction mm_slli_epi64(B, K) left shifts the corresponding 16 bytes of B by K
bits and stores the result in a temporary 128-bit register. The second instruction
mm_movemask_epi8(¢mpi2s) returns a 16-bit mask composed of the sign bits of the
individual 16 bytes forming the 128-bit value.

The main loop of the algorithm investigates 16-byte blocks of the text T in steps of
length L. If the filter f computed on D[i] , wherei = zL + L, and 0 < z < |[N/L|, is
not empty, then the appropriate positions listed in FList[f] are verified accordingly.
In particular FList[f] contains a linked list of integers marking the beginning of the
pattern. If a value j is contained in FList[f], with 0 < j < 16L, the pattern potentially
begins at ¢[( — L)16 + j]. In that case, a naive verification is to be performed between
pand¢[C —L)16+j..¢C— L)16 4+ j+m— 1].

The SSEF algorithm has an O(nm) worst-case time complexity but performs well
in practical cases. In particular the author showed that the algorithm has a O(n/m +
nm/2') average-case time complexity. In addition the algorithm requires an extra
space to store the 216 = 65536 items of the FList linked list.

4.2. Algorithms Based on Deterministic Automata

We now present the most recent string matching based on automata. In particular in
Section 4.2.1 we present variants of the Backward-Oracle-Matching algorithm. Then
in Section 4.2.2 we present an algorithm using two automata. Finally in Section 4.2.3
we present algorithms using wide windows.

4.2.1. Variants of the BOM Algorithm. In this section we present the following string
matching algorithms based on automata that are variants of the Backward-Oracle-
Matching algorithm:

—the Extended BOM and the Simplified Extended BOM algorithms, which compute
in one step the transitions for the two rightmost characters of the pattern;

—the Forward BOM and the Simplified Forward BOM algorithms, which compute in
one step the transition for the rightmost character of the pattern and the character
next to its right.

The Extended-Backward-Oracle-Matching. The Extended-BOM string matching al-
gorithm [Faro and Lecroq 2008] is a very fast and flexible variation of the Backward-
Oracle-Matching algorithm. It introduces a fast-loop with the aim of obtaining better
results on the average. In the original paper the authors discussed the application
of different variations of the fast-loop and presented experimental results in order to
identify the best choice.

Specifically the variation of the algorithm they proposed tries two subsequent tran-
sitions for each iteration of the fast-loop with the aim to find with higher probability an
undefined transition. Moreover, in order to improve the performances, they proposed
to encapsulate the two first transitions of the oracle in a function A : (¥ x £) —> @
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defined, for each a, b € X, by

(L if S(m,a) = L
Ma, b) = { 8(6(m,a),b)  otherwise.

At the end of the fast-loop the algorithm could start standard transitions with the
Oracle from state g = A(t[s+m— 1], t[s+m—2]) and character ¢[s +m— 3]. The function
A can be implemented with a two-dimensional table in O(c2) time and space.

In Fan et al. [2009] a simplified version of the Extended-BOM algorithm was pre-
sented where the two-dimensional table A is implemented by a one-dimensional array
using the formula: A(a, b) = Alac + b) for a,b € Z. Especially on ASCII code, where
o = 256, the formula can be efficiently accomplished as A(a,b) = AMa <« 8 + b). The
resulting algorithm is called Simplified-EBOM (SEBOM).

The Forward-Backward-Oracle-Matching. The Forward-BOM string matching
algorithm [Faro and Lecroq 2008] extends further the improvements introduced in
the Extended-BOM algorithm by looking for the character which follows the current
window (the forward character) while computing the shift advancement. Thus it mixes
the ideas of the Extended-BOM algorithm with those of the Quick-Search algorithm.

In order to take into account the forward character of the current window of the text
without skipping safe alignment the authors introduced the forward factor oracle of
the reverse pattern. The forward factor oracle of a word p, F'Oracle(p), is defined as an
automaton which recognizes at least all the factors of p, possibly preceded by a word
x € T U {e}. More formally the language recognized by F Oracle(p) is defined by

L(FOracle(p)) = {xw | x € X U{e} and w € L(Oracle(p))}.

Observe that in the previous definition the prefix x could be the empty string. Thus if
w is a word recognized by the factor oracle of p then the word cw is recognized by the
forward factor oracle, for all c € X U {¢}.

The forward factor oracle of a word p can be constructed, in time O(m + %), by
simply extending the factor oracle of p with a new initial state which allows to perform
transitions starting at the text character of position s + m of the text, avoiding to skip
valid shift alignments.

Suppose Oracle(p) = {Q, g, @, =, 8}, for a pattern p of length m. It is possible to con-
struct F Oracle(p) by adding a new initial state q,,.1 and introducing transitions from
state g,,,1. More formally, given a pattern p of length m, FOracle(p) is an automaton
(@, qmi1, @, 2,8}, where: (1) @ = QU {g,r1}, (i1) gy 1s the initial state, (iii) all states
are final, (iv) §'(q,c) = 8(q,c) for all ¢ € =, if ¢ # qm+1, and (v) 8 (@1, €) = {Qm, 8(gm, €)}
forallc € =.

Note that, according to (v), the forward factor oracle of the reverse pattern p is a
nondeterministic finite automaton (NFA for short).

The simulation of the forward factor oracle can be done by simply changing the
computation of the A table, introduced in the Extended-BOM algorithm, in the following
way

] 8(m, b) ifd(m,a) =1L v b= plm—1]
Ma, b) = { 8(8(m, a), b) otherwise.

In Fan et al. [2009] a simplified version of the Forward-BOM algorithm (SFBOM)
was presented along the same lines of the Simplified-Extended-BOM algorithm.

4.2.2. Two Automata. In this section we present a recent string matching algorithm,
named Double-Forward-DAWG-Matching, based on the use of two automata. Actually
it divides the window into two parts and scans each of them with the factor automaton
of p.
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The Double-Forward-DAWG-Matching. In Allauzen and Raffinot [2000] the au-
thors presented an efficient automata-based algorithm, called Double-Forward-DAWG-
Matching (DFDM), which makes use of two FDM procedures. The algorithm is linear
in the worst case and optimal in the average case under a model of independence and
equiprobability of letters.

Specifically the algorithm moves a window of size m along the text, and searches the
pattern p in that window. It uses only the factor automaton of p.

For each text window, #[s..s + m — 1], two positions, « and 8, are defined such that
s <a < B <s+m— 1. In order to obtain optimal average performances the authors
suggest to take a such that the distance d, from the beginning of the search window
to « is at most |m/2], and to take g such that the distance ds from g to the end of the
search window is dg = max{1, min{m/5, 3[log, (m)1}}.

During each attempt the algorithm reads forward the text in the current window
with the factor automaton, starting at position 8. Moreover it maintains a value ¢
which is the length of the prefix of the current window recognized as a factor of p. At
the beginning of the algorithm the value of ¢ is set to 0.

If the automaton fails on a letter at position j < s + m — 1, before reaching the end
of the window, then ¢[8 .. j] is not a factor of the searched pattern p. In this case the
algorithm performs a failure transition and continues to scan text characters with the
FDM until it passes the right end of the window. This forward search stops once the
computed value £ is less than «. After that, the new window is aligned with the factor
of length ¢ and the algorithm begins another forward search starting at position g of
the new window.

Otherwise, if the algorithm reaches the right end of the window without doing any
failure transition, then the part of the window located after 8 is a factor of p. In this
case the algorithm resumes the reading with the previous FDM, that had stopped in
s + ¢, in order to read again all the characters up to the right end of the window. Once
the right end is passed, as in the previous case, the algorithm stops this FDM once the
computed value ¢ is less than «. The occurrences are marked during the reading with
this last FDM.

4.2.3. Large Window. In this section we present recent string matching algorithms
based on automata that use a large window of length 2m — 1. Specifically we present
the following algorithms.

—The Wide Window algorithm scans the right part of the window from left to right
and the left part of the window from right to left.

—The family of Linear DAWG Matching algorithms scan the right part of the window
from right to left and the left part of the window from left to right.

The Wide Window Algorithm. The Wide Window algorithm [He et al. 2005] (WW for
short) considers n/m consecutive windows of length 2m — 1. Each attempt is divided
into two steps. The first step consists in scanning the m rightmost characters of the
window from left to right with Dawg(p) starting with the initial state until a full match
or a lack of transition. Doing so, it computes the length ¢ of the longest suffix of p in
this right part of the window. The second phase consists, if £ > 0, in scanning the m —1
leftmost characters of the window from right to left with SMA(p) starting with state
g, until the length of the remembered suffix of p, given by ¢, is too small for finding an
occurrence of p. Occurrences are only reported during the second phase.

The Wide Window algorithm inspects O(n) text characters in the worst case and
O(nlogm/m) in the average case. Moreover the authors also designed a bit-parallel
version referred to as Bit-Parallel Wide-Window algorithm (see Section 4.3.3).
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The Linear DAWG Matching Algorithm. The Linear DAWG Matching algorithm [He
et al. 2005] (LDM for short) considers n/m consecutive windows of length 2m — 1. Each
attempt is divided into two steps. The first step consists in scanning the m leftmost
characters of the window from right to left with Dawg(p) starting with the initial state
until a full match or a lack of transition. Doing so, it computes the length R of the
longest prefix of p in this left part of the window. The second phase consists, if R > 0,
in scanning the m rightmost characters of the window from left to right with SMA(p)
starting with state g, until the length of the remembered prefix of p, given by R, is too
small for finding an occurrence of p. Occurrences are only reported during the second
phase.

The Linear DAWG Matching Window algorithm inspects O(n) text characters in the
worst case and O(nlogm/m) in the average case.

In Liu et al. [2006] the authors propose two improvements of the LDM algorithm
by performing the second phase of the algorithm while the length of the remembered
prefix (stored in R) is larger than a given value: 0 for the first improvement and m/2
for the second one. Actually this could be given as a parameter to the algorithm.

