
Alignment of Sequences Allowing
for Non-overlapping Unbalanced

Translocations of Adjacent Factors

Simone Faro1(B) and Arianna Pavone2

1 Dipartimento di Matematica e Informatica, Università di Catania,
Viale Andrea Doria 6, 95125 Catania, Italy

faro@dmi.unict.it
2 Dipartimento di Scienze Cognitive, Università di Messina,

Via Concezione 6, 98122 Messina, Italy
apavone@unime.it

Abstract. Unbalanced translocations take place when two unequal chro-
mosome sub-sequences swap, resulting in an altered genetic sequence.
Such large-scale gene modification are among the most frequent chro-
mosomal alterations, accounted for 30% of all losses of heterozygosity.
However, despite of their central role in genomic sequence analysis, little
attention has been devoted to the problem of aligning sequences allowing
for this kind of modification.

In this paper we investigate the sequence alignment problem when the
edit operations are non-overlapping unbalanced translocations of adja-
cent factors.

Specifically, we present an alignment algorithm for the problem work-
ing in O(m3)-time and O(m3)-space, where m is the length of the
involved sequences. To the best of our knowledge this is the first solution
in literature for the alignment problem allowing for unbalanced translo-
cations of factors.

Keywords: Sequence alignment · Unbalanced translocations ·
dna sequence analysis · Text processing

1 Introduction

Retrieving information and teasing out the meaning of biological sequences are
central problems in modern biology. Generally, basic biological information is
stored in strings of nucleic acids (dna, rna) or amino acids (proteins).

In recent years, much work has been devoted to the development of efficient
methods for aligning strings and, despite sequence alignment seems to be a well-
understood problem (especially in the edit-distance model), the same cannot be
said for the approximate string matching problem on biological sequences.

String alignment and approximate string matching are two fundamental
problems in text processing. Given two input sequences x, of length m, and y,
c© Springer Nature Switzerland AG 2019
I. Rojas et al. (Eds.): IWBBIO 2019, LNBI 11465, pp. 120–131, 2019.
https://doi.org/10.1007/978-3-030-17938-0_12

faro@dmi.unict.it

Matching with Non-overlapping Adjacent Unbalanced Translocations 121

of length n, the string alignment problem consists in finding a set of edit oper-
ations able to transform x in y, while the approximate string matching problem
consists in finding all approximate matches of x in y. The closeness of a match
is measured in terms of the sum of the costs of the elementary edit operations
necessary to convert the string into an exact match.

Most biological string matching methods are based on the Levenshtein dis-
tance [11], commonly referred to just as edit distance, or on the Damerau dis-
tance [8], which assume that changes between strings occur locally, i.e., only
a small portion of the string is involved in the mutation event. However, evi-
dence shows that in some cases large scale changes are possible [6,7,16] and
that such mutations are crucial in dna since they often cause genetic diseases
[10,14]. For example, large pieces of dna can be moved from one location to
another (translocations) [6,13,17,18], or replaced by their reversed complements
(inversions) [1–4].

Translocations can be balanced (when equal length pieces are swapped) or
unbalanced (when pieces with different lengths are moved). Interestingly, unbal-
anced translocations are a relatively common type of mutation and a major
contributor to neurodevelopmental disorders [18]. In addition, cytogenetic stud-
ies have also indicated that unbalanced translocations can be found in human
genome with a de novo frequency of 1 in 2000 [17] and that it is a frequent
chromosome alteration in a variety of human cancers [13]. Hence the need for
practical and efficient methods for detecting and locating such kind of large scale
mutations in biological sequences.

In the last three decades much work has been made for the alignment and
matching problem allowing for chromosomal alteration, especially for non over-
lapping inversions. Concerning the alignment problem with inversions, a first
solution based on dynamic programming, was proposed by Schöniger and Water-
man [15], which runs in O(n2m2)-time and O(n2m2)-space on input sequences
of length n and m. Several other papers have been devoted to the alignment
problem with inversions. The best solution is due to Vellozo et al. [16], who
proposed a O(nm2)-time and O(nm)-space algorithm, within the more general
framework of an edit graph.

