
Flexible and Efficient Algorithms
for Abelian Matching in Genome

Sequence

Simone Faro1(B) and Arianna Pavone2

1 Dipartimento di Matematica e Informatica, Università di Catania,
Viale Andrea Doria 6, 95125 Catania, Italy

faro@dmi.unict.it
2 Dipartimento di Scienze Cognitive, Università di Messina,

Via Concezione 6, 98122 Messina, Italy
apavone@unime.it

Abstract. Approximate matching in strings is a fundamental and chal-
lenging problem in computer science and in computational biology,
and increasingly fast algorithms are highly demanded in many appli-
cations including text processing and dna sequence analysis. Recently
efficient solutions to specific approximate matching problems on genomic
sequences have been designed using a filtering technique, based on the
general abelian matching problem, which firstly locates the set of all
candidate matching positions and then perform an additional verifica-
tion test on the collected positions.

The abelian pattern matching problem consists in finding all substrings
of a text which are permutations of a given pattern. In this paper we
present a new class of algorithms based on a new efficient fingerprint
computation approach, called Heap-Counting, which turns out to be fast,
flexible and easy to be implemented. We prove that, when applied for
searching short patterns on a dna sequence, our solutions have a linear
worst case time complexity. In addition we present an experimental eval-
uation which shows that our newly presented algorithms are among the
most efficient and flexible solutions in practice for the abelian matching
problem in dna sequences.

Keywords: Approximate string matching ·
Abelian matching jumbled matching · Experimental algorithms

1 Introduction

Given a pattern x and a text y, the abelian pattern matching problem [10] (also
known as jumbled matching [6,13] or permutation matching problem) is a well
known special case of the approximate string matching problem and consists in
finding all substrings of y, whose characters have the same multiplicities as in x,
so that they could be converted into the input pattern just by permuting their
characters.
c© Springer Nature Switzerland AG 2019
I. Rojas et al. (Eds.): IWBBIO 2019, LNBI 11465, pp. 307–318, 2019.
https://doi.org/10.1007/978-3-030-17938-0_28

faro@dmi.unict.it

308 S. Faro and A. Pavone

Example 1. For instance, assume that y = ccgatacgcattgac is a text of length
15 and x = accgta is a pattern of length 6, then x has two abelian occurrences
in y, at positions 1 and 4, respectively, since both substrings cgatac and tacgca
are permutations of the pattern.

This problem naturally finds applications in many areas, such as string align-
ment [3], SNP discovery [4], and also in the interpretation of mass spectrometry
data [5]. We refer to the recent paper by Ghuman and Tarhio [13] for a detailed
and broad list of applications of the abelian pattern matching problem.

More interestingly related with scope of this paper abelian matching finds
application in the field of approximate string matching in computational biology,
where algorithms for abelian matching are used as a filtering technique [2], usu-
ally referred to as counting filter, to speed up complex combinatorial searching
problems. The basic idea is that in many approximation problems a substring
of the text which is an occurrence of a given pattern, under a specific distance
function, is also a permutation of it. For instance, the counting filter technique
has been used solutions to the approximate string matching problem allowing
for mismatches [16], differences [18], inversions [7] and translocations [15].

In this paper we are interested in the online version of the problem which
assumes that the input pattern and text are given together for a single instant
query, so that no preprocessing of the text is possible. Although its worst-case
time complexity is well known to be O(n), in the last few years much work has
been made in order to speed up the performances of abelian matching algorithms
in practice, and some very efficient algorithms have been presented, tuned for
specific settings of the problem [9,13].

Specifically we present two algorithms based on a new efficient fingerprint
computation approach, called Heap-Counting, which turns out to be fast, flexible
and ease to be implemented, especially for the case of dna sequences. The first
algorithm is designed using a prefix based approach, while the second one uses
a suffix based approach. We prove that both of them have a linear worst case
time complexity.

In addition we present also two fast variants of the above algorithms, obtained
by relaxing some algorithmic constraints, which, despite their quadratic worst
case time complexity, turn out to be faster in some specific practical cases.