As in the case of the WW algorithm the LDM could use the Shift-Or algorithm instead
of SMA(p) for short patterns.

4.3. Bit-Parallel Algorithms

We now present the most recent string matching algorithms based on bit-parallelism.
Section 4.3.1 presents variants of the Backward-Nondeterministic-Dawg-Matching al-
gorithm. Section 4.3.2 presents algorithms using two automata. Section 4.3.3 presents
algorithms using a large window. Section 4.3.4 presents an algorithm that is a vari-
ant of the Boyer-Moore algorithm. Section 4.3.5 presents algorithms that partition the
pattern. Section 4.3.6 presents algorithms that use hashing or g-grams.

4.3.1. Variants of the BNDM Algorithm. In this section we present recent string
matching algorithms based on bit-parallelism that are variants of the Backward-
Nondeterministic-Dawg-Matching algorithm. In particular:

—the Simplified BNDM algorithm, which does not memorize the longest prefix of the
pattern during the scan of the window;

—the BNDM2 and the Simplified BNDM2 algorithms, that process the two rightmost
characters of the window in one step;

—the BNDM-BMH and BMH-BNDM algorithms, hybrid solutions which alternately
use the strategy of the BNDM and Horspool algorithms;

—the Forward Simplified BNDM algorithm, a bit-parallel version of the Forward BOM
algorithm (see Section 4.2.1).

Fast Variants of the BNDM Algorithm. A simplified version of the classical BNDM
algorithm (SBNDM for short) has been presented in Peltola and Tarhio [2003]. In-
dependently, Navarro has adopted a similar approach earlier in the code of his NR-
grep [Navarro 2001]. The SBNDM algorithm differs from the original algorithm in the
main loop where it skips the examining of longest prefixes. If s is the current alignment
position in the text and j is the number of updates done in the window, then the algo-
rithm simply sets s + m— j + 1 to be the start position of the next alignment. Moreover,
if a complete match is found, the algorithm advances the window of per(p) positions to
the right. The value of per(p) is computed in a preprocessing phase in O(m) time.

Despite the fact that the average length of the shift is reduced, the innermost loop
of the algorithm becomes simpler leading to better performance in practice.

Another fast variant of the BNDM algorithm was presented during a talk [Holub
and Durian 2005]. When the pattern is aligned with the text window ¢[s . .s+m— 1] the
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state vector D is not initialized to 1, but is initialized according with the rightmost 2
characters of the current window. More formally the algorithm initializes the bit mask
D as

D« (Bltls+m—-1]1«1) & Bltls+m—2]].

Then the main loop starts directly with a test on D. If D = 0 the algorithm performs
directly a shift of m — 1 positions to the right. Otherwise a standard BNDM loop is
executed starting at position s + m — 3 of the text.

The resulting algorithm, called BNDM2, turns out to be faster than the original
BNDM algorithm in practical cases. Moreover the same improvements presented
earlier can be applied also to BNDMZ2, obtaining the variant SBNDM2.

In Holub and Durian [2005] the authors presented also two improvements of the
BNDM algorithm by combining it with the Horspool algorithm (see Section 4.1) ac-
cording to the dominance of either methods.

If the BNDM algorithm dominates then they suggest to use for shifting a simple
modification of the Horspool bad character rule defined in (4). In particular, if the
test in the main loop finds D equal to 0, the algorithm shifts the current window of
d[t[s + 2m — 1]] positions to the right, where the functiond : ¥ — {m+1,...,2m} is
defined as d(c) = m + hbc,(c), for ¢ € X. If D if found to be greater than 0, then a
standard loop of the BNDM algorithm is performed followed by a standard shift. The
resulting algorithm is called BNDM-BMH.

Otherwise, if the Horspool algorithm dominates, the authors suggest to replace the
standard naive check of Horspool algorithm with a loop of the BNDM algorithm, which
generally is faster and simpler. At the end of each verification the pattern is advanced
according to the shift proposed by the BNDM algorithm, which increases the shift
defined by table d for the last symbol of the pattern. The resulting variant is called
BMH-BNDM.

All variants of the BNDM algorithm listed before maintain the same O(n[m/w1)-time
and O(o [m/w])-space complexity of the original algorithm.

Forward SBNDM Algorithm. The Forward-SBNDM algorithm [Faro and Lecroq
2008] (FSBNDM for short) is the bit-parallel version of the Forward-BOM algorithm
described in Section 4.2.1.

The algorithm makes use of the nondeterministic automaton NDawg(p) augmented
of a new initial state in order to take into account the forward character of the current
window of the text. The resulting automaton has m+ 1 different states and needs m+1
bits to be represented. Thus the FSBNDM algorithm is able to search only for patterns
with 1 < m < o, where w is the size of a word in the target machine.

For each character ¢ € X, a bit vector Blc] of length m + 1 is initialized in the
preprocessing phase. The i-th bit is 1 in this vector if ¢ appears in the reversed pattern
in position i — 1, otherwise it is 0. The bit of position 0 is always set to 1.

According to the SBNDM and FBOM algorithms the main loop of each iteration
starts by initializing the state vector D with two consecutive text characters (including
the forward character) as

D« (Bltlj +11 <1 & BIt[jll,

where j = s + m — 1 is the right end position of the current window of the text.

Then, if D # 0, the same kind of right to left scan in a window of size m is performed
as in the SBNDM, starting from position j — 1. Otherwise, if D = 0, the window
is advanced m positions to the right, instead of m — 1 positions as in the SBNDM
algorithm. The resulting algorithm obtains the same O(n[m/w])-time complexity as
the BNDM algorithm but turns out to be faster in practical cases, especially for small
alphabets and short patterns.
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4.3.2. Two Automata. In this section we present a recent string matching algorithm,
named Two-Way-Nondeterministic-DAWG-Matching, based on the bit-parallel tech-
nique that makes use of two automata for searching all occurrences of the pattern p.
In particular it alternately simulates the nondeterministic factor automaton of p and
the nondeterministic factor automaton of p.

Two-Way-Nondeterministic- DAWG-Matching Algorithm.  The recent Two-Way-
Nondeterministic-DAWG-Matching algorithm (TNDM for short) was introduced in
Peltola and Tarhio [2003]. It is a two-way variant of the BNDM algorithm which uses
a backward search and a forward search alternately.

Specifically, when the pattern p is aligned with the text window ¢[j — m + 1..Jl,
different cases can be distinguished. If p[m — 1] is equal to ¢[j] or if £[j] does not occur
in p the algorithm works as in BNDM by scanning the text from right to left with the
automaton NDawg(p). In contrast, when ¢#[j] # plm — 1], but £[j] occurs elsewhere in
p, the TNDM algorithm scans forward starting from character ¢[;].

The main idea is related with the Quick-Search algorithm which uses the text po-
sition immediately to the right of the current window of the text for determining the
shift advancement. Because ¢[j] # p[m — 1] holds, we know that there will be a shift
forward anyway before the next occurrence is found. Thus the algorithm examines text
characters forward one by one until it finds the first position % such that ¢[; .. %] does
not occur in p or ¢[j .. k] is a suffix of p. This is done by scanning the text, from left to
right, with the automaton NDawg(p).

If a suffix is found the algorithm continues to examine backwards starting from
the text position j — 1. This is done by resuming the standard BNDM operation. To
be able to resume efficiently examining backwards, the algorithm preprocesses the
length of the longest prefixes of the pattern in the case a suffix of the pattern has been
recognized by the BNDM algorithm. This preprocessing can be done in O(m)-time and
-space complexity.

Experimental results presented in Peltola and Tarhio [2003] indicate that on the
average the TNDM algorithm examines less characters than BNDM. However, average
running time is worse than BNDM.

In order to improve the performance the authors proposed further enhancements of
the algorithm. In particular if the algorithm finds a character which does not occur in
p, while scanning forward, it shifts the pattern entirely over it. This test is computa-
tionally light because after a forward scan only the last character can be missing from
the pattern. The test reduces the number of fetched characters but is beneficial only
for large alphabets. The resulting algorithm has been called TNBMa.

Finally in Holub and Durian [2005] the authors proposed a further improvement
of the TNBM algorithm. They observed that generally the forward scan for finding
suffixes dominates over the BNDM backward scan. Thus they suggested to substitute
the backward BNDM check with a naive check of the occurrence, when a suffix is
found. The algorithm was called Forward-Nondeterministic-DAWG-Matching (FNDM
for short). It achieves better results on average than the TNDM algorithm.

All the algorithms listed previously have an O(n[m/w])-time complexity and require
O(o [m/w]) extra space.

4.3.3. Large Window. In this section we present the following recent string matching
algorithms based on bit-parallelism that use a large window:

—the Bit-Parallel Wide Window algorithm, a bit-parallel version of the Wide Window
algorithm (Section 4.2.3);

—the Bit-Parallel? Wide Window algorithm, which uses simultaneously two copies of
the same automaton;
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—the Bit-Parallel Wide Window? algorithm, which uses simultaneously two different
automata;

—the Bit-Parallel algorithm for small alphabets, which uses a window of size max{m+
1, w}.

Bit-Parallel Wide Window Algorithm. The Bit-Parallel Wide Window algorithm [He
et al. 2005] (BPWW for short) is the bit-parallel version of the Wide Window algorithm
described in Section 4.2.3.

