
ON TUNING THE (α, δ)-SEQUENTIAL-SAMPLING ALGORITHM FOR
δ-APPROXIMATE MATCHING WITH α-BOUNDED GAPS

IN MUSICAL SEQUENCE

Domenico Cantone, Salvatore Cristofaro, Simone Faro
Universit̀a di Catania, Dipartimento di Matematica e Informatica

Viale Andrea Doria 6, I-95125 Catania, Italy
cantone, cristofaro, faro@dmi.unict.it

ABSTRACT

In this paper we present a new efficient algorithm for the
δ-approximate matching problem withα-bounded gaps
which arises in many questions concerning musical in-
formation retrieval and musical analysis. Our presented
algorithm is an efficient variant of the(δ, α)-Sequential-
Sampling algorithm (Cantone et al., 2003), recently in-
troduced by the authors.

An extensive comparison with the other solutions ex-
isting in literature for the same problem indicates that our
algorithm is more efficient, especially in the cases of long
patterns. In particular the algorithm solves the problem
in O(mn)-time andO(m)-space, wherem is the length
of the pattern andn is the length of the text. However it
requires onlyO(n)-time on the average for alphabet with
a uniform distribution. In addition, our algorithm com-
putes the total number of approximate matchings for each
position of the text, requiring onlyO(mα)-space.

Keywords: approximate string matching, experimental
algorithms, musical information retrieval.

1 INTRODUCTION

Given a textT and a patternP over some alphabetΣ,
thestring matching problemconsists in findingall occur-
rences ofP in T . It is a very extensively studied prob-
lem in computer science, mainly due to its direct applica-
tions to such diverse areas as text, image and signal pro-
cessing, speech analysis and recognition, information re-
trieval, computational biology and chemistry, etc.

Recently, the classical string matching problem has
been generalized with various notions of approximate
matching, particularly useful in specific fields such as
molecular biology (Karlin et al., 1988), musical ap-
plications (Crawford et al., 1998), or image process-
ing (Karhum̈aki et al., 2000).

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2005 Queen Mary, University of London

Figure 1: Representation of the C-minor and B-sus4
chords in the absolute pitch encoding (a.p.e.) and in the
interval pitch encoding (i.p.e.).

In this paper we focus on a variant of the approxi-
mate string matching problem, namely theδ-approximate
string matching problem withα-bounded gaps. Such a
problem, which will be given a precise definition later,
arises in many questions concerning musical informa-
tion retrieval and musical analysis. This is especially
true in the context of monophonic music, in which one
wants to retrieve a given melody from a complex mu-
sical score. We mention here that a significant amount
of research has been devoted to adapt solutions for ex-
act string matching toδ-approximate matching (see for
instance Cambouropoulos et al. (1999), Crochemore et al.
(2001), Crochemore et al. (2002b), Cantone et al. (2004)).
In this respect,Boyer-Moore-type algorithms are of par-
ticular interest, since they are very fast in practice.

The paper is organized as follows. In Section 2 we dis-
cuss the applications of approximate matching in the con-
text of musical sequences. Then in Section 3 we introduce
some basic notions and give a formal definition of theδ-
approximate matching problem withα-bounded gaps. An
algorithm based on the dynamic programming approach
for the approximate matching problem of our interest is
reviewed in Section 4.1. Then, in Section 4.3, we present
a new efficient algorithm for the same problem. Experi-
mental data obtained by running under various conditions
both our algorithm and the one based on the dynamic pro-
gramming approach are presented and compared in Sec-
tion 6. Finally, we draw our conclusions in Section 7.

2 APPROXIMATE MATCHING AND
MUSICAL SEQUENCES

Musical sequences can be schematically viewed as se-
quences of integer numbers, representing either the notes

Figure 2: Two bars of the study Op. 25 N. 1 of F. Chopin
(first score). The second score represents the melody. If a
gap bound ofα ≥ 5 is allowed, an exact occurrence of the
melody can be found through the piece.

in the chromatic or diatonic notation (absolute pitch en-
coding), or the intervals, in number of semitones, between
consecutive notes (interval pitch encoding); see the exam-
ples in Fig. 1. The second representation is generally of
greater interest for applications in tonal music, since ab-
solute pitch encoding disregards tonal qualities of pitches.
Note durations and note accents can also be encoded in
numeric form, giving rise to richer alphabets whose sym-
bols can really be regarded as sets of parameters. This
is the reason why alphabets used for music representation
are generally quite large.

δ-approximate string matching algorithms are very ef-
fective to search for all similar but not necessarily identi-
cal occurrences of given melodies in musical scores. We
recall that in theδ-approximate matching problem two in-
teger strings of the same length match if the corresponding
integers differ by at most a fixed boundδ. For instance,
the chords C-minor and B-sus4 match if a tolerance of
δ = 1 is allowed in the absolute pitch encoding (where
C-minor= (60, 63, 67, 72) and B-sus4= (59, 64, 66, 71)),
whereas if we use the interval pitch encoding, a tolerance
of δ = 2 is required to get a match (in this case we have C-
minor= (3, 4, 5) and B-sus4= (5, 2, 5)); see Fig. 1. No-
tice that forδ = 0, the δ-approximate string matching
problem reduces to the exact string matching problem.