From our experimental results it turns out that our newly presented algo-
rithms are among the most efficient and flexible solutions for the abelian match-
ing problem in genomic sequences.

The paper is organized as follows. After introducing in Sect. 2 the relevant
notations and describing in Sect. 3 the related literature, we present in Sect. 4 two
new solutions of the online abelian pattern matching problem in strings, based
on the Heap-Counting approach, and prove their correctness and their linear
worst case time complexity. Then, in Sect. 5, we present a detailed experimental
evaluation of the new presented algorithms, comparing them against the most
effective solutions known in literature.

faro@dmi.unict.it

Flexible and Efficient Abelian Matching in Genome Sequence 309

2 Basic Notions

Before entering into details we recall some basic notions and introduce some
useful notations.

We represent a string x of length |x| = m > 0 as a finite array x[0 ..m− 1] of
characters from a finite alphabet Σ of size σ. Thus, x[i] will denote the (i+1)-st
character of x, for 0 ≤ i < m, whereas x[i .. j] will denote the substring of x
contained between the (i+ 1)-st and the (j + 1)-st characters of x.

Given a string x of length m, the occurrence function of x, ρx : Σ →
{0, . . . ,m}, associates each character of the alphabet with its number of occur-
rences in x. Formally, for each c ∈ Σ, we have:

ρx(c) =
∣∣{i : x[i] = c

}∣∣.

The Parikh vector [1,20] of x (denoted by pvx and also known as com-
pomer [5], permutation pattern [11], and abelian pattern [10]) is the vector of
the multiplicities of the characters in x. More precisely, for each c ∈ Σ, we have

pvx[c] =
∣∣{i : 0 ≤ i < m and x[i] = c

}∣∣.

In the following, the Parikh vector of the substring x[i .. i+h− 1] of x, of length
h and starting at position i, will be denoted by pvx(i,h).

The procedure for computing the Parikh vector pvx of a string x of length m
needs an initialization of the vector which takes O(σ) time, and an inspection
of all characters of x which takes O(m) time. Thus the Parikh vector can be
computed in O(m+ σ) time.

In terms of Parikh vectors, the abelian pattern matching problem can be
formally expressed as the problem of finding the set Γx,y of positions in y, defined
as

Γx,y =
{
s : 0 ≤ s ≤ n − m and pvy(s,m) = pvx

}
.

3 Previous Results

For a pattern x of length m and a text y of length n over an alphabet Σ of size
σ, the online abelian pattern matching problem can be solved in O(n) time and
O(σ) space by using a näıve prefix based approach [10,16,18,19], which slides a
window of sizem over the text while updating in constant time the corresponding
Parikh vector.

Specifically, for each position 0 ≤ s < n − m, and character c ∈ Σ, we have

pvy(s+1,m)[c] = pvy(s,m)[c] −
∣∣{c} ∩ {y[s]}

∣∣ +
∣∣{c} ∩ {y[s+m]}

∣∣,

so that the vector pvy(s+1,m) can be computed from the vector pvy(s,m) by
incrementing the value of pvy(s,m)[y[s + m]] and by decrementing the value of
pvy(s,m)[y[s]]. Thus, the test “pvy(s+1,m) = px” can be easily performed in con-
stant time. This is done by maintaining an error value e such that

e =
∑

c∈Σ

∣∣pvx[c] − pvy(s,m)[c]
∣∣, for 0 ≤ s < n − m.

faro@dmi.unict.it

310 S. Faro and A. Pavone

At the beginning of the algorithm the value of e is set to
∑

c∈Σ

∣∣pvx[c] −
pvy(0,m)[c]

∣∣. Thus, when it becomes 0 an occurrence is reported.
A suffix-based approach to the problem has been presented in [10], as an

adaptation of the Horspool string matching algorithm [17] to abelian pattern
matching problem. Rather than reading the characters of the window from left
to right, characters are read from right to left. Every time the reading restarts in
a new window, starting at position s, the Parikh vector is initialized by setting
pvy(s,m)[c] = 0, for all c ∈ Σ. Then, during each attempt, as soon as a frequency
overflow occurs, the reading phase is stopped and a new alignment is attempted
by sliding the window to the right. An occurrence is reported when the whole
window is inspected without reporting any frequency overflow. The resulting
algorithm has an O(n(σ +m)) worst-case time complexity but performs well in
many practical cases, especially for long patterns and large alphabets.