The BPWW algorithm divides the text in [n/m] consecutive windows of length 2m—1.
Each search attempt, on the text window ¢[j —m+1.. j +m— 1] centered at position j,
is divided into two steps. The first step consists in scanning the m rightmost characters
of the window, that is, the subwindow ¢[j..j + m — 1], from left to right, using the
automaton NDawg(p), until a full match occurs or the vector state which encodes
the automaton becomes zero. At the end of the first step the BPWW algorithm has
computed the length ¢ of the longest suffix of p in the right part of the window. If ¢ > 0,
the second step is performed. It consists in scanning the m — 1 leftmost characters of
the window, that is, the subwindow ¢[j — m+ 1..j — 1], from right to left using the
NSMA(p) and starting with state ¢ of the automaton. This is done until the length
of the remembered suffix of p, given by ¢, is too small for finding an occurrence of p.
Occurrences of p in ¢ are only reported during the second phase.

The BPWW algorithm requires O(c [m/w]) extra space and inspects O(n) text char-
acters in the worst case. Moreover it inspects O(nlogm/m) characters in the average
case.

Bit-(Parallelism)? Algorithms for Short Patterns. Bit-parallelism? is a technique re-
cently introduced in Cantone et al. [2010a] which increases the instruction-level par-
allelism in string matching algorithms, a measure of how many operations in an algo-
rithm can be performed simultaneously.

The idea is quite simple: when the pattern size is small enough, in favorable situa-
tions it becomes possible to carry on in parallel the simulation of multiple copies of a
same NFA or distinct NFAs, thus getting to a second level of parallelism.

Two different approaches have been presented. According to the first approach, if the
algorithm searches for the pattern in fixed-size text windows then, at each attempt,
it processes simultaneously two (adjacent or partially overlapping) text windows by
using in parallel two copies of a same automaton.

Differently, according to the second approach, if each search attempt of the algorithm
can be divided into two steps (which possibly make use of two different automata) then
it executes simultaneously the two steps.

By way of demonstration the authors applied the two approaches to the bit-parallel
version of the Wide Window algorithm (see Section 4.3.3), but their approaches can be
applied as well to other (more efficient) solutions based on bit-parallelism.

In both variants of the BPWW algorithm, a word of w bits is divided into fwo blocks,
each being used to encode a NDawg. Thus, the maximum length of the pattern gets
restricted to |w/2]. Moreover both of them search for all occurrences of the pattern by
processing text windows of fixed size 2m — 1, where m is the length of the pattern. For
each window, centered at position j, the two algorithms compute the sets S; and P,
defined as the sets all starting positions (in p) of the suffixes (and prefixes, respectively)
of p aligned with position j in ¢.

More formally

%)

<i<m | pli. m=-1=tlj..j+m-1-il};
<i<m | pl0..ill=tlj—i..jl}.

J
J

{0
{0

o
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Taking advantage of the fact that an occurrence of p is located at position (j — &) of ¢ if
and only if 2 € S; NP}, for k = 0,..., m — 1, the number of all the occurrences of p in
the attempt window centered at j is readily given by the cardinality |S; N P;|.

In the bit-parallel implementation of the two variants of the BPWW algorithm the
sets P and S are encoded by two-bit masks PV and SV, respectively. The nondeter-
ministic automata NDawg(p) and NDawg(p) are then used for searching the suffixes
and prefixes of p on the right and on the left parts of the window, respectively. Both
automata state configurations and final state configuration can be encoded by the bit
masks D and M = (1 « (m— 1)), so that (D & M) # 0 will mean that a suffix or a prefix
of the search pattern p has been found, depending on whether D is encoding a state
configuration of the automaton NDawg(p) or of the automaton NDawg(p). Whenever
a suffix (respectively, a prefix) of length (¢ + 1) is found (with £ =0, 1,...,m — 1), the
bit SV[m — 1 — ¢] (respectively, the bit PV [{]) is set by one of the following bitwise
operations.

SV <« SV | (D& M)>» 1) (in the suffix case)
PV « PV | (D&M)>»(m—-1-10) (in the prefix case)

If we are only interested in counting the number of occurrences of p in ¢, we can just
count the number of bits set in (SV & PV). This can be done in log,(w) operations by
using a popcount function, where w is the size of the computer word in bits (see Arndt
[2009]). Otherwise, if we want also to retrieve the matching positions of p in ¢, we can
iterate over the bits set in (SV & PV) by repeatedly computing the index of the highest
bit set and then masking it. The function that computes the highest bit set of a register
x is [logy(x)], and can be implemented efficiently in either a machine-dependent or
machine-independent way (see again Arndt [2009]).

In the first variant (based on the first approach), named Bit-Parallel Wide-Window?
(BPWW2, for short), two partially overlapping windows size 2m — 1, centered at con-
secutive attempt positions j — m and j, are processed simultaneously. Two automata
are represented in a single word and updated in parallel.

Specifically, each search phase is again divided into two steps. During the first step,
two copies of NDawg(p) are operated in parallel to compute simultaneously the sets
S;_m and S;. Likewise, in the second step, two copies of NDawg(p) are operated in
parallel to compute the sets P;_,, and P;.

To properly detect suffixes in both windows, the bit mask M is initialized as

M<(Q<m+k-1) | A<(m-1)
and transitions are performed in parallel with the following bitwise operations

D+~ (D«x1l & ((Bltlj—m+4¢] <k |Blt[j+¢]] (in the first phase)
D« (D«x1l) & (Cltlj—m—1L]l«k)|CItlj—£]]) (in the second phase),

for¢=1,...,m— 1 (when ¢ = 0, the left shift of D does not take place).

Since two windows are simultaneously scanned at each search iteration, the shift
becomes 2m, doubling the length of the shift with respect to the BPWW algorithm.

The second variant of the BPWW algorithm (based on the second approach) was
named Bit-Parallel? Wide-Window algorithm (BP2WW, for short). The idea behind it
consists in processing a single window at each attempt (as in the original BPWW
algorithm) but this time by scanning its left and right sides simultaneously.

Automata state configurations are again encoded simultaneously in a same bit mask
D. Specifically, the most significant & bits of D encode the state of the suffix automaton
NDawg(p), while the least significant £ bits of D encode the state of the suffix automaton
NDawg(p). The BP2WW algorithm uses the following bitwise operations to perform
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transitions! of both automata in parallel
D+~ D«1 & (Bltlj+a <k |Cltlj—eD,

for ¢ =1,..., m—1. Note that in this case the left shift of £ positions can be precomputed
in B by setting Blc] < Blc] « k, for each c € =.
Using the same representation, the final-states bit mask M is initialized as

M~(Q<m+k-1) | Q<km-1).

At each iteration around an attempt at position j of ¢, the sets S; and P} are computed,
where S; is defined as in the case of the BPWW algorithm, and P is defined as P;={0=
i<m|pl0.m—1—il =¢t[j-(m—1-0)..jl},sothat P; = {0 <i < m|(m—1-i) € P}}.

The sets S; and P; can be encoded with a single bit mask PSS, in the rightmost and
the leftmost £ bits, respectively. Positions in S; and P} are then updated simultaneously
in PS by executing the following operation.

PS <~ PS | (D&M)> 1)

At the end of each iteration, the bit masks SV and PV are retrieved from PS with the
following bitwise operations.

PV <« reverse(PS) > (w—m) SV <« PS>k

In fact, to obtain the correct value of PV we used bit-reversal modulo m, which has
been easily achieved by right shifting reverse(PS) by (w — m) positions. We recall that
the reverse function can be implemented efficiently with O(log,(w)) operations.

Both BPWW2 and BP2WW algorithms need [m/w] words to represent all bit masks
and have an O(n[m/w] + |n/m|] logy,(w)) worst-case time complexity.

A bit-parallel algorithm for small alphabets. The bit-parallel algorithm for small
alphabets (SABP for short) [Zhang et al. 2009] consists in scanning the text with a
window of size £ = max{m + 1, w}. At each attempt, where the window is positioned on
tlj..j+ ¢ — 1] it maintains a vector of w bits whose bit at position w — 1 — i is set to 0
if p cannot be equal to¢[j +7..7+m—1+1i].

The preprocessing phase consists in computing:

—an array T of max{m, w} x o vectors of w bits as
. 0 if0<j—i<wandplj—il#c
T ol-i = A .
s elo-1- {1 if j—i¢[0,w)or plj—il=c

for0<j<¢,0<i<wandceX.
—an array T’ of o vectors of w bits as
T'lel=(Tm-1,¢el>1 | 10!

forc e =.
—the Quick Search bad character rule gbc, according to Eq. (5).

Then during the searching phase the algorithm maintains a vector F of w bits such
that when the window of size ¢ is positioned on ¢[j .. j+ ¢ — 1] the bit at position w—1—1
of F' is equal to 0 if p cannot be equal to¢[j +i..j+m—1+i]for0 < j <n—{and
0 <1 < w. Initially all the bits of F' are set to 1. At each attempt the algorithm first
scans t[j + m— 1] and ¢[j + w — 1] as

F=F & Tim—-1tlj+m—-1 & Tlo—-1¢j+o—1l]

1For ¢ = 0, D is simply updated by D <~ D & ((Blt[j +11] < &) | CltLj —11]).
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then it scans ¢[j + m — 2] and ¢[j + m] as
F=F & Tm-2t[j+m-2]] & T'[j+ml
and finally it scans ¢[j + k] fork=m —3,...,0 as
F=F & TIktlj+Fl

while F,,_; = 1. If all the characters have been scanned and F,,_; = 1 then an occurrence
of the pattern is reported and F,_; is set to 0. In all cases a shift of the window is
performed by taking the maximum between the Quick Search bad character rule and
the difference between w and the position of the rightmost bit of value 1 in ¥ which
can be computed by @ — |logy(F)]. The bit vector F is shifted accordingly.

The preprocessing phase of the SABP algorithm has an O(mo)-time and -space com-
plexity and the searching phase has an O(mn)-time complexity.

4.3.4. Variant of the Boyer-Moore Algorithm. In this section we present a recent string
matching algorithm based on bit-parallelism that uses a large window. The SVM algo-
rithm memorizes information for all the matched characters of the window.