Intuitively, we say that a melody (orpattern) has a
δ-approximate occurrence withα-bounded gaps within
a given musical score (ortext), if the melody has aδ-
approximate matching with a subsequence of the musical
score, in which it is allowed to skip up to a fixed number
α of symbols (thegap) between any two consecutive posi-
tions. In the present context, two symbols have an approx-
imate matching if the absolute value of their difference is
bounded by a fixed numberδ.

In classical music compositions, and in particular in com-
positions forPiano Solo, it is quite common to find musi-
cal pieces based on a sweet ground melody, whose notes
are interspaced by rapidly executed arpeggios. Fig. 2
shows two bars of the studyOp. 25 N. 1 for Piano Solo
by F. Chopin illustrating such a point. The notes of the
melody are the first of each group of six notes (sextuplet).
If we use the standard MIDI representation of the pitches,
then the melody corresponds to the sequence of integer
numbersP = [76, 81, 83, 84, 84, 83, 86, 77]. Then, if a
gap bound ofα ≥ 5 is allowed, an exact occurrence of the
melody can be found through the piece.

Figure 3: An excerpt of a piece of J.S. Bach (first score).
The second score shows how the musical ornaments must
be played. Two musical ornaments are present: amordent,
attached to the4th note; atrill , attached to the11th note.

The above musical technicality is not by any means
the only one for which approximate string matching with
bounded gaps turns out to be very useful. Other exam-
ples are given bymusical ornaments, which are common
practice in classical music, and especially in the music
of the baroque period. Musical ornaments are groups of
notes, played at a very fast tempo, which generally are
“attached” to the notes of a given melody, in order to em-
phasize or adorn certain dynamical passages. Some of the
most common musical ornaments are theacciaccatura,
theappoggiatura, themordent, theturn, and thetrill .

Fig. 3 shows an excerpt of aMinuet by J.S. Bach,
which makes use of musical ornaments. We provide both
the actual score, in which ornaments are represented as
special symbols marked above notes or as groups of small
notes, and the corresponding score showing how these no-
tations translate into real musical execution. Note that in
Fig. 3 the mordent corresponds to a group of three notes,
whereas the trill corresponds to a group of16 notes. In
general, to take care of musical ornaments inδ-matching
problem with gaps, one needs gap values in the range be-
tween4 and16.

3 BASIC DEFINITIONS AND
PROPERTIES

Before entering into details, we need a bit of notations and
terminology. A stringP is represented as a finite array
P [0 ..m − 1], with m ≥ 0. In such a case we say thatP
has lengthm and writelength(P) = m. In particular, for
m = 0 we obtain the empty string. ByP [i] we denote the
(i + 1)-st character ofP , for 0 ≤ i < length(P). Like-
wise, byP [i .. j] we denote the substring ofP contained
between the(i + 1)-st and the(j + 1)-st characters ofP ,
for 0 ≤ i ≤ j < length(P). The substrings of the form
P [0 .. j] (also denoted byPj), with 0 ≤ j < length(P),
are the nonemptyprefixesof P .

Let Σ be an alphabet of integer numbers and letδ ≥ 0
be an integer. Two symbolsa andb of Σ are said to be
δ-approximate(or we say thata andb δ-match), in which
case we writea =δ b, if |a − b| ≤ δ. Two stringsP and
Q over the alphabetΣ are said to beδ-approximate (or
we say thatP andQ δ-match), in which case we write

P
δ
= Q, if

length(P) = length(Q), and

P [i] =δ Q[i], for i = 0, ..., length(P) − 1 .

Given a textT of lengthn and a patternP of lengthm,
aδ-occurrence withα-bounded gaps ofP in T at position
i is an increasing sequence of indices(i0, i1, . . . , im−1)
such that (i)0 ≤ i0 andim−1 = i ≤ n−1, (ii) ih+1−ih ≤
α + 1, for h = 0, 1, . . . m− 2, and (iii) P [j] =δ T [ij], for
j = 0, 1, . . . m − 1. We writeP Eδ, α Ti to mean thatP
has aδ-occurrence withα-bounded gaps inT at position
i (in fact, when the boundsδ andα are well understood
from the context, we will simply writeP E Ti).

The δ-approximate string matching problem withα-
bounded gapsadmits the following variants: (a) find all
δ-occurrences withα-bounded gaps ofP in T ; (b) find all
positionsi in T such thatP E Ti; (c) for each positioni
in T , find the number of distinctδ-occurrences ofP with
α-bounded gaps at positioni.

In Section 4.3 we will describe an efficientO(mn)-
time solution for the variants (b) and (c) above which uses
only O(mα) extra space. Variant (a) can then be solved
by running anO(m2α)-time and -space local search at
each positioni such thatP E Ti.