Successive solutions to the problem tried to speed-up both the prefix-based
and suffix-based approaches described above by applying techniques of algorithm
engineering, where experimental evaluations play an important role.

In [8] Cantone and Faro presented the Bit-parallel Abelian Matcher (BAM),
which applies bit-parallelism to enhance the suffix-based approach for the abelian
pattern matching problem. It turns out to be very fast in practical cases. It has
been also enhanced in [9] by reading 2-grams (BAM2), obtaining best results in
most practical cases.

However, although the adaptive width of bit fields makes possible to handle
longer patterns than a fixed width, the packing approach used in BAM can be
applied only in the case where the whole Parikh vector fits into a single computer
word. This makes the algorithm particularly suitable for small alphabets or short
patterns, but not useful in the case of long patterns and large alphabets.

In [9], an attempt to adapt such strategy in the case of long patterns have
been presented. The authors proposed the BAM-shared algorithm (BAMs for
short) which uses a kind of alphabet reduction in order to make the bit-vector
fit into a single computer word. This implies that the algorithm works using a
filtering approach and, in case of a match, the candidate occurrence should be
verified.

In [9] the authors presented also a simple and efficient bit-parallel suffix-based
approach. Instead of packing the Parikh vector of a string, their algorithm,
named Exact Backward for Large alphabets (EBL for short) maintains a bit
vector B of size σ where, for each c ∈ Σ, B[c] is set to 1 if the character c occurs
in the pattern, and is set to 0 otherwise.

More recently, in [13], Ghuman and Tarhio enhanced the EBL suffix-based
solution by using SIMD (Single Instruction Multiple Data) instructions. Their
solution, named Equal-Any algorithm (EA for short), uses a SIMD load instruc-
tion for reading, at each iteration, the whole window of the text in one fell swoop
and storing it in a computer word w. Experimental results show that such solu-
tion is 30% faster than previous algorithms for short English patterns. However,
despite this results, it works only when the length of the pattern is less or equal
to 16.

faro@dmi.unict.it

Flexible and Efficient Abelian Matching in Genome Sequence 311

Some efficient variants of the prefix based approach have been also presented
in the last few years. Among them in [15] Grabowsky et al. presented a more
efficient prefix-based approach, which uses less branch conditions. In [9] Chhabra
et al. presented a prefix-based solution named Exact Forward for Small alphabets
(EFS for short) which applies the same packing strategy adopted by the BAM
algorithm to the prefix-based approach, obtaining very competitive results in
the case of short alphabets.

To delve into the problem we refer to a detailed analysis of the abelian pattern
matching problem and of its solutions presented in [10] and in [14].

4 The Heap-Counting Approach

Let x and y be strings of length m and n, respectively, over a common alpha-
bet Σ of size σ. As described above previous solutions for the abelian pattern
matching problem maintain in constant time the symmetric difference, e, of the
multisets of the characters occurring in the current text window and of those
occurring in the pattern, respectively. Thus, when e = 0, a match is reported.
Alternatively, they use a packed representation of the Parikh vector, where some
kind of overflow sentinel is implemented in order to take track that the frequency
of a given character has exceeded its corresponding value in the Parikh vector
of the pattern. The aim is to perform the initialization of the Parikh vector in
constant time and to perform vector updates in a very fast way.

Instead of using a structured representation of the Parikh vector of a string,
fitting in a single computer word, our approach tries to map the multisets of our
interest into natural numbers, using a heap-mapping function h that allows for
very fast updates.