Shift Vector Matching Algorithm. Many bit-parallel algorithms do not remember text
positions which have been checked during the previous alignments. Thus, in certain
cases, if the shift is shorter than the pattern length some alignment of the pattern may
be tried in vain. In Peltola and Tarhio [2003] an algorithm, called Shift-Vector-Matching
(SVM for short), was introduced which maintains partial memory. Specifically the
algorithm maintains a bit vector S, called shift-vector, which tells those positions where
an occurrence of the pattern can or cannot occur. A text position is rejected if we have an
evidence that an occurrence of the pattern cannot end at that position. For convention
a bit set to zero denotes a text position not yet rejected.

The shift-vector has length m and maintains only information corresponding to text
positions in the current window. While moving the pattern forward the algorithm shifts
also the shift-vector so that the bits corresponding to the old knowledge go off from the
shift-vector. Thus the bit corresponding to the end of the pattern is the lowest bit and
the shift direction is to the right.

During the preprocessing phase the SVM algorithm creates a bit vector C for each
character of the alphabet. In particular for each ¢ € X, the bit vector Cl[c] has a zero
bit on every position where the character ¢ occurs in the pattern, and one elsewhere.
Moreover the algorithm initializes the shift-vector S, in order to keep track of possible
end positions of the pattern, by setting all bits of S to zero.

During the searching phase the algorithm updates the shift-vector by taking or with
the bit vector corresponding to text character aligned with the rightmost character
of the pattern. Then, if the lowest bit of S is one, a match cannot end here and the
algorithm shifts the pattern of ¢ positions to the right, where ¢ is the number of ones
which precede the rightmost zero in the shift-vector S. In addition the SVM algorithm
also shifts the shift-vector of £ positions to the right.

Otherwise, if the lowest bit in S is zero the algorithm continues by naively check-
ing text characters for the match. In addition the shift-vector S is updated with all
characters that were fetched during verifying of alignments.

The value of ¢ is efficiently computed by using the bitwise operations ¢ = bsf(~(S >
1)) + 1, where we recall that the bsf function returns the number of zero bits before the
leftmost bit set to 1.

The resulting algorithm has an O(n[m/w]) worst-case time complexity and requires
O(o[m/w]) extra space. However the SVM algorithm is sublinear on average, because
at the same alignment it fetches the same text characters as the Horspool algorithm
and can never make shorter shifts.
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4.3.5. Partition the Pattern. In this section we present the following recent string match-
ing algorithms based on bit-parallelism that partition the pattern.

—the Average Optimal Shift-Or and Fast Average Optimal Shift-Or algorithms create
several subpatterns consisting of nonadjacent characters of the pattern then they
merge these subpatterns and search for them in the text detecting thus candidate
positions.

—the Bit-Parallel Length Invariant Matcher overcomes the limitation of bit-parallel
techniques on the pattern length m with respect to the size of the computer word w
by creating o shifted copies of the patterns.

—the Long Pattern BNDM algorithm considers substrings of the pattern of length
[(m—1)/w] + 1.

—the Factorized Shift-And and the Factorized BNDM algorithms are based on a 1-
factorization of the pattern.

Average Optimal Shift-Or Algorithms. Fredriksson and Grabowski presented
in Fredriksson and Grabowski [2005] a new bit-parallel algorithm, based on Shift-
Or, with an optimal average running time, as well as optimal O(n) worst-case running
time, if we assume that the pattern representation fits into a single computer word.
The algorithm is called Average-Optimal-Shift-Or algorithm (AOSO for short). Experi-
mental results presented by the authors show that the algorithm is the fastest in most
of the cases in which it can be applied displacing even the BNDM family of algorithms.

Specifically the algorithm takes a parameter g, which depends on the length of the
pattern. Then from the original pattern p a set P of ¢ new patterns is generated,
P ={p° pl,..., p?1}, where each p’/ has length m’ = |m/q| and is defined as

plil=plj+iql, j=0,....q—1, i=0,...,|\m/q] —1.

The total length of the pattern p/ is q|m/q| < m.

The set of patterns is then searched simultaneously using the Shift-Or algorithm. All
the patterns are preprocessed together, in a similar way as in the Shift-Or algorithm, as
if they were concatenated in a new pattern p’ = p°p!--- p?~1. Moreover the algorithm
initializes a mask M which has the bits of position (j + 1)m/ set to 1, for all j =
0,...,q — 1.

During the search the set P is used as a filter for the pattern p, so that the algorithm
needs only to scan every g-th character of the text. If the pattern p/ matches, then the
(j + Dm/-th bit in the bit vector D is zero. This is detected with the test (D&M) # M.
The bits in M have also to be cleared in D before the shift operation, to correctly
initialize the first bit corresponding to each of the successive patterns. This is done by
the bitwise operation (D& ~ M).

If p’ is found in the text, the algorithm naively verifies if p also occurs, with the cor-
responding alignment. To efficiently identify which patterns in P match, the algorithm
sets D < (D&M)"M, so that the (j + 1)m/-th bit in D is set to 1 if p/ matches and all
other bits are set to 0. Then the algorithm extracts the index j of the highest bit in D
set to 1 with the operations

b < llogy(D)], Jj < b/m].

The corresponding text alignment is then verified. Finally, the algorithm clears the bit
b in D and repeats the verification until D becomes 0.

In order to keep the total time at most O(n/q) on average, it is possible to select g
so that n/q = mn/o™4, that is, ¢ = O(m/log,m). The total average time is therefore
O(nlog, m/m), which is optimal.
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The Bit-Parallel Length-Invariant Matcher. The general problem in all bit-parallel
algorithms is the limitation defined on the length of the input pattern, which does not
permit efficient searching of strings longer than the computer word size.

In Kiilekei [2008] the author proposed a method, based on bit-parallelism, with the
aim of searching patterns independently of their lengths. The algorithm was called
Bit-Parallel Length-Invariant Matcher (BLIM for short). In contrast with the previous
bit-parallel algorithms, which require the pattern length not to exceed the computer
word size, BLIM defines a unique way of handling strings of any length.

Given a pattern p, of length m, the algorithm ideally computes an alignment matrix
A which consists of w rows, where w is the size of a word in the target machine. Each
row row; , for 0 < i < w , contains the pattern right shifted by i characters. Thus, A
contains wsize = w + m — 1 columns. During the preprocessing phase the algorithm
computes a mask matrix M of size o x wsize, where M|c, h] = b,,_1 . .. b1by is a bit vector
of w bits, for ¢ € X and 0 < = < wsize. Specifically the i-th bit, b; of M|c, k] is defined as

b — 0 if(0<h—i<m)and(c = plh—1il])
*7 11 otherwise.

The main idea of BLIM is to slide the alignment matrix over the text, on windows of
size wsize, and at each attempt check if any possible placements of the input pattern
exist.

The characters of the window are visited in order to perform the minimum number
of character accesses. Specifically the algorithm checks the characters at positions
m—i,2m—i,...,km—i,where km—1i < wsize,fori = 1,2, ..., min order. The main idea
behind this ordering is to investigate the window in such a way that at each character
access a maximum number of alignments is checked. The scan order is precomputed
and stored in a vector S of size wsize.

When the window is located at ¢[i . .7 + wsize — 1], a flag variable F is initialized to
the mask value M[¢[i + S[0]], S[0]]. The traversal of other characters of the window
continues by performing the following basic bitwise operation

F«F & MiItl+ SIjll, S[jl

for j = 1,...,wsize, until the flag F becomes 0 or all the characters are visited. If F
becomes 0, this implies that the pattern does not exist on the window. Otherwise, one
or more occurrences of the pattern are detected at the investigated window. In that
case, the 1 bits of the flag F tells the exact positions of occurrences.

At the end of each attempt the BLIM algorithm uses the shift mechanism proposed
in the Quick-Search algorithm (see Section 4.1, Eq. (5)). The immediate text character
following the window determines the shift amount. If that character is included in the
pattern then the shift amount is wsize — k, where & = max{i | pli] = t[s + wsizel},
otherwise the shift value is equal to wsize + 1.

The BLIM algorithm has an O([n/w](w + m — 1)) overall worst-case time complexity
and requires O(c x (w + m — 1)) extra space.

Bit-Parallel Algorithms for Long Patterns. In Navarro and Raffinot [2000] the au-
thors introduced an efficient method, based on bit-parallelism, to search for patterns
longer than . Their approach consists in constructing an automaton for a substring of
the pattern fitting in a single computer word, to filter possible candidate occurrences
of the pattern. When an occurrence of the selected substring is found, a subsequent
naive verification phase allows to establish whether this belongs to an occurrence of
the whole pattern. However, besides the costs of the additional verification phase, a
drawback of this approach is that, in the case of the BNDM algorithm, the maximum
possible shift length cannot exceed w, which could be much smaller than m.
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Later in Peltola and Tarhio [2003] another approach for long patterns was introduced,
called LBNDM. In this case the pattern is partitioned in |m/k] consecutive substrings,
each consisting in 2 = [(m—1)/w] + 1 characters. The m— k|m/k] remaining characters
are left to either end of the pattern. Then the algorithm constructs a superimposed
pattern p’ of length |m/k|, where p'li] is a class of characters including all characters
in the i-th substring, for 0 <i < [m/k].

The idea is to search first the superimposed pattern in the text, so that only every
k-th character of the text is examined. This filtration phase is done with the standard
BNDM algorithm, where only the k-th characters of the text are inspected. When an
occurrence of the superimposed pattern is found the occurrence of the original pattern
must be verified.

The shifts of the LBNDM algorithm are multiples of k. To get a real advantage of
shifts longer than that proposed by the approach of Navarro and Raffinot, the pattern
length should be at least about two times w.