The following very elementary fact will be used later.
Lemma 1 LetT andP be a text of lengthn and a pattern
of lengthm, respectively. Also, letδ, α ≥ 0. Then, for
each0 ≤ i < n and0 ≤ k < m, we have thatPk Eδ, α Ti

if and only ifP [k] =δ T [i] and eitherk = 0, or Pk−1Eδ, α

Ti−h, for someh such that1 ≤ h ≤ α + 1.

4 ALGORITHMS FOR
δ-APPROXIMATE MATCHING WITH

α-BOUNDED GAPS

In this section we survey the state of the art concern-
ing theδ-approximate matching problem withα-bounded
gaps. In particular we present three algorithms based on
three different strategies. Given a patternP of lengthm
and a textT of length n, the first algorithm, based on
dynamic-programming (Crochemore et al., 2000, 2002a),
solves variant (a) and (c) inO(mn)-space, and variant
(b) in O(n)-space. In both case it requiresO(nm)-time.
The second algorithm is based on bit-parallelism (Baeza-
Yates and Gonnet, 1992) and solves only variant (b) in
O(⌈mn/w⌉)-time requiringO(⌈mα/w⌉)-space, wherew
is the number of bits in the computer word. The third
algorithm, named(δ, α)-Sequential-Sampling (Cantone
et al., 2003), sequentially computes occurrences of pre-
fixes ofP solving variant (b) and (c) inO(mn)-time and
O(mα)-space, and variant (a) inO(m2α)-space.

4.1 An algorithm based on dynamic programming

The δ-approximate matching problem withα-bounded
gaps has been first addressed by Crochemoreet al. in
Crochemore et al. (2000), where an algorithm based on
the dynamic programming approach, namedδ-Bounded-
Gaps, has been proposed. In our review, we follow
the presentation given later in Crochemore et al. (2002a),
which considers also several new versions of the approxi-
mate matching problem with gaps.

Given as usual a textT of lengthn, a patternP of
length m, and two integersδ, α ≥ 0, the algorithmδ-
Bounded-Gaps runs inO(mn)-time and -space, at least

δ-Bounded-Gaps (P , T , δ, α)
1. n = length(T)
2. m = length(P)
8. for j = 1 to n − 1 do
9. D[0, j] = −1
10. if (P [0] =δ T [0]) then D[0, j] = j
12. else ifD[0, j − 1] ≥ j − α then
13. D[0, j] = D[0, j − 1]
7. for i = 1 to m − 2 do
8. D[i, 0] = −1
8. for j = 1 to n − 1 do
9. D[i, j] = −1
10. if (P [i] =δ T [j] andD[i − 1, j − 1] ≥ 0)
11. then D[i, j] = j
12. else ifD[i, j − 1] ≥ j − α then
13. D[i, j] = D[i, j − 1]
14. for j = m − 1 to n − 1 do
15. if P [m − 1] =δ T [j] andD[m − 2, j − 1] ≥ 0
16. then output(j)

Figure 4: The algorithmδ-Bounded-Gaps for the δ-
approximate matching problem withα-bounded gaps.

in the case in which one is interested in finding allδ-
occurrences withα-bounded gaps ofP in T (variant (a)).
Space requirements can be reduced toO(n), if only posi-
tionsi in T such thatP ETi need to be computed (variant
(b)). To solve also variant (c) withδ-Bounded-Gaps,
one needs to first solve variant (a) and then trace back and
count all approximate matchings with gaps at each posi-
tion of the textT .

The algorithmδ-Bounded-Gaps is presented as an
incremental procedure, based on the dynamic program-
ming approach. More specifically, it starts by first com-
puting all theδ-occurrences withα-bounded gaps inT of
the prefix ofP of length1, i.e. P0. Then, during thei-th
iteration, it looks for all theδ-occurrences withα-bounded
gaps inT of the prefixPi−1. At the end of the last itera-
tion, theδ-occurrences of the whole patternP have been
computed.

To give a more formal description of
the algorithm, let us put LastOccurj(Pi) =
max ({0 ≤ k ≤ j : Pi E Tk andj − k ≤ α} ∪ {−1}) .
Notice that ifLastOccurj(Pi) = −1, thenPi 6ETk for
k = j − α, j − α + 1, . . . , j. Otherwise,LastOccurj(Pi)
is the largest valuek ∈ {j − α, j − α + 1, . . . , j} such
thatPi E Tk.

The valuesLastOccurj(Pi) can be computed incre-
mentally, fori = 0, 1, . . . ,m− 1 andj = 0, 1, . . . , n− 1.
More specifically, the algorithmδ-Bounded-Gaps fills a
matrixD of dimensionm× n, whereD[i, j] corresponds
to LastOccurj(Pi), according to the following recursive
relation:

D[i, j] =

j if T [j] =δ P [i] and
- i = 0 , or
- i, j ≥ 1 andD[i − 1, j − 1] ≥ 0

D[i, j − 1] if j ≥ 1 , D[i, j − 1] ≥ j − α , and
- T [j] 6=δ P [i] , or
- T [j] =δ P [i] , i ≥ 1 ,
andD[i − 1, j − 1] < 0

−1 otherwise

where0 ≤ i < m and0 ≤ j < n.