Specifically we suppose to have a function h : Σ → N (the heap-function),
that maps each character c of the alphabet Σ to a natural number, h(c) indeed.
Then, we assume that the multiset of a given string w ∈ Σ∗, of length m, can be
univocally associated to a natural number, h(w), using the following relation:

h(w) =
m−1∑

i=0

h(w[i]) (1)

The value h(w) is called the heap-value of the string w. In this context a abelian
match is found at position s of the text when the heap-value associated to the
window starting at position s is equal to the heap-value of the pattern. This
approach, when applicable, leads to two main advantages: the multisets of the
characters occurring in string can be represented by a single numeric value,
fitting in a single computer word; modifications and updates of such multisets
can be done by means of simple integer additions.

Our heap-counting approach is based on the following elementary fact:

Let Σ = {c0, c1, . . . , cσ−1} be an alphabet of size |Σ| = σ, let m > 1 be an
integer, and let h : Σ → N be the mapping h(ci) = mi, for i = 0, . . . ,σ−1.

faro@dmi.unict.it

312 S. Faro and A. Pavone

Compute-Heap-Mapping(x, m)
1. for each c ∈ Σ do h[c] ← 0
2. j ← 1
3. for i ← 1 to m do
4. if h(x[i]) = 0 then
5. h(x[i]) ← j
6. j ← j × m
7. return h

Heap-Counting-Abelian-Matching(x, m, y, n)
1. h ←Compute-Heap-Mapping(x, m)
2. δ ← γ ← 0
3. for i ← 0 to m − 1 do
4. δ ← δ + h(x[i])
5. γ0 ← γ0 + h(y[i])
6. if γ0 = δ then Output(0)
7. for s ← 1 to n − m do
8. γs ← γs−1 + h(y[s+m − 1]) − h(y[s − 1])
9. if γs = δ Output(s)

Fig. 1. The pseudocode of the Heap-Counting-Abelian-Matching for the online
exact abelian matching problem, implemented using a prefix-based approach.

Then for any two distinct k-multicombinations (i.e., k-combinations with
repetitions) ϕ1 and ϕ2 from the set Σ, with 1 ≤ k ≤ m, we have

∑

c∈ϕ1

h(c) &=
∑

c∈ϕ2

h(c). (2)

Example 2. Let x = agcga be an input pattern of length 5 over the alphabet
Σ = {a, c, g, t} of size 4. Based on Lemma4, the heap-function h : Σ → N, is
defined as h(a) = 1, h(c) = 5, h(g) = 25, and h(t) = 125. The heap-value of x is
then h(x) = h(a) + h(g) + h(c) + h(g) + h(a) = 57.

Let ' be a character such that ' /∈ Σ and let Σx ⊆ Σ be the set of all (and
only) the characters occurring in x. We indicate with σx the size of the alphabet
Σx. Plainly we have σx ≤ min{σ,m}, thus we can think to this transformation
as a kind of alphabet reduction.

We define the reduced text ȳ, over Σx, as a version of the text y where each
character y[i], not included in Σx, is replaced with the special character ' /∈ Σ.
Since, in general, σx < σ (especially in the case of short patterns), to process
the reduced version of the text, instead of its original version, allows the heap
function to be computed on a smaller domain, reducing therefore the size of the
heap-values associated to any given string.

faro@dmi.unict.it

Flexible and Efficient Abelian Matching in Genome Sequence 313

Example 3. Let x = agcac be an input dna sequence (the pattern) of length
5 and let y =agtcagaccatcagata be a text of length 17, both over the alphabet
Σ = {a, g, c, t} of size 4. We have that Σx = {a, c, d}. Thus the reduced version
of y is ȳ = ag'c'gacca'caga''

It can be proved that such alphabet reduction does not influence the output
of any abelian pattern matching algorithm.

We are now ready to describe in details the two new algorithms based on the
heap-counting approach. The algorithm described in Sect. 4.1 implements the
heap-counting approach i a prefix-based algorithm, while the algorithm described
in Sect. 4.2 uses a suffix-based mechanism.