Tighter packing for bit-parallelism. In order to overcome the problem due to han-
dling long patterns with bit-parallelism, in Cantone et al. [2010a] a new encoding of
the configurations of nondeterministic automata for a given pattern p of length m was
presented, which on the average requires less than m bits and is still suitable to be
used within the bit-parallel framework. The effect is that bit-parallel string matching
algorithms based on such encoding scale much better as m grows, at the price of a
larger space complexity (at most of a factor o). The authors illustrated the applica-
tion of the encoding to the Shift-And and the BNDM algorithms, obtaining two vari-
ants named Factorized-Shift-And and Factorized-BNDM (F-Shift-And and F-BNDM
for short). However the encoding can also be applied to other variants of the BNDM
algorithm as well.

The encoding has the form (D, a), where D is a k-bit vector, with £ < m (on the average
k is much smaller than m), and a is an alphabet symbol (the last text character read)
which will be used as a parameter in the bit-parallel simulation with the vector D.

The encoding (D, a) is obtained by suitably factorizing the simple bit vector encoding
for NFA configurations and is based on the 1-factorization of the pattern.

More specifically, given a pattern p € X™, a 1-factorization of size k of p is a sequence
(ug, ug, ..., up) of nonempty substrings of p such that p = ujus---u; and each factor
u;j contains at most one occurrence for any of the characters in the alphabet %, for
Jj=1,...,k A l-factorization of p is minimal if such is its size.

For x € X*, let first(x) = x[0] and last(x) = x[|x| — 1]. It can easily be checked that a
1-factorization (uy, ug, ..., uz) of pis minimal if first(u; 1) occurs inu;, fori =1, ..., k—1.

Observe, also, that [Z] < k& < m holds, for any 1-factorization of size & of a string
p € ™. The worst case occurs when p = a™, in which case p has only the 1-factorization
of size m whose factors are all equal to the single character string a.

A 1-factorization (ui, ug, ..., u:) of a given pattern p € £* induces naturally a par-
tition {@1, ..., @} of the set @\ {qo} of nonstarting states of the canonical automaton
SMA(p) = (@, X, 8, qo, F) for the language ~* p.

Hence, for any alphabet symbol a the set of states @; contains at most one state with
an incoming arrow labeled a. Indicate with symbol g;, the unique state ¢ of SMA(p)
with g € @;, and ¢ has an incoming edge labeled a.

In the F-Shift-And algorithm the configuration §*(qo, Sa) is encoded by the pair (D, a),
where D is the bit vector of size & such that D[i] is set iff @; contains an active state,
that is, @; N §*(qo, Sa) # 0, iff q; , € 5§*(qo, Sa).

Fori=1,...,k—1,we put u; = w; - first(u;1). We also put u = u; and call each set
u; the closure of u;. Plainly, any 2-gram can occur at most once in the closure #; of any
factor of our 1-factorization (uq, us, ..., us) of p.
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In order to encode the 2-grams present in the closure of the factors u; the algorithm
makes use of a o x o matrix B of k-bit vectors, where the i-th bit of Blc1, ¢co] is set iff
the 2-gram cjcs is present in #; or, equivalently, iff

(ZGSt(ui) 75 Cl A qi,cz € S(qi,clv 02))\/ (7)
(i <kAlast;) =c1 A Qivle, € 8(qicyrC2)),

for every 2-gram cico € 22 andi=1,...,k.

To properly take care of transitions from the last state in @; to the first state in @, 1,
the algorithm makes also use of an array L, of size o, of k-bit vectors encoding for each
character ¢ € ¥ the collection of factors ending with c. More precisely, the i-th bit of
Llc] is set iff last(u;)) =c,fori =1, ... k.

The matrix Band the array L, Wthh in total require (0240 )k bits, are used to compute

the transition (D, a) SM4 (D', ¢) on character c. In particular D can be computed from
D by the following bitwise operations.

i) D« D&Bla,c] (()H<« D&L[a] Gi)D«~ (D&~H)|(H<«k1)

To check whether the final state q,, belongs to a configuration encoded as (D, a), one
has only to verify that gz, = ¢,. This test can be broken into two steps: first, one
checks if any of the states in @ is active, that is, D[k] = 1; then, one verifies that the
last character read is the last character of u;, that is, Lla], = 1. The test can then be
implemented by D & M & Lla] # 0%, where M = (1 « (k — 1)).

The same considerations also hold for the encoding of the factor automaton Dawg(p)
in the F-BNDM algorithm. The only difference is in the handling of the initial state.
In the case of the automaton SMA(p), state q¢ is always active, so we have to activate
state q; when the current text symbol is equal to p[0]. To do so it is enough to perform
a bitwise or of D with 0*~11 when a = p[0], as ¢; € Q:. Instead, in the case of the suffix
automaton Dawg(p), as the initial state has an s-transition to each state, all the bits
in D must be set, as in the BNDM algorithm.

The preprocessing procedure which builds the arrays B and L has a time complex-
ity of O(62 4+ m). The variants of the Shift-And and BNDM algorithms based on the
encoding of the configurations of the automata SMA(p) and Dawg(p) (algorithms F-
Shift-And and F-BNDM, respectively) have a worst-case time complexities of O(n[k/w])
and O(nm[k/w]), respectively, while their space complexity is O(c2[k/w]), where k is
the size of a minimal 1-factorization of the pattern.

4.3.6. Hashing and g-Grams. In this section we present recent string matching algo-
rithms based on bit-parallelism that use g-grams. The BNDMg and UFNDMgq algo-
rithm process the q rightmost characters of the window in one step.

Bit-parallel algorithms with q-grams. The idea of using g-grams for shifting (see
Section 4.1.3 and Section 4.1.3) was applied also to bit-parallel algorithms in Durian
et al. [2009].

First, the authors presented a variation of the BNDM algorithm called BNDMg.
Specifically, at each alignment of the pattern with the current window of the text
ending at position j, the BNDMgq algorithm first reads a g-gram before testing the
state vector D. This is done by initializing the state vector D at the beginning of the
iteration in the following way.

D < Bitlj—q+ 1] & Bt —qll « D & --- & (Blt[jll < (g —1)

Ifthe g-gram is not present in the pattern the algorithm quickly advances the window
of m—q+1 positions to the right. Otherwise the inner while-loop of the BNDM algorithm
checks the alignment of the pattern in the right-to-left order. In the same time the
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loop recognizes prefixes of the pattern. The leftmost found prefix determines the next
alignment of the algorithm.

The authors presented also a simplified variant of the BNDMgq algorithm (called
SBNDMgq) along the same line of the SBNDM algorithm [Peltola and Tarhio 2003,
Navarro 2001] (see Section 4.3.1).

Finally the authors presented also an efficient g-grams variant of the Forward-
Nondeterministic-DAWG-Matching algorithm [Holub and Durian 2005]. The resulting
algorithm is called UFNDMgq, where the letter U stands for upper bits because the
algorithm utilizes those in the state vector D.

The idea of the original algorithm is to read every m-th character c of the text while
¢ does not occur in the pattern. If ¢ is present in the pattern, the corresponding align-
ments are checked by the naive algorithm. However, while BNDM and its descendants
apply the Shift-And approach, FNDM uses Shift-Or.

Along the same line of BNDMg, the UFNDMg algorithm reads g characters before
testing the state vector D. Formally the state vector D is initialized as follows.

D < BI[jII | BRlj—11<1) | - | (Bltlj—g+1l] <(g—1)

A candidate is naively checked only if at least ¢ characters are matched.

Finally we notice that a similar approach adopted in Kalsi et al. [2008] can be used
for BNDMg and SBNDMgq (see Section 4.1.3). In particular in Durian et al. [2009] the
authors developed three versions for both BNDMg and SBNDMg.

4.4. Constant-Space Algorithms

We now present the most recent constant-space string matching algorithm. Sec-
tion 4.4.1 presents an algorithm that uses a partition of the pattern.

4.4.1. Partition the Pattern. In this section we present a recent constant-space string
matching algorithm that partitions the pattern. The Tailed-Substring algorithm uses
the longest suffix of p that contains only one occurrence of the last character of p.

Tailed-Substring Algorithm. In Cantone and Faro [2004] the authors proposed a
constant-space algorithm for the string matching problem which, though quadratic in
the worst case, is very efficient in practice.

The proposed algorithm, called Tailed-Substring, performs its preprocessing in par-
allel with the searching phase. The idea is based on the following notion of maximal
tailed-substring of p. We say that a substring r of p is a tailed-substring if its last
character is not repeated elsewhere in r. Then a maximal tailed-substring of p is
a tailed-substring of p of maximal length. In the following, given a maximal tailed-
substring r of a pattern p, we associate to r its length o and a natural number & (with
a—1<k<m)suchthatr = plk—a+1..E].

The Tailed-Substring algorithm searches for a pattern p in a text ¢ in two subsequent
phases. During the first phase, while it searches for occurrences of p in ¢, the Tailed-
Substring algorithm also computes values of « and % such that r = plk —a +1..k] is
a maximal tailed-substring of p. During the second phase, it just uses the values for «
and %k computed in the first phase to speed up the search of the remaining occurrences
of pin¢.

The first searching phase works as follows. Initially, the value of « is set to 1 and the
values of i and % are set to m — 1. Next, the following steps are repeated until o > i.
The first value of the shift s such that pli] = ¢[s +i] is looked for and then it is checked
whether p = ¢[s..s + m — 1], proceeding from left to right. At this point, the rightmost
occurrence A of pli] in p[0..7 — 1] is searched for. If such an occurrence is found (i.e.,
h > 0), the algorithm aligns it with character s + i of the text; otherwise, the shift is
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advanced by i + 1 positions (in this case h = —1). Then, if the condition i — 4 > « holds,
ais settoi —h, kis set to i, and the value of i is decreased by 1. It can be shown that at
the end of the first searching phase plk — o + 1..%] is a maximal tailed-substring of p.