Using a trace-back procedure, as described in
Crochemore et al. (2002a), the valuesLastOccurj(Pi) can
be used to retrieve the approximate matchings at a given
position in timeO(mα).

Fig. 4 presents the pseudo-code of the algorithmδ-
Bounded-Gaps. Its running time is easily seen to be
O(mn). Also,O(mn)-space is needed to store the matrix
D. However, if one is only interested in the positionsi of
T at whichP E Ti, space requirements reduce toO(n),
since the computation of each row depends only on the
values stored in the previous row.

4.2 An algorithm based on bit-parallelism

In this section we present a simple algorithm to search
gapped occurrence of a pattern in a text which makes use
of bit-parallelism(Baeza-Yates and Gonnet, 1992). This
technique consists in taking advantage of the intrinsic par-
allelism of the bit operations inside a computer word, al-
lowing to cut down the number of operations that an al-
gorithm performs by a factor of at mostw, wherew is
the number of bits in the computer word. However algo-
rithm based on bit-parallelism generally work well only
on patterns of moderate length and are not able to retrieve
information about matches.

The string-matching problem can be solved inO(n)-
time by simulating the behavior of an automata (Cormen
et al., 1990) which recognizes the patternP . The Shift-
And algorithm (Baeza-Yates and Gonnet, 1992) for exact
string matching, uses bit-parallelism to simulate the au-
tomata in its nondeterministic form. This simulation is
performed by representing the automata as a list ofL bits,
whereL is the number of states of the automata, and each
state corresponds to a bit in the list. In this context, bits
corresponding to active states are set to1, while bits cor-
responding to inactive states are set to0.The initial state is
not represented because it is always active.

Note that ifL ≤ w the entire list fits in a single com-
puter word, whereas ifL > w we need⌈L/w⌉ computer
words to represent the automata.

Figure 4.2(A) shows the non-deterministic automata
of the patternP = [2, 5, 3, 2] for theδ-matching problem.

For each character,c, of the alphabetΣ the algorithm
maintains a bit maskB[c] where thei-th bit is set to1 if
P [i] = c. To take into accountδ-matches, we set to1 the
i-th bit of the masks fromB[c − δ] to B[c + δ].

The current configuration of the automa is maintained
in a bit maskD, which is initialized toOL. The algorithm
scans the text from the first character to the last one and,
for each positionj, it performs the following basic shift-
and operation:

D = ((D << 1) | 0L−11) & B[T [j]]

If the final state is active we report a match at position
j. The Shift-And algorithm achievesO(⌈mn/w⌉)
worst-case time and requireO(⌈L/w⌉) extra-space.

If we want extend the Shift-And algorithm toα-
bounded gaps we need to modify the automata to allow
the presence of gaps between any two consecutive posi-
tions. Thus, between each character of the pattern, we

Figure 5: Three non-deterministic automata of the nu-
meric patternP = 2, 5, 3, 2 for approximate matching
with δ = 1. (A) non-deterministic automata withα = 0
(B) non-deterministic automata withα = 1 (C) non-
deterministic automata withα = 2

insertα transitions that can be followed by any charac-
ter of the alphabet. Thenα ε-transitions leave the state
where a character has been recognized and skip from one
to α subsequent edges, respectively. A self-loop in the
initial state allows the match to begin at any text position.
Whit this representation the number,L, of states needed
to simulate the automa is equal tom + (m − 1)α. Fig-
ures 4.2(B),(C) show the non-deterministic automata for
the patternP = [2, 5, 3, 2], with α = 1 andα = 2.

In this context we callgap-initial statesthose states
Si from where anε-transition leaves. For each gap-initial
stateSi we define its correspondinggap-final stateto be
Si+α, i.e., the last state reached by anε-transition leaving
Si. Then we create a bit maskI which has1 in the gap-
initial states, and another maskF that has1 in the gap-
final states. After performing the normal shift-and step,
we simulate all theε-moves with the operation

D = D | (((F − (D & I)) & ∼ F) << 1)

Figure 6 shows the complete algorithm. The prepro-
cessing takesO(mα|Σ|) time, while the scanning needs
O(⌈nm/w⌉) time.

4.3 The(δ, α)-Sequential-Sampling algorithm

The (δ, α)-Sequential-Sampling algorithm (Cantone
et al., 2003) is characterized by anO(mn)-time and an
O(mα)-space complexity. In addition, this algorithm
solves variant (c) (and therefore also variant (b)) of the ap-
proximate matching problem with gaps, as stated in Sec-
tion 3. If one is also interested in retrieving the actual ap-
proximate matching occurrences at positioni of a textT ,
a possibility would be to compute the submatrixD[k, j],
for max(0, (m−1) ·(α+1)) ≤ k ≤ i and0 ≤ j ≤ m−1,
where, as before,m is the length of the pattern, and then
trace back through all possible approximate matchings.
The submatrixD[k, j] can be computed in time and space
O(m2α) by the algorithmδ-Bounded-Gaps.