4.1 A Prefix-Based Algorithm

Inspired by Lemma4, the new algorithm precomputes the set Σx and the func-
tion h : Σx → N, defined as h(ci) = mi, for i = 0, . . . ,σx − 1, where m is the
length of the pattern and σx is the size of Σx.

Figure 1 shows the Heap-Abelian-Matching algorithm and its the auxil-
iary procedure.

During the preprocessing phase (lines 1–7) the algorithm precomputes the
heap-mapping function h (line 1) by means of procedure Compute-Heap-
Mapping. Such procedure computes the mapping table over the alphabet
Σx ∪ {'} associating the value 1 with all characters not occurring in x, i.e.
we set h(') = 1.

The heap values δ = h(x) and γ0 = h(y[0..m − 1]) are then precomputed
in lines 2–5, Likewise, during the searching phase (lines 8–10), the heap value
γi = h(y[i .. i + m − 1]) is computed for each window y[i .. i + m − 1] of the
text t, with 0 < i ≤ n − m. Specifically, starting from the heap value γs−1, the
algorithm computes the heap value γs by using the relation γs = γs−1 − h(y[s−
1]) + h(y[s + m − 1]) (line 8). Of course, in practical implementations of the
algorithm it is possible to maintain a single value γ, corresponding to the heap
value of the current window of the text.

The set Γx,y of all occurrences in the text is then

Γx,y =
{
i | 0 ≤ i ≤ n − m and γi = δ

}

In order to compute the space and time complexity of the algorithm, it can
be easily observed that the computation of the mapping h requires O(m + σ)-
time and -space. Moreover observe that γs = γs−1 −h(y[s−1])+h(y[s+m−1]),
so that γs can be computed in constant time from γs−1. Thus the set Γx,y can
be computed in O(n) worst case time. !

From a practical point of view it is understood that for an architecture, say,
at 64 bits, all operations will take place modulo 264. Thus, when mσx+1 exceeds
264 we could have some collisions in the set of the heap values and an additional
verification procedure should be run every time an occurrence is found. However

faro@dmi.unict.it

314 S. Faro and A. Pavone

it has been observed experimentally that, also in this specific cases, the collision
problem for the heap function h is negligible.

4.2 A Suffix-Based Algorithm

In this section we extend the idea introduced in the previous section and present
a backward version of the prefix-based algorithm described above which turns
out to be more efficient in the case of long patterns or large alphabets. It shows
a sub-linear behaviour in practice, while maintains the same worst case time
complexity.

Figure 2 shows the pseudocode of the new algorithm, called Backward-
Heap-Abelian-Matching, and its the auxiliary procedure.

Compute-Membership-Map(x, m)
1. for each c ∈ Σ do b(c) ← False
2. for i ← 1 to m do b(x[i]) ← True
3. return b

Backward-Heap-Counting-Abelian-Matching(x, m, y, n)
1. h ←Compute-Heap-Mapping(x, m)
2. b ←Compute-Membership-Mapping(x, m)
3. δ ← 0
4. for i ← 1 to m do δ ← δ + h(x[i])
5. y ← y.x
6. s ← 0
7. while (True) do
8. γ ← −δ
9. j ← m − 1
10. while (j ≥ 0) do
11. if (b(y[s+ j])) then
12. γ ← γ + h(y[s+ j])
13. j ← j − 1
14. else
15. γ ← −δ
16. s ← s+ j + 1
17. j ← m − 1
18. do
19. if (γ = 0) then
20. if (s ≤ n − m) then Output(s)
21. else return
22. if (b(y[s+m]) =False) then break
23. γ ← γ − h(y[s]) + h(y[s+m])
24. s ← s+ 1
25. while (True)
26. s ← s+m+ 1

Fig. 2. The pseudocode of the Backward-Heap-Counting-Abelian-Matching for
the online exact abelian matching problem, implemented using a suffix-based approach.

faro@dmi.unict.it

Flexible and Efficient Abelian Matching in Genome Sequence 315

During the preprocessing phase (lines 1–6) the algorithm precomputes the
heap-mapping function h (line 1) and the membership function b (line 2). We use
procedureCompute-Heap-Mapping, and procedureCompute-Membership-
Mapping, respectively.

