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Abstract. Cartesian tree matching is the problem of finding all sub-
strings of a given text which have the same Cartesian trees as that of
a given pattern. So far there is one linear-time solution for Cartesian
tree matching, which is based on the KMP algorithm. We improve the
running time of the previous solution by introducing new representa-
tions. We present the framework of a binary filtration method and an
efficient verification technique for Cartesian tree matching. Any exact
string matching algorithm can be used as a filtration for Cartesian tree
matching on our framework. We also present a SIMD solution for Carte-
sian tree matching suitable for short patterns. By experiments we show
that known string matching algorithms combined on our framework of
binary filtration and efficient verification produce algorithms of good
performances for Cartesian tree matching.

Keywords: Cartesian tree matching · Global-parent representation ·
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1 Introduction

String matching is one of fundamental problems in computer science. There are
generalized matchings such as parameterized matching [3, 5], swapped matching
[1, 4], overlap matching [2], jumbled matching [6], and so on. These problems are
characterized by the way of defining a match, which depends on the application
domains of the problems. In particular, order-preserving matching [18, 17, 20] and
Cartesian tree matching [21] deal with the order relations between numbers.

The Cartesian tree [23] is a tree data structure that represents a string,
focusing on the orders between elements of the string. Park et al. [21] intro-
duced a metric of match called Cartesian tree matching. It is the problem
of finding all substrings of a text T which have the same Cartesian trees as
that of a pattern P . Cartesian tree matching can be applied to finding pat-
terns in time series data such as share prices in stock markets, like order-
preserving matching, but sometimes it may be more appropriate as indicated
in [21]. Fig. 1 shows an example of Cartesian tree matching. Suppose T =
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Fig. 1: Cartesian tree matching, and Cartesian tree corresponding to pattern.

(10, 12, 16, 15, 6, 14, 9, 12, 11, 14, 9, 17, 12, 10, 12) and P = (3, 1, 6, 4, 8, 6, 7, 5, 9).
The Cartesian tree of substring u = (15, 6, 14, 9, 12, 11, 14, 9, 17) is the same as
that of P . Note that if we use order-preserving matching instead of Cartesian
tree matching as a metric, u does not match P .

String matching algorithms have been designed over the years. To speed
up the search phase of string matching, algorithms based on automata and
bit-parallelism were developed [14, 12]. In recent years, the SIMD instruction
set architecture gave rise to packed string matching, where one can compare
packed data elements in parallel. In the last few years, many solutions for order-
preserving matching have been proposed. Given a text of length n and a pattern
of length m, Kubica et al. [20] and Kim et al. [18] gave O(n+m logm) time solu-
tions based on the KMP algorithm. Cho et al. [11] presented an algorithm using
the Boyer–Moore approach. Chhabra and Tarhio [10] presented a new practical
solution based on filtration, and Chhabra et al. [9] gave a filtration algorithm
using the Boyer-Moore-Horspool approach and SIMD instructions. Cantone et
al. [7] proposed filtration methods using the q-neighborhood representation and
SIMD instructions. These filtration methods [10, 9, 7] take sublinear time on av-
erage.

In this paper we introduce new representations, prefix-parent representation
and prefix-child representation, which can be used to decide whether two strings
have the same Cartesian trees or not. Using these representations, we improve
the running time of the previous Cartesian tree matching algorithm in [21].
We also present a binary filtration method for Cartesian tree matching, and
give an efficient verification technique for Cartesian tree matching based on the
global-parent representation. On the framework of our binary filtration method
and efficient verification technique, we can apply any known string matching
algorithm [8, 15, 12] as a filtration for Cartesian tree matching. In addition, we
present a SIMD solution for Cartesian tree matching based on the global-parent
representation, which is suitable for short patterns. We conduct experiments
comparing many algorithms for Cartesian tree matching, which show that known
string matching algorithms combined on the framework of our binary filtration
and efficient verification for Cartesian tree matching produce algorithms of good
performances for Cartesian tree matching.
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This paper is organized as follows. In Section 2, we describe notations and the
problem definition. In Section 3, we present an improved linear-time algorithm
using new representations. In Section 4, we present the framework of binary
filtration and efficient verification. In Section 5, we present a SIMD solution for
short patterns. In Section 6, we give the experimental results of the previous
algorithm and the proposed algorithms.