The algorithm computes the occurrences of all pre-
fixes of the pattern in continuously increasing prefixes of
the text. That is, for a textT of lengthn, patternP of

(α, δ)-Shift-And (T , P , δ, α)
1. n = length(T)
2. m = length(P)
3. L = m + (m − 1) × α

4. for c ∈ Σ do B[c] = 0L

5. I = 0L

6. i = 0
7. for j = 0 to m − 1 do
8. for c ∈ {P [j] − δ..P [j] + δ} do
9. B[c] = (B[c] | (1 << i))
10. i = i + 1
11. if j < m − 1 then
12. I = I|(1 << (i − 1))
13. for c ∈ Σ do
14. for k = i to i + α − 1 do
15. B[c] = (B[c] | (1 << k))
16. i = i + α
17. M = 1 << (L − 1)
18. D = 0L

19. for j = 0 to n − 1 do
20. if D & M 6= 0L then print(j)
21. D = ((D << 1) | 0L−11) & B[T [j]]
22. D = D | (((F − (D & I)) & ∼ F) << 1)

Figure 6: The algorithm based on Bit-Parallelism for the
δ-approximate matching problem withα-bounded gaps.

lengthm, and nonnegative integersδ, α, during its first it-
eration the algorithm(δ, α)-Sequential-Sampling com-
putes the (number of) occurrences of all prefixesPk of
P such thatPk E T0. Then, during thei-th iteration, it
computes (the number of) all occurrences of prefixesPk

of P such thatPk ETi, using information gathered during
previous iterations.

To be more precise, letSi denote the collection of all
pairs(j, k) such thatPk E Tj , for 0 ≤ i ≤ n, 0 ≤ j < i,
and0 ≤ k < m. Notice thatS0 = ∅. If we putS = Sn,
then the problem of finding the positionsi in T such that
P E Ti translates to the problem of finding all valuesi
such that(i,m − 1) ∈ S.

To begin with, notice that Lemma 1 justifies the fol-
lowing recursive definition of the setSi+1 in terms ofSi,
for i < n:

Si+1 = Si ∪ {(i, k) : P [k] =δ T [i] and
(k = 0 or (i − h, k − 1) ∈ Si,
for someh ∈ {1, . . . , α + 1})}.

Such relation, coupled with the initial conditionS0 =
∅, allows one to compute the setS in an iterative fashion.

From a practical point of view, the setS is represented
by its characteristicn × m matrix M, whereM[i, k] is
1 or 0, provided that the pair(i, k) belongs or does not
belong toS, for 0 ≤ i < n and0 ≤ k < m.

Moreover, since during thei-th iteration at mostα+1
rows ofM need to be scanned —more precisely the ones
having indexj ∈ {max(0, i − α − 1), i − 1},— it would
be enough to store onlyα + 1 rows ofM at each step of
the computation, plus another one as working area.

In addition, by maintaining an extra arrayC of length

(δ, α)-Sequential-Sampling (T , P , δ, α)
1. n = length(T)
2. m = length(P)
3. for i = 0 to α + 1 do
4. for j = 0 to m − 2 do
5. M[i, j] = 0
6. for i = 0 to m − 2 do C[i] = 0
7. for i = 0 to n − 1 do
8. j = i mod(α + 2)
9. for k = 0 to m − 2 do
10. C[k] = C[k] −M[j, k]
11. M[j, k] = 0;
12. if P [m − 1] =δ T [i] andC[m − 2] > 0 then
13. output(i)
14. for k = m − 2 downto 1 do
15. if P [k] =δ T [i] andC[k − 1] > 0 then
16. M[j, k] = C[k − 1]
17. C[k] = C[k] + C[k − 1]
18. if P [0] =δ T [i] then
19. M[j, 0] = 1
20. C[0] = C[0] + 1

Figure 7: The(δ, α)-Sequential-Sampling algorithm
for theδ-approximate matching problem withα-bounded
gaps.

m such that the following invariant holds:

C[k] =

i−1
∑

j=max(0,i−α−1)

M[j, k] , for 0 ≤ k < m ,

the test of the conditional instruction at line 6 can be per-
formed in constant time, rather than inO(α)-time.

Such observations allow to reduce the space require-
ment toO(mα) and the running time toO(mn).

Finally, rather than maintaining inM[j, k] the
Boolean value of the test(j, k) ∈ S, it is more convenient
to letM[j, k] count the number ofdistinctδ-occurrences
with α-gaps ofPk at positionj of T . With this change,
when thei-th iteration starts, the itemC[k] will contain
the total number ofdistinctδ-occurrences withα-gaps of
Pk at positionsmax(0, i−α− 1) throughi− 1, provided
that the above invariant holds. Such values can then be
used to maintain the invariant itself.