In the second searching phase the algorithm looks for an occurrence of character p[k]
in the text. When a value s such that p[k] = ¢[s + k] is found, it is checked whether
p =tls..s + m— 1], proceeding from left to right, and then the shift is advanced by «
positions to the right. The preceding steps are repeated until all occurrences of p in ¢
have been found.

The resulting algorithm runs in O(nm) worst-case time complexity.

5. EXPERIMENTAL EVALUATION

We present next experimental data which allow to compare in terms of running time
the best performance of all string matching algorithms, including those reviewed in
this article.

All algorithms have been implemented in the C programming language and were
used to search for the same strings in large fixed text buffers on a PC with Intel Core2
processor of 1.66 GHz with 2GB of RAM and 2MB of L2-cache. Running times have
been measured with a hardware cycle counter, available on modern CPUs. The codes
have been compiled with the GNU C Compiler, using the optimization option -O2.

In particular, the algorithms have been tested on the following text buffers:

(i) eight Rando text buffers, for 0 = 2, 4, 8, 16, 32, 64, 128 and 256, where each
Rando text buffer consists in a 5MB random text over a common alphabet of size
o, with a uniform distribution of characters;

(i1) the English King James version of the Bible composed of 4, 047, 392 characters

(with o = 63);
(iii) the file world192.txt (The CIA World Fact Book) composed of 2, 473, 400 characters
(with o = 94);

(iv) a genome sequence of 4, 638, 690 base pairs of Escherichia coli (with o = 4);
(v) a protein sequence (the hs file) from the Saccharomyces cerevisiae genome, of
length 3, 295, 751 bytes (with o = 20).

Files (i1), (iii), and (iv) are from the Large Canterbury Corpus (http:/www.data-
compression.info/Corpora/CanterburyCorpus/), while file (v) is from the Protein Corpus
(http://data-compression.info/Corpora/ProteinCorpus/).

For each input file, we have generated sets of 400 patterns of fixed length m randomly
extracted from the text, for m ranging over the values 2, 4, 8, 16, 32, 64, 128, 256, 512,
and 1024. For each set of patterns we reported in a table the mean over the running
times of the 400 runs. Because of space limitation we report only results of the classical
BOM and BNDM algorithms and of algorithms which appear, at least once, in the
first three best results. The comprehensive set of experimental evaluation of all string
matching algorithms can be found in Faro and Lecroq [2010].

In addition to the algorithms reviewed in this article the following tables report
running times also for the following algorithms:

—KR: the Karp-Rabin algorithm [Karp and Rabin 1987];
—AUT: the Finite-State Automaton matcher;

—RCol: the Reverse Colussi algorithm [Colussi 1994];
—ZT: the Zhu-Takaoka algorithm [Zhu and Takaoka 1987].

The set of C codes of all the algorithms which we use in our tests can be found at
http://www.dmi.unict.it/ faro/smart/.
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In the following tables running times are expressed in thousands of seconds. The

best results are boldfaced.

Experimental Results on Rand2 Problem

m 2 4 8 16 32 64 128 256 512 1024
KR 48.17 24.73 16.94 16.36 16.35 16.39 16.38 16.38 16.40 16.39
TVSBS 29.81 34.33 36.90 36.06 34.92 36.56 35.60 36.20 36.27 35.48
HASH3 - 28.24 13.98 9.78 8.64 8.71 8.88 8.71 8.72 8.65
HASH5 - - 14.44 6.05 3.72 3.07 3.15 3.12 3.12 3.12
HASH8 - - - 7.67 3.47 2.47 2.87 1.97 1.44 1.30
SSEF - - - - 5.38 3.38 3.44 1.79 0.99 0.55
AUT 21.68 21.66 21.70 21.68 21.71 21.77 21.78 21.91 22.60 23.85
BOM 94.08 74.32 47.42 28.89 17.14 9.94 7.52 4.14 2.27 1.27
EBOM 41.11 37.17 25.80 14.44 8.06 4.77 4.61 2.79 1.99 2.92
SO 16.45 16.45 16.44 16.42 16.44 21.74 21.73 21.76 21.75 21.74
SA 16.41 16.40 16.41 16.40 16.40 19.13 19.14 19.13 19.13 19.15
AOS02 167.2 36.72 11.49 9.66 8.54 8.53 8.55 8.54 8.55 8.55
BNDM 63.5 47.9 25.6 12.6 6.48 8.53 8.52 8.52 8.53 8.50
BNDMg4 - 52.99 18.45 9.49 5.10 6.51 6.49 6.50 6.51 6.49
BNDMg6 - - 26.32 9.13 5.08 5.11 5.13 5.12 5.14 5.12
SBNDMg8 - - 97.01 11.94 5.02 4.63 4.63 4.65 4.66 4.64
Experimental Results on Rand4 Problem
m 2 4 8 16 32 64 128 256 512 1024
TVSBS 22.25 17.43 12.08 8.67 6.90 6.40 6.40 6.30 6.29 6.37
HASH3 - 21.12 8.30 4.74 3.42 3.07 3.13 3.09 3.10 3.08
HASH5 - - 12.53 5.01 2.93 2.48 2.85 2.49 2.24 2.19
HASHS - - - 7.62 3.45 2.46 2.85 1.96 1.45 1.30
SSEF - - - - 5.39 3.36 3.43 1.79 0.99 0.54
AUT 21.68 21.68 21.69 21.71 21.70 21.74 21.79 21.91 22.61 23.90
BOM 65.72 44.01 27.71 17.62 11.23 6.84 5.79 3.20 1.78 1.03
EBOM 23.98 14.17 10.18 6.94 443 3.06 3.55 2.16 1.61 2.75
SEBOM 24.81 14.34 10.34 7.08 4.58 3.23 3.71 2.27 1.67 2.79
SO 16.45 16.45 16.43 16.42 16.44 21.75 21.75 21.74 21.74 21.75
SA 16.40 16.39 16.41 16.40 16.39 19.14 19.13 19.13 19.15 19.13
BNDM 49.0 27.8 14.7 7.91 4.40 5.85 5.88 5.86 5.87 5.86
FSBNDM 39.73 21.06 11.37 6.23 3.36 3.38 3.37 3.37 3.37 3.37
BNDMg4 - 48.66 10.79 4.89 2.86 3.53 3.54 3.54 3.54 3.53
SBNDMg4 - 45.99 10.22 4.72 2.87 2.68 2.68 2.69 2.68 2.69
Experimental Results on Rand8 Problem
m 2 4 8 16 32 64 128 256 512 1024
BR 16.75 11.60 747 475 3.24 2.76 3.39 2.97 2.93 2.95
SSABS 16.54 11.63 8.34 6.74 6.33 6.32 6.28 6.29 6.26 6.17
TVSBS 14.92 10.53 6.91 4.50 3.23 2.82 3.17 2.96 2.95 2.92
HASH3 - 19.07 7.25 3.88 2.66 2.46 2.75 2.60 2.45 2.38
HASH5 - - 12.17 4.79 2.71 2.41 2.78 2.06 1.64 1.47
HASHS - - - 7.61 3.45 2.46 2.85 1.96 1.45 1.30
SSEF - - - - 5.39 3.36 3.43 1.79 1.00 0.55
BOM 48.58 33.30 22.19 15.08 9.60 5.98 5.11 2.82 1.60 0.94
EBOM 19.62 8.37 5.04 3.70 3.00 2.63 3.13 1.90 1.48 2.65
FBOM 17.39 10.38 6.72 4.63 3.45 2.83 3.30 2.01 1.52 2.69
SEBOM 20.63 8.73 5.22 3.82 3.12 2.76 3.25 2.02 1.56 2.72
SFBOM 17.23 10.44 6.77 4.68 3.49 2.88 3.33 2.05 1.56 2.72
SA 16.40 16.40 16.40 16.41 16.41 18.89 18.89 18.89 18.89 18.89
BNDM 37.3 22.0 11.6 6.10 3.66 4.51 4.51 4.52 4.52 451
FSBNDM 28.12 14.25 7.85 4.71 2.74 2.75 2.74 2.74 2.74 2.76
BNDMg2 33.80 12.85 6.58 4.06 2.84 3.41 3.44 3.45 3.45 3.44
BNDMq4 - 48.40 10.44 4.59 2.57 3.16 3.15 3.17 3.16 3.16
SBNDMq2 33.46 12.74 6.72 4.25 2.97 2.79 2.79 2.79 2.81 2.82
SBNDMq4 - 45.76 9.90 4.39 2.56 2.46 2.46 2.46 2.45 2.46
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Experimental Results on Rand16 Problem

m 2 4 8 16 32 64 128 256 512 1024
RCol 15.27 8.47 5.08 3.48 2.88 2.77 2.80 2.77 2.72 2.63
FS 15.26 8.47 5.08 3.47 2.86 2.77 2.80 2.78 2.72 2.65
BFS 15.36 8.51 5.08 3.43 2.79 2.65 2.89 2.77 2.56 2.65
SSABS 12.35 8.25 5.51 3.94 3.28 3.12 3.14 3.16 3.15 3.16
TVSBS 11.56 8.09 5.33 3.51 2.74 2.55 2.87 1.96 1.52 1.40
FJS 12.69 8.58 5.75 4.16 3.44 3.26 3.31 3.30 3.28 3.30
HASH3 - 18.34 6.85 3.58 2.49 2.33 2.69 2.31 2.07 1.96
HASH5 - - 12.07 4.72 2.65 2.39 2.74 1.84 1.37 1.22
HASH8 - - - 7.59 3.45 2.46 2.85 1.96 1.44 1.29
SSEF - - - - 5.38 3.37 3.44 1.79 0.99 0.55
BOM 40.88 28.99 22.62 15.61 9.65 5.86 4.89 2.75 1.55 0.97
EBOM 18.58 7.15 3.88 2.81 2.565 2.44 2.83 1.81 1.42 2.68
FBOM 13.27 8.17 5.10 3.41 2.79 2.66 3.20 1.88 1.45 2.69
SEBOM 19.64 7.57 4.11 2.94 2.68 2.56 2.95 1.93 1.49 2.74
BNDM 30.50 17.60 10.50 5.68 3.11 3.73 3.73 3.75 3.74 3.75
SBNDM2 35.17 12.52 6.10 3.45 2.65 2.44 2.45 2.45 2.45 2.44
BMH-SBNDM 15.48 8.42 5.00 3.35 2.75 2.84 2.84 2.85 2.81 2.84
FSBNDM 23.61 12.05 6.46 3.73 2.38 2.38 2.38 2.39 2.39 2.37
BNDMgq2 33.28 11.80 5.61 3.16 2.48 2.68 2.67 2.67 2.68 2.70
SBNDMg2 32.57 11.67 5.70 3.35 2.50 2.45 2.44 2.44 2.44 2.44
SBNDMq4 - 45.72 9.88 4.36 2.54 2.44 2.45 2.45 2.44 2.44