The heap value δ = h(x) of the pattern x is then precomputed in lines 3–4.
A copy of the pattern is then concatenated at the end of the pattern (line 5), as
a sentinel, in order to avoid the window of the text to shift over the last position
of the text.

The main cycle of the searching phase (line 7) is executed until the value
of s becomes greater than n − m (line 20). An iteration of the main cycle is
divided into two additional cycles. The first cycle of line 10 performs a backward
scanning of the current window of the text and stops when the whole window
has been scanned or a character not occurring in Σx is encountered. The second
cycle of line 18, starting from the heap value of the current window of the text,
computes at each iteration the heap value of the next window in constant space
using a forward scan. The second cycle stops when a character not occurring in
Σx is encountered.

It can be proved that the algorithm Backward-Heap-Counting-
Abelian-Matching computes all abelian occurrences of x in y with O(σ +
m+ n)-time and O(σ +m)-space complexity in the worst case.

4.3 Relaxed Filtering Variants

A simpler implementation of the above presented algorithms can be obtained by
relaxing the heap-counting approach presented at the beginning of this section,
in order to speed-up the computation of the heap values of a string and, as a
consequence, to spud-up the searching phase of the algorithm.

Specifically we propose to use the natural predisposition of the characters of
an alphabet to be treated as integer numbers. For instance, in many practical
applications, input strings can be handled as sequences of ASCII characters. In
such applications, characters can just be seen as the 8-bit integers corresponding
to their ASCII code.

In this context, if we indicate with ascii(c), the ASCII code of a character
c ∈ Σ, we can set h(c) = ascii(c). Thus the heap value of a string can be simply
computed as the sum of the ASCII codes of its characters.

As a consequence the resulting algorithms works as a filtering algorithm.
Indeed, when an occurrence is found we are not sure that the substring of the
text which perform a match is a real permutation of the pattern. This implies
that an additional verification phase is run for each candidate occurrences.

Plainly the resulting algorithms have an O(σ + nm) worst case time com-
plexity, since a verification procedure could be run for each position of the text.

5 Experimental Results

We report in this section the results of an extensive experimentation of the newly
presented algorithms against the most efficient solutions known in literature for

faro@dmi.unict.it

316 S. Faro and A. Pavone

the online abelian pattern matching problem. In particular we have compared 11
algorithms divided in three groups: prefix-based, suffix-based and SIMD based
algorithms. Specifically we compared the following 5 prefix based algorithms: the
Window-Abelian-Matching (WM) [10,16,18,19]; the Grabowsky-Faro-Giaquinta
(GFG) [15]; the Exact Forward form Small alphabets (EFS) [9]; the Heap-
Counting-Abelian-Matching (HCAM) described in Sect. 4.1; the Heap-Filtering-
Abelian-Matching (HFAM) described in Sect. 4.3.

We compared also the following 5 suffix based algorithms: the Backward-
Window-Abelian-Matching (BWM) [10]; the Bit-parallel Abelian Matching algo-
rithm (BAM) using 2-grams [8,9]; the Exact Backward for Large alphabets
(EBL) [9]; the Backward-Heap-Counting-Abelian-Matching (BHCAM) described
in Sect. 4.2; the Backward-Heap-Filtering-Abelian-Matching (BHFAM) described
in Sect. 4.3.

In addition We compared also the Equal Any (EA), an efficient prefix based
solution [13] implemented using SIMD instructions.

All algorithms have been implemented in C, and have been tested using the
Smart tool [12] and executed locally on a MacBook Pro with 4 Cores, a 2GHz
Intel Core i7 processor, 16GB RAM 1600MHz DDR3, 256KB of L2 Cache and
6MB of Cache L3.1 Comparisons have been performed in terms of running times,
including any preprocessing time.