Plainly, at the end of the computation one can retrieve
in constant time the number of approximate matchings at
each position of the text.

The resulting algorithm is presented in detail in Fig. 7.

5 AN IMPROVED VERSION OF
(δ,α)-SEQUENTIAL-SAMPLING

Here we present a new efficient variant of the(δ, α)-
Sequential-Sampling algorithm for δ-approximate
matching problem withα-bounded gaps, name(δ, α)-
Tuned-Sequential-Sampling algorithm (TSS for short).
As its progenitor the TSS algorithm solves variant (c)
of the problem inO(mn)-time andO(mα)-space but,
practically, it requires onlyO(n)-time on the average for
alphabet with a uniform distribution. In addition, the TSS
algorithm solves variant (b) of the problem requiring only
O(m)-space.

5.1 The average number of matched prefixes

In the(δ, α)-Sequential-Sampling algorithm (Figure 7),
for each positioni in the text, thefor -loop of line 14 it-
erates onk from m − 2 down to 1. However this op-
eration has effect only for those values ofk such that
C[k − 1] > 0, i.e. Pk−1 occurs at a positionh of the
text, with i − α − 1 ≤ h ≤ i − 1.

In this section we compute the expected number of
matched prefixesPk of the pattern for each position of the
text, and show that such number can be considered a con-
stant if the alphabet has a uniform distribution of charac-
ters. Thus the time complexity of the(δ, α)-Sequential-
Sampling algorithm can be reduced toO(n) on aver-
age. Then in the following section we present a variant
of the (δ, α)-Sequential-Sampling algorithm that, bas-
ing on such observation, achieves better performances.

In our analysis, we suppose a uniform distribution of
characters of the alphabetΣ of dimensionσ. In addition
we suppose the independence of characters of text and pat-
tern. In this context the probability,∆, that two characters
of Σ effect aδ-match is given, with a good approximation,
by

∆ =
2δ + 1

σ
Given a prefix of the pattern of lengthk, with k ≤ m, we
now attempt to calculate the probability thatPk−1 E Ti.
Observe that the probability thatP [k − 1] =δ T [i] is
equal to∆. Suppose now thatP [k − j..k − 1] E Ti,
then the probability thatP [k − j − 1..k − 1] E Ti is
the probability that characterP [k − j − 1] has a gapped
match afterP [k − j]. This is given by

∆ + (match at1-th character)
(1 − ∆)∆ + (match at2-th character)
(1 − ∆)2∆ + (match at3-th character)
.. +
(1 − ∆)α∆ = (match at (α + 1)-th char)

∆

α
∑

k=0

(1 − ∆)k =

∆
(1 − ∆)α+1 − 1

(1 − ∆) − 1
= 1 − (1 − ∆)α+1

Thus the probability thatPk E Ti is given by

Pr{Pk E Ti} = ∆
k−1
∏

j=1

(

1 − (1 − ∆)α+1
)

= ∆
(

1 − (1 − ∆)α+1
)k−1

And the expected number,ϕ, of prefixesPk such
that Pk E Ti, for each positioni of the text is given by

ϕ = ∆

m−1
∑

k=0

(

1 − (1 − ∆)α+1
)k

= ∆
1 −

(

1 − (1 − ∆)α+1
)m

(1 − ∆)α+1

Form → ∞ we have that

ϕ →
∆

(1 − ∆)α+1

In Figure 5.1 is shown a graphical representation of the
functionϕ with different values ofα andδ. It is possible

Figure 8: The expected number,ϕ, of matched prefixes of
the pattern for each position of the text and for different
values ofα andδ.

to observe that for values ofσ greater than10, the corre-
spondent values ofϕ are less than1.

5.2 A new efficient algorithm

The extra work done by the(δ, α)-Sequential-Sampling
algorithm in thefor -loop of line 14, can be avoided by
maintaining an ordered listL, such that during each iter-
ation of thefor -loop of line 7,L contains exactly those
values ofk, with 0 ≤ k < m − 1, such thatC[k] > 0.
Then, when the algorithm try to match the prefixPk+1 at
positioni of the textT , wherek is in the listL, it needs
only to know ifP [k + 1] =δ T [i] (in fact, sinceC[k] > 0,
we know that the prefixPk match in some positioni − h
of the text, where1 ≤ h ≤ α + 1).