Experimental Results on Rand32 Problem

m 2 4 8 16 32 64 128 256 512 1024
T 29.83 15.41 8.29 4.86 3.08 2.55 2.87 1.67 1.07 0.77
RCol 13.77 7.43 4.27 2.76 2.43 2.33 2.53 2.52 2.48 2.47
BR 11.79 8.20 5.34 3.50 2.64 2.51 2.85 1.67 1.08 0.79
FS 13.77 7.44 4.27 2.76 2.43 2.33 2.63 2.51 2.49 2.47
BFS 13.83 7.47 4.29 2.75 2.44 2.35 2.65 2.61 2.49 2.568
SSABS 10.57 6.92 4.43 3.06 2.58 2.46 2.66 2.64 2.65 2.66
TVSBS 10.19 7.19 4.73 3.17 2.62 2.50 2.68 1.58 1.02 0.74
FJS 10.54 6.97 4.49 3.09 2.61 2.49 2.68 2.66 2.66 2.66
HASH3 - 18.06 6.68 3.45 2.45 2.30 2.63 1.92 1.55 1.38
SSEF - - - - 5.38 3.38 3.44 1.78 1.00 0.54
BOM 37.8 27.4 24.6 17.4 11.4 6.97 5.31 2.96 1.73 1.15
EBOM 18.33 6.87 3.63 2.67 2.49 2.41 2.72 1.71 1.38 2.69
FBOM 11.78 7.41 4.61 3.05 2.67 2.61 291 1.79 1.46 2.72
SEBOM 19.38 7.29 3.85 2.79 2.61 2.62 2.83 1.79 1.45 2.73
BNDM 27.43 15.07 8.84 5.38 3.12 3.711 3.72 3.72 3.72 3.73
SBNDM2 34.97 12.30 5.90 3.27 2.45 2.39 2.40 2.39 2.39 2.39
BMH-SBNDM 13.87 7.42 4.24 2.73 2.41 2.44 2.45 2.44 2.44 2.44
FSBNDM 21.92 11.23 5.97 3.43 2.29 2.28 2.29 2.31 2.29 2.30
SBNDMq2 32.35 11.44 5.46 3.12 2.42 2.38 2.37 2.39 2.39 2.39

Experimental Results on Rand64 Problem

m 2 4 8 16 32 64 128 256 512 1024
T 29.43 15.39 8.42 5.01 3.25 2.61 2.86 1.61 0.97 0.61
TunBM 13.69 7.29 4.09 2.60 2.34 2.20 2.60 2.42 2.40 2.38
RCol 13.14 7.00 3.94 2.52 2.32 2.20 2.58 2.41 2.38 2.36
BR 11.37 8.02 5.32 3.60 2.78 2.60 2.82 1.59 0.96 0.63
FS 13.13 7.00 3.94 2.52 2.31 2.19 2.58 2.42 2.39 2.37
BFS 13.16 7.01 3.95 2.53 2.34 2.23 2.68 2.55 2.59 2.78
SSABS 9.75 6.38 4.02 2.69 2.43 2.29 2.66 2.48 2.44 2.44
TVSBS 9.83 7.04 4.75 3.30 2.73 2.56 2.67 1.52 0.92 0.59
FJS 9.59 6.30 3.98 2.69 2.44 2.31 2.66 2.48 2.43 2.44
GRASPm 14.57 7.72 4.31 2.63 2.36 2.21 2.64 2.41 2.26 2.05
SSEF - - - - 5.39 3.37 3.43 1.80 0.99 0.55
BOM 36.2 26.6 25.6 19.0 13.9 9.40 6.85 3.71 2.10 1.36
EBOM 18.38 6.92 3.72 2.77 2.59 2.51 2.76 1.73 141 2.68
SEBOM 19.43 7.32 3.94 2.88 2.70 2.62 2.87 1.83 1.48 2.74
BNDM 25.97 13.83 7.79 4.65 3.01 3.561 3.51 3.53 3.51 3.51
SBNDM2 34.91 12.26 5.85 3.23 2.42 2.38 2.38 2.38 2.38 2.38
SBNDM-BMH 12.36 6.90 4.08 2.83 2.41 2.52 2.52 2.51 2.52 2.52
BMH-SBNDM 13.17 6.98 3.92 2.50 2.30 2.34 2.35 2.36 2.36 2.35
FSBNDM 21.20 10.90 5.80 3.32 2.27 2.27 2.27 2.26 2.27 2.27
KBNDM 40.21 20.48 10.77 5.94 3.54 2.64 3.01 1.63 1.47 1.46
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m 2 4 8 16 32 64 128 256 512 1024
zT 39.17 20.34 10.89 6.16 3.83 2.77 2.98 1.62 1.07 0.60
TunBM 13.10 6.99 3.85 2.48 2.29 2.14 2.58 2.03 2.06 1.84
RCol 12.83 6.82 3.80 2.46 2.27 2.13 2.58 2.03 2.04 1.83
BR 15.18 10.60 6.87 4.43 3.06 2.74 2.92 1.59 1.08 0.60
FS 12.81 6.82 3.79 2.46 2.29 2.13 2.57 2.02 2.04 1.84
FFS 12.83 6.83 3.81 2.47 2.32 2.17 2.66 2.20 2.44 2.49
TS 11.55 11.44 11.05 10.46 9.47 7.96 6.43 5.01 3.67 2.54
SSABS 9.34 6.14 3.81 2.54 2.39 2.25 2.61 2.07 2.08 1.86
TVSBS 13.64 9.60 6.30 4.15 2.95 2.66 2.77 1.54 1.05 0.59
FJS 9.18 6.04 3.76 2.54 2.38 2.25 2.61 2.04 2.10 1.86
HASH3 - 18.01 6.62 3.41 2.44 2.30 2.57 1.72 1.45 1.18
GRASPm 14.20 751 413 2.48 2.35 2.15 2.64 2.06 2.06 1.80
SSEF - - - - 5.40 3.38 3.43 1.79 1.14 0.57
BOM 35.5 26.4 26.6 20.3 16.0 12.2 9.55 5.49 3.45 1.92
BOM2 21.47 11.45 6.43 3.93 2.83 2.54 3.03 1.72 1.41 2.48
BNDM 25.26 13.32 7.23 4.16 2.73 3.12 3.12 3.48 3.56 3.21
SBNDM 48.07 16.59 7.46 3.94 2.42 2.36 2.36 2.66 2.70 2.43
SBNDM-BMH 11.82 6.55 3.71 2.58 2.29 2.36 2.36 2.67 2.69 2.43
BMH-SBNDM 12.83 6.86 3.78 2.45 2.28 2.34 2.33 2.61 2.67 2.40
FSBNDM 20.90 10.76 5.74 3.29 2.26 2.27 2.25 2.54 2.57 2.33
Experimental Results on Rand256 Problem
m 2 4 8 16 32 64 128 256 512 1024
zT 4774 24.70 13.29 7.84 5.44 4.32 3.87 2.02 1.08 0.63
TunBM 13.23 6.98 3.87 2.51 2.34 2.17 2.60 1.73 1.30 1.16
RCol 13.08 6.91 3.84 2.53 2.32 2.18 2.58 1.73 1.31 1.18
BR 19.88 13.80 9.06 6.15 4.75 421 3.78 2.00 1.10 0.60
FS 13.08 6.90 3.84 2.50 2.35 2.17 2.59 1.72 1.29 1.18
FFS 13.08 6.92 3.84 2.54 2.36 2.23 2.68 1.91 1.69 1.91
BFS 13.09 6.90 3.84 2.52 2.35 2.23 2.69 1.94 1.69 1.92
TS 11.73 11.63 11.46 11.12 10.51 9.48 8.08 6.68 451 2.90
SSABS 9.47 6.19 3.85 2.57 2.43 2.29 2.61 1.75 1.31 1.18
TVSBS 18.35 12.77 8.46 5.88 4.64 4.15 3.70 1.98 1.08 0.60
FJS 9.26 6.07 3.76 2.55 2.44 2.29 2.62 1.74 1.32 1.18
GRASPm 14.47 7.60 4.18 2.50 2.38 2.19 2.64 1.75 1.32 1.16
SSEF - - - - 5.58 3.49 3.55 1.84 1.03 0.55
BNDM 25.75 13.37 7.21 4.03 2.65 2.94 2.92 2.92 2.94 2.93
LBNDM 30.43 15.69 8.33 4.66 2.87 2.46 2.91 1.61 0.96 0.66
SBNDM-BMH 11.93 6.50 3.63 2.55 2.30 2.35 2.35 2.34 2.36 2.36
BMH-SBNDM 13.09 6.90 3.83 2,51 2.32 2.39 2.38 2.38 2.39 2.40
AOSO2 11.63 10.04 10.05 10.04 10.05 8.80 8.79 8.80 8.79 8.80
AOSO4 - 6.81 5.27 5.25 5.26 4.69 4.69 4.70 4.70 4.70
KBNDM 46.62 23.68 12.48 7.16 4.75 3.61 3.42 1.78 0.96 0.87
Experimental Results on a Natural Language Text (the Bible)
m 2 4 8 16 32 64 128 256 512 1024
zT 26.41 13.76 7.52 444 2.87 2.26 2.55 1.77 1.27 0.98
BR 11.29 8.17 5.28 3.41 2.40 2.17 2.63 1.78 1.30 1.01
BFS 13.06 7.62 452 3.01 2.29 2.08 2.40 2.14 1.94 1.99
SSABS 10.80 7.17 4.88 3.43 2.66 2.33 2.52 2.25 1.91 1.65
TVSBS 10.14 7.16 4.60 3.12 2.35 2.15 2.42 1.71 1.21 0.94
FJS 11.07 7.53 5.05 3.53 2.77 2.45 2.62 2.32 1.98 1.69
HASH3 - 14.59 5.42 2.79 1.97 1.84 2.09 1.45 1.06 0.85
HASH5 - - 9.68 3.81 2.14 1.90 2.21 1.49 1.07 0.89
HASH8 - - - 6.08 2.77 1.97 2.28 1.58 1.15 0.98
SSEF - - - - 4.36 2.59 2.72 1.44 0.80 0.45
BOM 34.6 25.2 19.9 13.9 9.36 6.03 4.90 2.90 1.72 1.10
EBOM 15.30 6.53 3.87 2.91 2.47 2.21 2.55 1.68 1.41 2.67
SEBOM 16.21 6.84 4.10 3.07 2.61 2.33 2.67 1.80 1.48 2.71
BNDM 25.60 15.45 9.09 5.11 3.01 3.65 3.64 3.65 3.64 3.65
BMH-SBNDM 13.25 7.41 4.46 2.94 2.28 2.31 2.31 2.31 2.30 2.29
FSBNDM 19.79 10.35 5.74 3.56 2.20 2.18 2.20 2.18 2.18 2.19
BNDMg4 - 38.75 8.48 3.79 2.16 2.66 2.67 2.68 2.67 2.67
SBNDMg4 - 36.54 8.02 3.61 2.14 2.04 2.05 2.05 2.05 2.05
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Experimental Results on a Natural Language Text (World192)