For our tests we used a genome sequence provided by the research tool
Smart, available online for download (for additional details about the sequences,
see the details of the Smart tool [12]).

In the experimental evaluation, patterns of lengthm were randomly extracted
from the sequences, with m ranging over the set of values {2i | 1 ≤ i ≤ 8}. Thus
at least one occurrence is reported for each algorithm execution. In all cases, the
mean over the running times (expressed in hundredths of seconds) of 1000 runs
has been reported.

Table 1 summarises the running times of our evaluations. The table is divided
into four blocks. The first block presents the results relative to prefix based solu-
tions, the second block presents the results for the suffix based algorithms, while
the third block presents the results for the algorithm based on SIMD instructions.
The newly presented algorithms have been marked with a star (() symbol. Best
results among the two sets of algorithms have been bold-faced to ease their local-
ization, while the overall best results have been also underlined. In addition we
included in the last block the speedup (in percentage) obtained by our best newly
presented algorithm against the best running time obtained by previous algo-
rithms: positive percentages denote running times worsening, whereas negative
values denote performance improvements. Percentages representing performance
improvements have been bold-faced.

1 The Smart tool is available online at https://smart-tool.github.io/smart/.

faro@dmi.unict.it

Flexible and Efficient Abelian Matching in Genome Sequence 317

Table 1. Experimental results on a genome sequence.

m 2 4 8 16 32 64

prefix based WM 13.63 13.02 13.09 13.04 13.04 13.06

GFG 20.47 20.19 20.42 20.41 20.47 20.30

EFS 8.26 8.31 8.35 8.34 8.36 –

HCAM ! 6.97 6.86 6.92 6.93 6.91 6.89

HFAM ! 20.14 11.86 9.18 7.87 7.47 7.09

suffix based BWM 65.59 46.81 33.47 25.79 22.94 20.67

BAM 10.62 10.96 13.20 11.87 10.69 9.85

EBL 29.95 27.44 55.69 119.26 227.14 –

BHCAM ! 26.82 18.03 9.98 7.74 7.55 7.32

BHFAM ! 37.21 21.72 11.50 9.35 9.09 8.88

Speed-up +11.87% +11.40% +10.76% +10.55% −12.12% −29.16%

simd EA 4.01 4.03 4.56 4.67 – –

Consider first the case of small alphabets, and specifically abelian string
matching on strings over an alphabet of size σ ≤ 4 (Table 1). From experimental
results it turns out that prefix based solutions are more flexible and efficient
than suffix based algorithms. This is because the shift advancements performed
by suffix based solutions do not compensate the number of character inspections
performed during each iteration. Thus, while prefix based algorithms maintain
a linear behaviour which do not depend on the pattern length, suffix based
solutions shown an increasing trend (or a slightly decreasing trend), while the
length of the pattern increases, but with a very low performances on average.
Specifically the HCAM algorithm obtains the best results only for m ≥ 16,
where it is approximately 10% slower than the EA algorithm, in the case of
short patterns. However it remains always the best solution if compered with all
other standard algorithm, with a gain from 11% to 35%. Among the suffix based
solutions the BHCAM algorithm still remains the best choice in most cases, with
a less sensible variance if compared with the HCAM algorithm.