The TSS algorithm acts as follows. For each position
i of the textT , it scans the listL, in decreasing order, and
for each value ofk in L it performs the following opera-
tions.
After updating the entriesC[k] andM[j][k], as the(δ, α)-
Sequential-Sampling algorithm does in lines 10 and 11,
TSS checks ifC[k] = 0, and in such a case, the current
value ofk will be removed from the listL, and the algo-
rithm will proceeds to the next value ofk contained inL.
If, on the contrary, we haveC[k] > 0, then the algorithm
try to match the prefixPk+1 at positioni in the textT , by
looking only if P [k + 1] =δ T [i]. If so thenPk+1 will
match and, ifk + 1 = m − 1, the algorithm will report a
match at positioni. If k +1 < m−1, then, after updating
the entriesM[j][k + 1] andC[k + 1], with M[j][k + 1]
now containing the correct number of matches ofPk+1 at
positioni in T , the valuek + 1 will be inserted at the ap-
propriate position in the listL (if it is not already there),
just beforek. Then the algorithm proceeds with the next
value ofk contained inL, and iterates until the listL has
been completely scanned. As last operation, the algorithm
checks if the charactersP [0] andT [i] effect aδ-match,
and in such a case it inserts the value0 in the listL.

Fig. 9 shows the complete code of the TSS algorithm,
where the listL is implemented, in a circular fashion, by
using an array,next, of sizem. The entrynext[m − 1]
will be used as an extra sentinel which will always point to
the first (highest) value ofk contained in the listL. In ad-
dition, in order to manage efficiently insertions and dele-
tions overL, we maintain also a pointer to the predecessor
of the current value ofk in L, by using an extra variable,p,
which is moved acrossL during the scanning phase. The

(δ, α)-Tuned-Sequential-Sampling (T , P , δ, α)
1. n = length(T)
2. m = length(P)
3. for i = 0 to α + 1 do
4. for j = 0 to m − 2 do
5. M[i, j] = 0
6. for i = 0 to m − 2 do C[i] = 0
7. next[0] = next[m − 1] = m − 1
8. for i = 0 to n − 1 do
9. j = i mod(α + 2)
10. p = m − 1
11. k = next[m − 1]
12. while k < m − 1 to
13. C[k] = C[k] −M[j, k]
14. M[j, k] = 0
15. if (C[k] == 0) then
16. next[p] = next[k]
17. else
18. if (P [k + 1] =δ T [i]) then
19. if (k == m − 2) then
20. output(i)
21. else
22. M[j][k + 1] = C[k]
23. C[k + 1] = C[k + 1] + C[k]
24. if p > k + 1 then
25. next[p] = k + 1
26. next[k + 1] = k
27. p = k
28. k = next[k]
29. if (P [0] =δ T [i]) then
30. M[j][0] = 1
31. C[0] = C[0] + 1
32. if p > 0 then
33. next[p] = 0

Figure 9: The(δ, α)-Tuned-Sequential-Sampling algo-
rithm for the δ-approximate matching problem withα-
bounded gaps.

TSS algorithm achievesO(mn)-time andO(mα)-space.
However, since the number of matched prefixes of the pat-
tern can be considered fixed for each position of the text
(see Section 5.1), we aspect a linear average case com-
plexity in practical cases.

Note that, if we are interested only in variant (b) of the
approximate matching problem with bounded gaps, we
can still improve the efficiency of the TSS algorithm, re-
ducing also the space required toO(m), as follows. Sup-
pose thatα + 2 ≤ w wherew is the length of a computer
word. This assumption is realistic since the length of the
gap is usually not greater than16 in practical cases. Then
we can represent the columns of the tableM, each with
a computer wordw stored in the tableC, avoiding the use
of the tableM itself. That is, fork = 0, 1, . . . ,m− 2, the
(k + 1)-st column ofM will correspond to the computer
word stored inC[k]. However, in this representation we
can not allow the entriesM[k][j] of the tableM, where
j = i mod(α+2), to contain the actual number of distinct
matches ofPk at positioni, but only the boolean value in-
dicating that the prefixPk of P as an occurrence ending at
positioni of the textT . Moreover, the test if the(k+1)-st
column ofM is not null, i.e, the prefixPk occurs at some
positions betweeni−α− 1 andi− 1 in T , reduces to the
test ifC[k] 6= 0.

6 EXPERIMENTAL RESULTS

In this section we report experimental data relative to
an extensive comparison of the running times of our
algorithm (δ, α)-Tuned-Sequential-Sampling (TSS),
against the algorithmsδ-Bounded-Gaps (DP), (δ, α)-
Shift-And (SA) and(δ, α)-Sequential-Sampling (SS).

All algorithms have been implemented in theC pro-
gramming language and were used to search for the same
patterns in large fixed text sequences on a PC with a Pen-
tium IV processor at 2.66GHz. In particular, they have
been tested on twoRandσ problems, forσ = 60, 120 and
on a real music text buffer.

In particular, eachRandσ problem consisted in
searching a set of250 random patterns of length 10, 20,
40, 60, 80, 100, 120, and 140 in a 5Mb random text
sequence over a common alphabet of sizeσ. For each
Randσ problem, the approximation boundδ and the gap
boundα have been set to2 and to4, 8, respectively.