2 Preliminaries

2.1 Basic notations

A string is defined as a finite sequence of elements in an alphabet Σ. In this
paper, we will assume that Σ has a total order <. For a string S, S[i] represents
the ith element of S, and S[i..j] represents a substring of S from the ith element
to the jth element. If i > j then S[i..j] is an empty string.

We will say S[i] ≺ S[j], if and only if S[i] < S[j], or S[i] and S[j] have the
same value with i < j. Note that S[i] = S[j] (as elements of the string) if and
only if i = j. Unless stated otherwise, the minimum is defined by ≺.

2.2 Cartesian tree matching

A string S can be associated with its corresponding Cartesian tree CT (S) [23]
according to the following rules:

– If S is an empty string, then CT (S) is an empty tree.
– If S[1..n] is not empty and S[i] is the minimum value among S, then CT (S)

is the tree with S[i] as the root, CT (S[1..i − 1]) as the left subtree, and
CT (S[i+ 1..n]) as the right subtree.

Cartesian tree matching is to find all substrings of the text which have the same
Cartesian trees as that of the pattern. Formally, Park et al. [21] define it as
follows:

Definition 1. (Cartesian tree matching) Given two strings text T [1..n] and
pattern P [1..m], find every 1 ≤ i ≤ n−m+ 1 such that CT (T [i..i+m− 1]) =
CT (P [1..m]).

Instead of building the Cartesian tree for every position in the text to solve
Cartesian tree matching, Park et al. [21] use the following representation for a
Cartesian tree.

Definition 2. (Parent-distance representation) Given a string S[1..n], the parent-
distance representation of S is a function PDS , which is defined as follows:

PDS(i) =

{
i−max1≤j<i{j : S[j] ≺ S[i]} if such j exists

0 otherwise.

Since the parent-distance representation has a one-to-one mapping to the Carte-
sian tree [21], it can replace the Cartesian tree without any loss of information.
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idx 1 2 3 4 5 6 7 8 9

S 3 1 6 4 8 6 7 5 9

PPS 1 2 2 2 4 4 6 4 8

PCS 1 1 3 3 5 5 7 6 9

GPS 2 2 4 2 6 8 6 4 8

PPS

PCS

GPS

3 1 6 4 8 6 7 5 9

3 1 6 4 8 6 7 5 9

3 1 6 4 8 6 7 5 9

Fig. 2: PPS ,PCS ,GPS for S = (3, 1, 6, 4, 8, 6, 7, 5, 9).

3 Fast linear Cartesian tree matching

The previous algorithm for Cartesian tree matching due to Park et al. [21] is
based on the KMP algorithm [19]. They changed the pattern and the text to
parent-distance representations and found matches using the KMP algorithm.
To compute the parent-distance representations of substrings of the text using
O(m) space, however, they used a deque data structure. We improve the text
search phase of the previous algorithm by removing the overhead of computing
parent-distance representations including deque operations.

In the text search phase of the previous algorithm, the parent-distance of each
element T [i] in T [i− q..i] is computed to check whether it matches PDP (q + 1)
when we know that PDP [1..q] matches PDT [i−q..i−1]. We can do it directly with-
out computing the parent-distances of text elements by using following repre-
sentations: prefix-parent representation and prefix-child representation.

Definition 3. (prefix-parent representation) Given a string S[1..n], the prefix-
parent representation of S is a function PPS , which is defined as follows:

PPS(i) =

{
max1≤j<i{j : S[j] ≺ S[i]} if such j exists

i otherwise.

Since PPS(i) = i− PDS(i), the prefix-parent representation also has a one-to-
one mapping to the Cartesian tree.