6 Conclusions

In this paper we have introduced the heap-counting approach for the abelian
pattern matching problem in strings and we have presented two new algo-
rithms based on a prefix-based approach (HCAM) and on a suffix-based app-
roach (BHCAM), respectively. We also presented two variants of these algo-
rithms, based on a relaxed version of the heap-counting approach: the HFAM
and BHFAM algorithms. From our experimental results it turns out that our
approaches obtain good results when used for searching text over small alpha-
bets, as the case of dna sequences. The resulting algorithms turns out to be
among the most effective in practical cases.

faro@dmi.unict.it

318 S. Faro and A. Pavone

References

1. Amir, A., Apostolico, A., Landau, G.M., Satta, G.: Efficient text fingerprinting via
Parikh mapping. J. Discrete Algorithms 1(56), 409–421 (2003)

2. Baeza-Yates, R.A., Navarro, G.: New and faster filters for multiple approximate
string matching. Random Struct. Algorithms 20(1), 23–49 (2002)

3. Benson, G.: Composition alignment. In: Benson, G., Page, R.D.M. (eds.) WABI
2003. LNCS, vol. 2812, pp. 447–461. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-39763-2 32

4. Böcker, S.: Simulating multiplexed SNP discovery rates using base-specific cleav-
age and mass spectrometry. Bioinformatics 23(2), 5–12 (2007). https://doi.org/10.
1093/bioinformatics/btl291

5. Böcker, S.: Sequencing from compomers: using mass spectrometry for DNA de
novo sequencing of 200+ nt. J. Comput. Biol. 11(6), 1110–1134 (2004)

6. Burcsi, P., Cicalese, F., Fici, G., Lipták, Z.: Algorithms for jumbled pattern match-
ing in strings. Int. J. Found. Comput. Sci. 23(2), 357–374 (2012)

7. Cantone, D., Cristofaro, S., Faro, S.: Efficient matching of biological sequences
allowing for non-overlapping inversions. In: Giancarlo, R., Manzini, G. (eds.) CPM
2011. LNCS, vol. 6661, pp. 364–375. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21458-5 31

8. Cantone, D., Faro, S.: Efficient online Abelian pattern matching in strings by
simulating reactive multi-automata. In: Holub, J., Zdarek, J. (eds.) Proceedings of
the PSC 2014, pp. 30–42 (2014)

9. Chhabra, T., Ghuman, S.S., Tarhio, J.: Tuning algorithms for jumbled matching.
In: Holub, J., Zdarek, J. (eds.) Proceedings of the PSC 2015, pp. 57–66 (2015)

10. Ejaz, E.: Abelian pattern matching in strings, Ph.D. thesis, Dortmund University
of Technology (2010). http://d-nb.info/1007019956

11. Eres, R., Landau, G.M., Parida, L.: Permutation pattern discovery in biosequences.
J. Comput. Biol. 11(6), 1050–1060 (2004)

12. Faro, S., Lecroq, T., Borz̀ı, S., Di Mauro, S., Maggio, A.: The string matching
algorithms research tool. In: Proceeding of Stringology, pp. 99–111 (2016)

13. Ghuman, S.S., Tarhio, J.: Jumbled matching with SIMD. In: Holub, J., Zdarek, J.
(eds.) Proceeding of the PSC 2016, pp. 114–124 (2016)

14. Ghuman, S.S.: Improved online algorithms for jumbled matching. Doctoral Disser-
tation 242/2017, Aalto University publication series, Aalto University, School of
Science, Department of Computer Science (2017)

15. Grabowski, S., Faro, S., Giaquinta, E.: String matching with inversions and translo-
cations in linear average time (most of the time). Inf. Process. Lett. 111(11), 516–
520 (2011)

16. Grossi, R., Luccio, F.: Simple and efficient string matching with k mismatches. Inf.
Process. Lett. 33(3), 113–120 (1989)

17. Horspool, R.N.: Practical fast searching in strings. Softw. Pract. Exp. 10(6), 501–
506 (1980)

18. Jokinen, P., Tarhio, J., Ukkonen, E.: A comparison of approximate string matching
algorithms. Softw. Pract. Exp. 26(12), 1439–1458 (1996)

19. Navarro, G.: Multiple approximate string matching by counting. In: Baeza-Yates,
R. (ed.) 1997 Proceeding of the 4th South American Workshop on String Process-
ing, pp. 125–139 (1997)

20. Salomaa, A.: Counting (scattered) subwords. Bull. EATCS 81, 165–179 (2003)

faro@dmi.unict.it