Regarding the alignment problem with translocations, Cho et al. [6] presented
a first solution for the case of inversions and translocations of equal length fac-
tors (i.e., balanced translocations), working in O(m3)-time and O(m2)-space.
However their solution generalizes the problem to the case where edit operations
can occur on both strings and assume that the input sequences have the same
length, namely |x| = |y| = m.

In this paper we investigate the alignment problem under a string distance
whose edit operations are non-overlapping unbalanced translocations of adja-
cent factors. To the best of our knowledge, this slightly more general problem
has never been addressed in the context of alignment on biological sequences.
A related result has been very recently introduced by Cantone et al. [5] who
presented a O(nm3)-time and O(m2)-space algorithm for the approximate
string matching problem with unbalanced translocations based on the dynamic-

faro@dmi.unict.it

122 S. Faro and A. Pavone

programming approach, where n is the length of the text and m is the length
of the pattern. They also improved their solution by making use of the Directed
Acyclic Word Graph of the pattern achieving a O(n log2 m) average time com-
plexity still maintaining the same worst case time complexity.

In this paper we present an alignment algorithm for the same problem work-
ing in O(m3) worst case time and O(m3)-space. Given two input equal length
sequences x and y, our algorithm is able to establish if x can be transformed in
y by way of unbalanced translocations of adjacent factors.

The rest of the paper is organized as follows. In Sect. 2 we introduce some
preliminary notions and definitions. Subsequently, in Sect. 3 we present our align-
ment algorithm running in O(m3)-time, discussing its worst case time complex-
ity. Finally draw our conclusions in Sect. 4.

2 Basic Notions and Definitions

A string x of length m ≥ 0, over an alphabet Σ, is represented as a finite array
x[1 ..m] of elements of Σ. We write |x| = m to indicate its length. In particular,
when m = 0 we have the empty string ε. We denote by x[i] the i-th character
of x, for 1 ≤ i ≤ m. Likewise, the substring of x factor, contained between the
i-th and the j-th characters of x is indicated with x[i .. j], for 1 ≤ i ≤ j ≤ m.
We assume that x[i .. j] = ε when x > y.

A string w ∈ Σ∗ is a suffix of x (in symbols, w $ x) if w = x[i ..m], for
some 1 ≤ i ≤ m. Similarly, we say that w is a prefix of x (in symbols, w % x) if
w = x[1 .. i], for some 1 ≤ i ≤ m. Additionally, we use the symbol xi to denote
the prefix of x of length i (i.e., xi = x[1 .. i]), for 1 ≤ i ≤ m, and make the
convention that x0 denotes the empty string ε. In addition, we write x.w for the
concatenation of the strings x and w.

A string w is a border of x if both w % x and w $ x hold. The set of the
borders of x is denoted by borders(p). For instance, given the string x = atacgata,
we have that at % p, gata % p, while ata is a border of x. Moreover we have
borders(p) = {a, ata}.

The border set of a string x of length m can be efficiently computed in
O(m)-time by using the border-table of x, introduced for the first time in the
well known Morris-Pratt algorithm [9,12]. Formally the border table of x is a
function π : {1, . . . ,m} → {0, 1, . . . ,m − 1} such that π(i) is the length of the
longest proper prefix of x[1..i] that is also a suffix of x[1..i].

A distance d : Σ∗ × Σ∗ → R is a function which associates to any pair of
strings x and y the minimal cost of any finite sequence of edit operations which
transforms x into y, if such a sequence exists, ∞ otherwise.

In this paper we consider the unbalanced translocation distance, utd(x, y),
whose unique edit operation is the translocation of two adjacent factors of the
string, with possibly different lengths. Specifically, in an unbalanced translocation
a factor of the form zw is transformed into wz, provided that both |z|, |w| > 0
(it is not necessary that |z| = |w|). We assign a unit cost to each translocation.

faro@dmi.unict.it

Matching with Non-overlapping Adjacent Unbalanced Translocations 123

Example 1. Let x = gtgaccgtccag and y = ggatcccagcgt be given two strings of
length 12. Then utd(x, y) = 2 since x can be transformed into y by translocating
the substrings x[3..4] = ga and x[2..2] = t, and translocating the substrings
x[6..8] = cgt and x[9..12] = ccag.

When utd(x, y) < ∞, we say that x and y have utd-match. If x has utd-match

with a suffix of y, we write x
utd

$ y.