m 2 4 8 16 32 64 128 256 512 1024
T 15.61 8.13 4.46 2.68 1.77 1.44 1.60 1.08 0.76 0.56
Raita 8.39 4.57 2.73 1.75 1.36 1.22 1.46 1.18 0.91 0.75
RCol 7.47 4.10 2.50 1.62 1.31 1.23 1.40 1.12 0.87 0.74
BR 6.60 4.69 3.13 2.09 1.55 1.42 1.65 1.10 0.78 0.61
FS 7.39 4.10 2.48 1.64 1.32 1.20 1.40 1.13 0.89 0.71
FFS 7.44 4.26 2.50 1.64 1.33 1.25 1.45 1.28 1.19 1.39
BFS 7.43 4.18 2.48 1.63 1.32 1.23 1.46 1.29 1.23 1.46
SSABS 6.04 4.13 2.65 1.83 1.44 1.28 1.46 1.18 0.93 0.77
TVSBS 5.91 4.21 2.88 1.98 1.54 1.43 1.56 1.05 0.74 0.54
FJS 6.07 3.98 2.70 1.86 1.48 1.32 1.51 1.20 0.96 0.82
HASH3 - 8.85 3.31 1.72 1.22 1.15 1.29 0.88 0.63 0.50
HASH5 - - 5.94 2.32 1.32 1.17 1.36 0.93 0.68 0.57
HASH8 - - - 3.74 1.70 1.23 1.43 0.99 0.72 0.63
SSEF - - - - 2.74 1.69 1.73 0.93 0.48 0.29
EBOM 9.36 3.84 2.20 1.64 1.48 1.44 1.62 118 111 2.49
SEBOM 9.90 4.10 2.35 1.80 1.62 1.56 1.75 1.28 1.19 2.54
BNDM 14.67 8.33 4.96 2.89 1.73 2.07 2.08 2.07 2.08 2.06
SBNDM2 17.18 6.27 3.07 1.81 1.35 1.29 1.27 1.29 1.30 1.28
BMH-SBNDM 7.60 4.18 2.41 1.58 1.28 1.30 1.30 1.29 1.32 1.32
FSBNDM 11.39 6.04 3.27 1.95 1.26 1.25 1.23 1.24 1.24 1.25
SBNDMq2 15.89 5.84 2.92 1.75 1.34 1.29 1.27 1.30 1.28 1.29

Experimental Results on a Genome Sequence

m 2 4 8 16 32 64 128 256 512 1024
TVSBS 44.63 35.28 24.65 17.49 13.85 12.71 12.58 12.55 12.85 12.48
HASH3 - 39.75 14.97 7.93 5.38 4.96 5.59 5.22 5.06 5.03
HASH5 - - 25.14 9.84 5.54 4.91 5.66 4.00 3.04 2.58
HASH8 - - - 15.78 7.18 5.09 5.86 4.19 3.13 2.70
SSEF - - - - 11.47 6.22 6.68 3.75 2.26 1.59
AUT 44.75 46.04 44.75 46.06 46.05 44.78 46.15 44.96 45.68 47.06
BOM 136.3 90.25 56.48 36.57 23.00 14.05 11.85 6.52 3.59 2.05
EBOM 49.77 29.06 21.30 14.35 9.03 6.11 7.03 4.08 2.74 3.42
SEBOM 51.36 29.43 21.41 14.49 9.14 6.32 7.24 4.19 2.79 3.47
SFBOM 57.47 37.49 24.06 15.36 9.68 6.30 7.22 4.18 2.80 3.47
SO 35.29 35.29 35.28 35.27 35.27 44.84 44.84 44.82 44.84 44.85
SA 33.84 33.85 33.83 33.82 33.84 38.96 38.95 38.95 38.96 38.94
BNDM 102 57.1 30.5 16.5 9.12 12.1 12.1 12.0 12.1 12.1
BNDMg4 - 101.0 22.44 10.21 5.95 7.34 7.34 7.35 7.35 7.33
SBNDMg4 - 94.90 21.18 9.76 5.93 5.65 5.57 5.566 5.68 5.68

Experimental Results on a Protein Sequence

m 2 4 8 16 32 64 128 256 512 1024
p4) 20.54 10.58 5.69 3.35 2.14 1.76 2.02 1.34 0.99 0.84
RCol 9.86 5.46 3.25 2.19 1.82 1.70 1.81 1.75 1.72 1.68
BFS 9.94 5.48 3.25 2.15 1.78 1.68 1.87 1.85 1.80 2.01
SSABS 8.01 5.28 3.57 2.48 2.02 1.87 1.97 1.93 1.93 1.93
TVSBS 7.50 5.28 3.50 2.34 1.85 1.73 1.92 1.31 0.98 0.82
FJS 8.21 5.52 3.70 2.65 2.13 1.96 2.03 1.99 1.98 1.98
HASH3 - 11.81 4.39 2.29 1.61 1.52 1.74 1.37 1.17 1.07
HASH5 - - 7.85 3.07 1.74 1.56 1.79 1.22 0.90 0.80
HASH8 - - - 4.96 2.24 1.60 1.87 1.29 0.96 0.85
SSEF - - - - 3.57 2.24 2.29 1.21 0.63 0.36
BOM 26.49 18.39 14.33 9.93 6.36 3.92 3.22 1.84 1.06 0.73
EBOM 12.13 4.71 2.59 1.91 1.75 1.70 1.95 1.34 1.20 2.57
SEBOM 12.83 5.01 2.77 2.03 1.89 1.81 2.07 1.46 1.28 2.61
BNDM 19.63 11.27 6.66 3.71 2.06 2.47 2.48 2.47 2.47 2.47
BMH-SBNDM 10.09 5.43 3.18 2.11 1.72 1.77 1.78 1.80 1.78 1.78
AOSO6 2.33 2.32 16.08 3.29 2.33 2.15 2.15 2.16 2.15 2.16
FSBNDM 15.27 7.77 4.15 2.42 1.56 1.56 1.55 1.54 1.56 1.56
BNDMg2 21.45 7.61 3.63 2.05 1.62 1.74 1.73 175 1.73 1.73
SBNDMq2 21.08 7.58 3.70 2.16 1.63 1.59 1.60 1.59 1.61 1.60

We performed comparisons between 85 exact string matching algorithms with 12 text
of different types. We divide the patterns into four classes according to their length m:
very short (m < 4), short (4 < m < 32), long (32 < m < 256), and very long (m > 256).
We proceed in the same way for the alphabets according to their size o: very small
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Fig. 2. Experimental map of the best results obtained in our evaluation. Comparison-based algorithms are
presented in red gradations, automata-based algorithms are presented in green gradations, and bit-parallel
algorithms are presented in blue gradations.

(0 <4),small (4 < o < 32),large (32 < ¢ < 128), and very large (¢ > 128). According
to our experimental results, we conclude that the following algorithms are the most
efficient in the following situations (see Figure 2).

—SA: very short patterns and very small alphabets.

—TVSBS: very short patterns and small alphabets, and long patterns and large alpha-
bets.

—FJS: very short patterns and large and very large alphabets.

—EBOM: short patterns and large and very large alphabets.

—SBNDM-BMH and BMH-SBNDM: short patterns and very large alphabets.

—HASHg: short and large patterns and small alphabets.

—FSBNDM: long patterns and large and very large alphabets.

—SBNDMag: long patterns and small alphabets.

—LBNDM: very long patterns and very large alphabets.

—SSEF: very long patterns.

Among these algorithms all but one (the SA algorithm) have been designed during the
last decade, four of them are based on comparison of characters, one of them is based
on automata while six of them are bit-parallel algorithms.
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