Concerning the tests on the real music text buffer,
these have been performed on a 4.8Mb file obtained by
combining a set of classical pieces, in MIDI format, by C.
Debussy. The resulting text buffer has been translated in
the pitch interval encoding with an alphabet of101 sym-
bols. For eachm = 10, 20, 40, 60, 80, 100, 120, 140, we
have randomly selected in the file 250 substrings of length
m which subsequently have been searched for in the same
file. All running times have been expressed in tenths of
second.

Experimental results show that the TSS algorithm is
faster than the existing ones and its superiority is more
noticeable as the size of the pattern increases. Moreover it
turns out from experimental results that the execution time
does not depend on the length of the pattern.

7 CONCLUSIONS

We have presented a new efficientO(mn)-time vari-
ant of the (δ, α)-Sequential-Sampling algorithm,
named (δ, α)-Tuned-Sequential-Sampling, for the
δ-approximate string matching problem withα-bounded
gaps, with a linear average case time complexity. The
algorithm has been compared against various existing so-
lutions for the problem. Our experimentation has shown
that our algorithm is faster, especially in the case of large
alphabet. The performances of our algorithm become
more remarkable as the size of the pattern increases.
In addition, our algorithm uses onlyO(mα)-space
for computing the number of all distinct approximate
matchings of the pattern at each position of the text, while
uses onlyO(m)-space to find all approximate matchings
of the pattern in the text.

References
R. A. Baeza-Yates and G. H. Gonnet. A new approach to text

searching.Commun. ACM, 35(10):74–82, 1992.

E. Cambouropoulos, M. Crochemore, C. S. Iliopoulos,
L. Mouchard, and Y. J. Pinzon. Algorithms for computing
approximate repetitions in musical sequences. In R. Raman
and J. Simpson, editors,Proceedings of the 10th Australasian
Workshop On Combinatorial Algorithms, pages 129–144,
Perth, WA, Australia, 1999.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100 120 140

s=60, d=1, a=4

CSS
TSS

TSSbp
SA
DP

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100 120 140

s=60, d=2, a=4

CSS
TSS

TSSbp
SA
DP

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100 120 140

s=60, d=4, a=4

CSS
TSS

TSSbp
SA
DP

Figure 10: Experimental results withσ = 60 andα = 4

D. Cantone, S. Cristofaro, and S. Faro. An efficient algorithm
for δ-approximate matching withα-bounded gaps in musical
sequences. In J.D.P. Rolim (Eds.) M. Margraf, M. Mastrolli,
editor,LNCS 2647, pages 47–58, 2003. Proc. of WEA 2005.

D. Cantone, S. Cristofaro, and S. Faro. Efficient algorithms
for theδ-approximate string matching problem in musical se-
quences. pages 69–82, Czech Technical University, Prague,
Czech Republic, 2004. Proc. of the Prague Stringology Con-
ference ’04.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to
Algorithms. MIT Press, 1990.

T. Crawford, C. Iliopoulos, and R. Raman. String matching tech-
niques for musical similarity and melodic recognition.Com-
puting in Musicology, 11:71–100, 1998.

M. Crochemore, C. S. Iliopoulos, Y. J. Pinzon, and J. F. Reid. A
fast and practical bit-vector algorithm for the longest common
subsequence problem. In L. Brankovic and J. Ryan, editors,
Proceedings of the 11th Australasian Workshop On Combi-
natorial Algorithms, pages 75–86, Hunter Valley, Australia,
2000.

M. Crochemore, C. S. Iliopoulos, T. Lecroq, and Y. J. Pin-
zon. Approximate string matching in musical sequences. In
M. Baĺık and M.Šimánek, editors,Proceedings of the Prague
Stringology Conference’01, pages 26–36, Prague, Czech Re-
public, 2001. Annual Report DC–2001–06.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100 120 140

s=90, d=1, a=4

CSS
TSS

TSSbp
SA
DP

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100 120 140

s=90, d=2, a=4

CSS
TSS

TSSbp
SA
DP

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100 120 140

s=90, d=4, a=4

CSS
TSS

TSSbp
SA
DP

Figure 11: Experimental results withσ = 90 andα = 4

M. Crochemore, C. Iliopoulos, C. Makris, W. Rytter, A. Tsaka-
lidis, and K. Tsichlas. Approximate string matching with
gaps, 2002a.

M. Crochemore, C. S. Iliopoulos, T. Lecroq, W. Plandowski, and
W. Rytter. Three heuristics forδ-matching:δ-BM algorithms.
In A. Apostolico and M. Takeda, editors,Proceedings of the
13th Annual Symposium on Combinatorial Pattern Matching,
number 2373 in Lecture Notes in Computer Science, pages
178–189, Fukuoka, Japan, 2002b. Springer-Verlag, Berlin.

J. Karhum̈aki, W. Plandowski, and W. Rytter. Pattern-matching
problems for two-dimensional images described by finite au-
tomata.Nordic J. Comput., 7(1):1–13, 2000.

S. Karlin, M. Morris, G. Ghandour, and M. Y. Leung. Efficient
algorithms for molecular sequence analysis.Proceedings of
the National Academy of Science, 85:841–845, 1988.