3 A New utd-Alignment Algorithm

In this section we present a new solution for the string alignment problem
allowing for unbalanced translocations of adjacent factors. In the next sections
we start by describing the algorithm, named Unbalanced-Translocations-
Align (shown in Fig. 2), used for checking whenever an alignment exists between
two equal length strings x and y.

The corresponding approximate string matching algorithm allowing for
unbalanced translocations of adjacent factors can be trivially obtained by iter-
ating the given procedure for all possible subsequences of the text of length |x|.

Our alignment algorithm is composed by a preprocessing and searching
phase, which we describe in Sect. 3.1 and in Sect. 3.2, respectively. Then, in
Sect. 3.3, we prove the correctness of the algorithm and discuss its worst case
time complexity.

3.1 The Preprocessing Phase

During the preprocessing phase of procedure Unbalanced-Translocations-
Align three functions are computed, in the form of tables, which will be then
used during the alignment process.

We first define the next position function µx : Σ × {1, . . . ,m} → {2, . . . ,m},
associated to a given pattern x of length m, as the function which returns the
next position (to a given input position i) where a given character c ∈ Σ occurs.
Specifically µx(c, i) is defined as the position j > i in the pattern such that
x[j] = c. If such a position does not exist then we set µ(c.i) = m + 1. More
formally

µx(c, i) := min
(
{j | 1 ≤ i < j ≤ m and x[j] = c} ∪ {m+ 1}

)

The next position function µx can be precomputed and maintained in a table of
size m× σ in O(mσ +m2) time by using procedure Compute-Next-Position
depicted in Fig. 1 (on the left).

Example 2. Let x = gtgtaccgtgt be a string of lengthm = 11. We have µx(g, 1) =
3, µx(g, 4) = µx(g, 5) = 8, µx(g, 8) = 10, while µx(g, 10) = 12.

faro@dmi.unict.it

124 S. Faro and A. Pavone

Fig. 1. Procedure Compute-Next-Position (on the left) for computing the next posi-
tion function µx which returns the next position (to a given input position i) where
a given character c ∈ Σ occurs in x; and procedure Compute-Border-Set (on the
right) for computing the border set function ψx as the set of the lengths of all borders
of a given string x.

We also define the border set function ψx of a given string x as the set of the
lengths of all borders of x. Specifically we define ψx(i, j), for each 1 ≤ i < j ≤ m,
as the set of the lengths of all borders of the string x[i..j], so that k ∈ ψx(i, j) if
and only if the string x[i..j] has a border of length k. Formally we have

ψx(i, j) := {k | 0 < k < j − i and x[i..i+ k − 1] = x[j − k + 1..j]}

Example 3. Let x = gtgtaccgtgt be a string of length m = 11. We have

ψx(1, 11) = {2, 4, 11}, since the set of borders of gtgtaccgtgt is {gt, gtgt, gtgtaccgtgt};
ψx(1, 4) = {2, 4}, since the set of borders of gtgt is{gt, gtgt};
ψx(4, 9) = {1, 6}, since the set of borders of taccgt is{t, taccgt};
ψx(5, 7) = {3} since the set of borders of acc is{acc}.

For each i, j with 1 ≤ i ≤ j ≤ m, we can represent the set ψx(i, j) by using a
vector of (j − i+1) boolean values such that its k-th entry is set iff k ∈ ψx(i, j).
More formally the function ψx can be maintained using a tridimensional bit-table
Ψx, which we call border set table of x, defined as

Ψx[i, j, k] :=
{
1 if x[i..i+ k − 1] = x[j − k + 1..j]
0 otherwise

for 1 ≤ i < j ≤ m and k < j − i.
The border set table Ψx can be computed in O(m3)-time and space by using

procedure Compute-Border-Set-Function depicted in Fig. 1 (on the right),
where Compute-Border-Table is the O(m) function used in the Knuth-
Morris-Pratt algorithm [9].