Definition 4. (prefix-child representation) Given a string S[1..n], the prefix-
child representation of S is a function PCS , which is defined as follows: PCS(1) =
1, and for i ≥ 2,

PCS(i) =


j such that S[j] is minimum for 1 ≤ j < i if PPS(i) = i

i if PPS(i) = i− 1

j such that S[j] is minimum for PPS(i) < j < i if PPS(i) < i− 1.

In other words, S[PCS(i)] is a child of S[i], because S[PCS(i)] is the root of
CT (S[PPS(i) + 1..i − 1]) when PPS(i) < i − 1, and S[PCS(i)] is the root of
CT (S[1..i−1]) when PPS(i) = i. When PPS(i) = i−1, there is no child of S[i]
in CT (S[1..i]), and thus we set PCS(i) as i.



Fast Cartesian Tree Matching 5

Algorithm 1 Text search of Cartesian tree matching

1: procedure CARTESIAN-TREE-MATCH(T [1..n], P [1..m])
2: (PPP ,PCP ) ← PREFIX-PARENT-CHILD-REP(P )
3: π ← FAILURE-FUNC(P )
4: q ← 0
5: for i← 1 to n do
6: while q 6= 0 do
7: if T [i− q − 1 + PPP (q + 1)] � T [i] � T [i− q − 1 + PCP (q + 1)] then
8: break
9: else

10: q ← π[q]

11: q ← q + 1
12: if q = m then
13: print “Match occurred at i−m+ 1”
14: q ← π[q]

Fig. 2 shows the prefix-parent representation (resp. the prefix-child represen-
tation) of string S = (3, 1, 6, 4, 8, 6, 7, 5, 9) by arrows. The arrow starting from
S[i] indicates PPS(i) (resp. PCS(i)). If PPS(i) = i (resp. PCS(i) = i), we omit
the arrow.

The advantage of using the prefix-child representation and the prefix-parent
representation is that we can check whether each text element matches the
corresponding pattern element in constant time without computing its parent-
distance [21].

Theorem 1. Given two strings P and S, assume that P [1..q] and S[1..q] have
the same prefix-parent representations. If S[PPP (q+1)] � S[q+1] � S[PCP (q+
1)], then P [1..q+ 1] and S[1..q+ 1] have the same prefix-parent representations,
and vice versa.

Proof. (=⇒) If q = 0, P [1] and S[1] always have the same prefix-parent 1.
Now let’s assume q ≥ 1. There are three cases, in each of which we show that
PPP (q + 1) = PPS(q + 1).

1. Case PPP (q + 1) = q + 1: Since P [PCP (q + 1)] is the minimum element
in P [1..q] and PPP (i) = PPS(i) for 1 ≤ i ≤ q, S[PCP (q + 1)] is also the
minimum element in S[1..q]. Therefore, if S[q + 1] � S[PCP (q + 1)] holds,
then we have PPS(q + 1) = q + 1.

2. Case PPP (q + 1) = q: Since S[q] � S[q + 1], we have PPS(q + 1) = q.
3. Case PPP (q + 1) < q: Since P [PCP (q + 1)] is the minimum element in
P [PPP (q + 1) + 1..q] and PPP (i) = PPS(i) for 1 ≤ i ≤ q, S[PCP (q + 1)] is
also the minimum element in S[PPP (q+ 1) + 1..q]. Therefore, if S[PPP (q+
1)] � S[q + 1] � S[PCP (q + 1)] holds, then PPS(q + 1) = PPP (q + 1).