Observe that using Ψx we can answer in costant-time to queries of the the
type “is k the length of a border of the substring x[i..j]?”, which translates to
evaluate if Ψ [i, j, k] is set.

faro@dmi.unict.it

Matching with Non-overlapping Adjacent Unbalanced Translocations 125

In addition we define the shortest border function of a string x, as the func-
tion δx : {1, . . . ,m} × {1, . . . ,m} → {1, . . . ,m} which associates any nonempty
substring of x to the length of its shortest border. Specifically we set δx(i, j) to
be the length of the shortest border of the string x[i . . . j], for 1 ≤ i < j ≤ m.
More formally we have

δx(i, j) := min{k | 0 ≤ k < j − i and x[i..i+ k − 1] = x[j − k + 1..j]} = min(ψ(i, j))

It is trivial to observe that, if we already computed the border set function
ψx, for the pattern x, the shortest border function δx of x can be computed in
O(m3)-time using O(m2) space.

Example 4. Let x = gtgtaccgtgt be a string of length m = 11. According to
Example 3, we have

δx(1, 11) = 2, since gt is the shortest nonempty border of gtgtaccgtgt;
δx(1, 4) = 2, since gt is the shortest nonempty border of gtgt;
δx(4, 9) = 1, since t is the shortest nonempty border of taccgt;
δx(5, 7) = 3 since acc is the shortest nonempty border of acc.

In what follows we will use the symbols µ, ψ and δ, in place of µx, ψx and
δx, respectively, when the reference to x is clear from the context.

3.2 The Searching Phase

The proposed alignment procedure finds a possible utd-match between
two equal length strings. The pseudocode of our algorithm, Unbalanced-
Translocations-Align(y,x,m), is presented in Fig. 2 and is tuned to process
two strings x and y, of length m, where translocations can take place only in x.

In order to probe the details of the alignment procedure, let x and y be two
strings of length m over the same alphabet Σ. The procedure sequentially reads
all characters of the string y, proceeding from left to right and. While scanning
it tries to evaluate all possible unbalanced translocations in x which may be
involved in the alignment between the two strings.

We define a translocation attempt at position i of y, for 1 ≤ i ≤ m, as a
quadruple of indexes, (s1, k1, s2, k2), with all elements in {0, 1, 2, . . . ,m}∪{null}
and where, referring to the string x, s1 and k1 pinpoints the leftmost position
and the length of the first factor (the factor moved on the left), while s2 and k2
pinpoints the leftmost position and the length of the second factor (the factor
moved on the right). In this context we refer to s1 and s2 as the key positions
of the translocation attempt. In the special case where no translocation takes
place in the attempt we assume by convention that s1 = i and s2 = k1 = k2 =
null1. During the execution of the algorithm for each translocation attempt,
(s1, k1, s2, k2), at position i, the invariant given by the following lemma2 holds.
1 We use the value null to indicate the length of an undefined string in order to
discriminate it from the length of an empty string whose value is 0 by definition.

2 In this context we assume that s+ null = s, for any s.

faro@dmi.unict.it

126 S. Faro and A. Pavone

Fig. 2. The pseudocode of the Unbalanced-Translocations-Align(y,x,m) for the
sequence alignment problem allowing for unbalanced translocations of adjacent factors.

Lemma 1. Let y and x be two strings of length m over the same alphabet Σ. Let
Γ (i) be the set of all translocation attempts computed by procedure Unbalanced-
Translocations-Align during the i-th iteration. If (s1, k1, s2, k2) ∈ Γ (i) then
it holds that:

(a) i = s1 + k1 + k2;
(b) xi

utd= yi;
(c) if s2 += null then x[s1 + 1..s1 + k1] = y[s2 + 1..s2 + k1];
(d) if s2 += null then y[s2 + 1..s2 + k2] = y[s1 + 1..s1 + k2];

,-

For each 1 ≤ i ≤ m, we define Γ (i) as the set of all translocation attempts
tried for the prefix y[1..i], and set Γ (0) = {(0, null, null, null)}.

faro@dmi.unict.it

Matching with Non-overlapping Adjacent Unbalanced Translocations 127

However we can prove that it is not necessary to process all possible translo-
cation attempts. Some of them, indeed, leads to detect the same utd-matches so
that they can be skipped.

Lemma 2. Let y and x be two strings of length m over the same alphabet Σ.
Let s % y and u % x such that |s| = |x| and s

utd= u. Moreover assume that

(i) s.w.z % y and u.z.w % x
(ii) s.w′.z % y and u.z.w′ % x

with |z| > 0 and |w′| > |w| > 0. If we set i = |s.w.z| and j = |s.w′.z| then we
have x[i+ 1..j] utd= y[i+ 1..j]. ,-

The procedure iterates on the values of i, for 1 ≤ i ≤ m, while scanning
the characters of y, and during the i-th iteration it computes the set Γ (i) from
Γ (i−1). For each translocation attempt (s1, k1, s2, k2) ∈ Γ (i−1) we distinguish
the following three cases (depicted in Fig. 3):

– Case 1 (s2 = k1 = k2 = null)
This is the case where no unbalanced translocation is taking place (line 5).
Thus we simply know that xi−1

utd= yi−1. If x[i] = y[i] the match is extended
of one character by adding the attempt (s1 +1, null, null, null) to Γ i (line 7).
Alternatively, when possible, new translocation attempts are started (lines
9–12). Specifically for each occurrence of the character y[i] in x, at a position
r next to s1, a new right factor ur is attempted starting at position r (line
10) by extending Γ (i) with the attempt (s1, 0, r − 1, 1).

– Case 2 (k1 = 0 and k2 > 0)
This is the case where an unbalanced translocation is taking place and the
right factor ur is currently going to be recognized (line 14). Specifically we
know that x[s2+1..s2+k2] = y[i−k2..i−1] and that x[1..s1]

utd= y[1..i−k2−1].
If x[s2+k2+1] = y[i] the right factor ur can be extended of one character to
the right, thus Γ i is extended by adding the attempt (s1, k1, s2, k2 + 1) (line
16). Otherwise, if x[s2+k2+1] += y[i], the right factor ur cannot be extended
further, thus we start recognizing the left factor u!. Specifically, in this last
case, we update k1 to 0 (line 17) and move to the following Case 3.

– Case 3 (k1 ≥ 0)
This is the case where an unbalanced translocation is taking place, the right
factor ur has been already recognized and we are attempting to recognize the
left factor u!. Specifically we know that x[s1 + 1..s1 + k1] = y[i − k1..i − 1],
x[s2+1..s2+k2] = y[i−k1−k2..i−k1−1] and that x[1..s1]

utd= y[1..i−k1−k2−1].
We distinguish two sub-cases:
• Case 3.a (x[s1 + k1 + 1] = y[i])

In this case the left factor u! can be extended of one character to the right
(line 24). Thus if the left factor has been completely recognized, i.e. if s1+
k1 = s2, Γ i is extended by adding the attempt (s1+k1+k2, null, null, null)
(lines 27–28) which indicates that xi

utd= yi. Otherwise Γ (i) is extended by
adding the attempt (s1, k1 + 1, s2, k2) (line 30).

faro@dmi.unict.it

128 S. Faro and A. Pavone

• Case 3.b (x[s1 + k1 + 1] += y[i])
In this case the right factor u! cannot be extended. Before quitting the
translocation attempt we try to find some new factors rearrangements on
the same key positions, s1 and s2, but with different lengths, k1 and k2.
Specifically we try to transfer a suffix w of ur to the prefix position of u!,
reducing the length k2 and extending the length k1 accordingly. This can
be done only if we find a suffix w of ur which is also a prefix of x[s1+1..s2]
and, in addition, we can move u! to the right of |w| position along the
left factor. More formally, if we assume that |w| = b we must have:
1. |w| < |ur|, or rather b < k2 (indicating that w is a proper suffix of

ur);
2. b ∈ φ(s1+1, s2+k2) (indicating that w is a border of x[s1+1..s2+k2]);
3. (k1 − s1 + 1) ∈ φ(s1 + 1, k1 + b) (indicating that u! is a border of

x[s1 + 1..s1 + k1 + |w|]);
4. s1 + k1 + |w| < s2 (indicating that the updated u! does not overflow

onto ur);
5. x[s1 + k1 + |w| + 1] = y[i] (indicating that the updated u! can be

extended by y[i]).

3.3 Worst-Case Time and Space Analysis

In this section we discuss the worst-case time and space analysis of procedure
Unbalanced-Translocations-Align presented in the previous section. In
particular, we will refer to the implementation reported in Fig. 2.

Let x and y be two nonempty strings of length m ≥ 1 over the same alpha-
bet Σ and assume to run procedure Unbalanced-Translocations-Align(y,
x, m). Regarding the space analysis, as stated in Sect. 3.1 we need O(mσ) to
maintain the next position function, O(m3) to maintain the border set function
and O(m2) to maintain the shortest border function. Thus the overall space
complexity of the algorithm is O(m3).

Regarding the time analysis, let Γ (i) be the set of all translocation attempts
computed at iteration i, for 0 ≤ i ≤ m.

First of all we observe that each Γ (i) contains at most one translocation
attempt with k2 = null (i.e. of the form (s1, null, null, null)). We put Γ (0) =
{(0, null, null, null)} (line 1), thus the statement holds for i = 0. Observe that,
if i > 0 a translocation attempt of the form (s1, null, null, null) can be added to
Γ (i) only in line 6 or in line 26. However by condition at line 25, if it is added
to Γ (i) in line 6, it cannot be added again in line 26.

We now prove that the total number of translocation attempts processed
during the execution of the algorithm is bounded by m2. More formally we have

m∑

i=0

|Γ (i)| ≤ m3. (1)

faro@dmi.unict.it

Matching with Non-overlapping Adjacent Unbalanced Translocations 129

Fig. 3. Three cases of procedure Unbalanced-Translocations-Align(y, x, m)
while processing the translocation attempt (s1, k1, s2, k2) ∈ Γ (i−1) in order to extend it
by charcater y[i]. Character y[i] and its counterpart in x are depicted by a bullet sym-

bol. Case (1): xi−1
utd
= yi−1 and x[i] = y[i], then the match is extended of one character;

Case (2): the right factor ur is currently going to be recognized and x[s2+k2+1] = y[i],
then the right factor ur can be extended of one character; Case (3.a): the left factor u!

can be extended of one character to the right; Case (3.b): the right factor u! cannot be
extended, then we try to transfer a suffix w of ur to the prefix position of u!, reducing
the length k2 and extending the length k1 accordingly (w is a suffix of ur and also a
prefix of x[s1+1..s2] and, in addition, we can move u! to the right of |w| position along
the left factor).

To prove that Eq. (1) holds observe that new translocation attempts are added
to Γ (i) only when we are in Case 1. When we are in Case 2 or in Case 3 a
translocation attempt is simply rearranged by extending the right factor (Case
2) or the left factor (Case 3). As observed above only one translocation attempt
in Γ (i) is in Case 1 and the while cycle of line 8 can add at most m − i new
translocation attempts to Γ (i+1). In the worst case each translocation attempt
added to Γ (i+1) will be closed only at iteration m, thus it will be extended along
the sets Γ (j), for j > i. Thus the overall contribute of each translocation attempt
added to Γ i+1 is m − i.

faro@dmi.unict.it

130 S. Faro and A. Pavone

Thus the total number of translocation attempts processed during the exe-
cution of the algorithm is bounded by

m∑

i=0

|Γ (i)| ≤ 1 +
∑m

i=1(m − i)2

= 1 +
m∑

i=1

m2 −
m∑

i=1

2im+
m∑

i=1

i2

= 1 +m3 +
m(m+ 1)(2m+ 1)

6
− m(m+ 1)

2
=

1
3
m3 − 1

2
m2 +

1
3

≤ m3

Finally we observe that each translocation attempt in Case 2 and Case 3.a
is processed in constant time, during the execution of procedure Unbalanced-
Translocations-Align. A translocation attempt in Case 1 my be processed
in O(m− i) worst case time. However the overall contribution of the while cycle
at line 9 is at most O(m2) since, as observer above, there is a single translocation
attempt in Case 1 for each Γ (i).

For a translocation attempt in Case 3, observe that at each execution of line
19 the value of b is increased of at most 1. Then in line 21 we decrease k2 by b.
Since the value of k2 is increased only in line 16, this implies that overall number
of times the while cycle of line 22 is executed is bounded by k2, which is at most
m. Thus the overall contribution given by the while cycle of line 19 is O(m3).

We can conclude that the overall time complexity of procedure
Unbalanced-Translocations-Align is O(m3).

4 Conclusions and Future Works

We presented a first solution for the alignment problem allowing for unbal-
anced translocations of adjacent factors working in O(m3) worst case time using
O(m3)-space. As suggested in [5], an alternative solution working inO(m3) worst
case time can be obtained for the same problem by using a standard dynamic
programming approach. However our algorithm uses a constructive approach
could be more efficient in practice and which can be easily optimized. It turns
out, indeed, by our preliminary experimental results (not included in this paper)
that our solution has a sub-quadratic behaviour in practical cases. This suggests
us to focus our future works on an accurate analysis of the algorithm’s complex-
ity in the average case.

In addition we are also planning to modify the given algorithm in order to
compute the minimum number of translocations needed to transform x in y
and an additional procedure able to retrieve the correct alignment of the two
strings. Finally, we wonder if the problem can be solved in sub-cubical worst-case
time complexity by extending the result obtained in Lemma 2 with additional
restrictions.

faro@dmi.unict.it

Matching with Non-overlapping Adjacent Unbalanced Translocations 131

References

1. Cantone, D., Cristofaro, S., Faro, S.: Efficient matching of biological sequences
allowing for non-overlapping inversions. In: Giancarlo, R., Manzini, G. (eds.) CPM
2011. LNCS, vol. 6661, pp. 364–375. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21458-5 31

2. Cantone, D., Cristofaro, S., Faro, S.: Efficient string-matching allowing for non-
overlapping inversions. Theor. Comput. Sci. 483, 85–95 (2013)

3. Cantone, D., Faro, S., Giaquinta, E.: Approximate string matching allowing for
inversions and translocations. In: Proceedings of the Prague Stringology Confer-
ence, pp. 37–51 (2010)

4. Cantone, D., Faro, S., Giaquinta, E.: Text searching allowing for inversions and
translocations of factors. Discrete Appl. Math. 163, 247–257 (2014)

5. Cantone, D., Faro, S., Pavone, A.: Sequence searching allowing for non-overlapping
adjacent unbalanced translocations. Report arXiv:1812.00421. Cornell University
Library (2018). https://arxiv.org/abs/1812.00421

6. Cho, D.-J., Han, Y.-S., Kim, H.: Alignment with non-overlapping inversions and
translocations on two strings. Theor. Comput. Sci. 575, 90–101 (2015)

7. Cull, P., Hsu, T.: Recent advances in the walking tree method for biological
sequence alignment. In: Moreno-Dı́az, R., Pichler, F. (eds.) EUROCAST 2003.
LNCS, vol. 2809, pp. 349–359. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45210-2 32

8. Damerau, F.: A technique for computer detection and correction of spelling errors.
Commun. ACM 7(3), 171–176 (1964)

9. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(1), 323–350 (1977)

10. Lupski, J.R.: Genomic disorders: structural features of the genome can lead to
DNA rearrangements and human disease traits. Trends Genet. 14(10), 417–422
(1998)

11. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and
reversals. Sov. Phys. Dokl. 10, 707–710 (1966)

12. Morris, J.H., Pratt, V.R.: A linear pattern-matching algorithm. Technical report
40. University of California, Berkeley (1970)

13. Ogiwara, H., Kohno, T., Nakanishi, H., Nagayama, K., Sato, M., Yokota, J.: Unbal-
anced translocation, a major chromosome alteration causing loss of heterozygosity
in human lung cancer. Oncogene 27, 4788–4797 (2008)

14. Oliver-Bonet, M., Navarro, J., Carrera, M., Egozcue, J., Benet, J.: Aneuploid and
unbalanced sperm in two translocation carriers: evaluation of the genetic risk. Mol.
Hum. Reprod. 8(10), 958–963 (2002)

15. Schöniger, M., Waterman, M.: A local algorithm for DNA sequence alignment with
inversions. Bull. Math. Biol. 54, 521–536 (1992)

16. Vellozo, A.F., Alves, C.E.R., do Lago, A.P.: Alignment with non-overlapping inver-
sions in O(n3)-time. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS,
vol. 4175, pp. 186–196. Springer, Heidelberg (2006). https://doi.org/10.1007/
11851561 18

17. Warburton, D.: De novo balanced chromosome rearrangements and extra marker
chromosomes identified at prenatal diagnosis: clinical significance and distribution
of breakpoints. Am. J. Hum. Genet. 49, 995–1013 (1991)

18. Weckselblatt, B., Hermetz, K.E., Rudd, M.K.: Unbalanced translocations arise
from diverse mutational mechanisms including chromothripsis. Genome Res. 25(7),
937–947 (2015)

faro@dmi.unict.it