(⇐=) It is trivial by definitions of PP and PC. ut

With the prefix-parent representation and the prefix-child representation of
pattern P , we can simplify the text search. For each element T [i], we can check
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Algorithm 2 Computing prefix-parent and prefix-child representations

1: procedure PREFIX-PARENT-CHILD-REP(P [1..m])
2: ST ← an empty stack
3: for i← 1 to m do
4: jnext ← i
5: while ST is not empty do
6: j ← ST.top
7: if P [j] ≺ P [i] then
8: break
9: ST.pop

10: jnext ← j

11: PCP (i)← jnext

12: if ST is empty then
13: PPP (i)← i
14: else
15: PPP (i)← j

16: ST.push(i)

17: return (PPP ,PCP )

PPP (q+1) = PPT [i−q..i](q+1) by comparing T [i] with the elements in T [i−q..i]
whose indices correspond to PPP (q+1) and PCP (q+1) in P . Using this idea, we
don’t have to compute PPT [i−q..i](q + 1). Algorithm 1 describes the algorithm
to do this. We compute the failure function π in the same way as [21] does.

Given a string P [1..m], we can compute the prefix-child representation and
the prefix-parent representation simultaneously in linear time using a stack.
PPP (i) = j means that P [j] ≺ P [k] for j < k < i. The same is true for
PCP (i). On the stack, therefore, we maintain only j’s which satisfy P [j] ≺ P [k]
for j < k < i while scanning from i = 1 to m. Suppose that j1, j2, . . . , jr are
on the stack when we are computing PPP (i) and PCP (i). (We assume that
jr+1 = i.) Then, (P [j1], P [j2], . . . , P [jr]) forms an increasing subsequence of P .
When we consider a new index i, we pop the indices jr, jr−1, . . . , jt+1 repeatedly
until we have P [jt] ≺ P [i]. If there exists such an index jt, we set PPP (i) = jt
and PCP (i) = jt+1. (If t = r, then PCP (i) = jt+1 = i.) Otherwise, P [i] is the
minimum element in P [1..i], and thus PPP (i) = i and PCP (i) = j1. Finally,
we push i onto the stack. Algorithm 2 describes the algorithm to compute PPP

and PCP simultaneously.

4 Fast Cartesian tree matching with filtration

In this section we present a practical solution based on filtration. Our solution
for Cartesian tree matching consists of two phases: filtration and verification.
First, the text is filtered with some exact string matching algorithm using a
binary representation. In the second phase, the potential candidates are verified
using a global-parent representation.
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4.1 Filtration

In the filtration phase, a string S is translated into a binary representation βS
as follows.

Definition 5. (binary representation) Given a string S[1..n], the binary repre-
sentation of S is a binary string βS of length n− 1, which is defined as follows:

βS [i] =

{
0 if PPS(i+ 1) = i

1 otherwise,

for each 1 ≤ i ≤ n− 1.

One can easily check whether PPS(i + 1) = i is true or not by comparing S[i]
and S[i+ 1]: PPS(i+ 1) = i if and only if S[i] ≺ S[i+ 1]. The following theorem
proves that the binary representation can be used to filter a text T to search for
all Cartesian tree matching occurrences of a pattern P .

Theorem 2. Let P and T be two strings of lengths m and n, respectively,
and let βP and βT be the binary representations associated with P and T ,
respectively. If CT (P [1..m]) = CT (T [i..i + m − 1]), then βP [j] = βT [i + j − 1]
for 1 ≤ j ≤ m− 1.

Proof. The prefix-parent representation has a one-to-one mapping to the Carte-
sian tree. Therefore, if CT (P [1..m]) = CT (T [i..i+m− 1]), then PPP (j + 1) =
PPT (i + j) for 0 ≤ j ≤ m − 1. If PPP (j + 1) = PPT (i + j), then βP [j] =
βT [i+ j − 1] for 1 ≤ j ≤ m− 1.

Theorem 2 guarantees that any standard exact string matching algorithm can
be used as a filtration procedure. As the exact string matching algorithm returns
matches of βP in βT , these matches are only possible candidates of Cartesian
tree matching which should be verified.

Cantone et al. [7] presented two filtration methods other than the binary
representation to solve order-preserving matching. They used the property that
T doesn’t match P at position i if there are two positions j and k such that
P [j] � P [k]⇔ T [i+j−1] � T [i+k−1] doesn’t hold. Thus any comparison result
between two positions can be used for filtration. In Cartesian tree matching,
however, even if there exist such j and k, the corresponding Cartesian trees can
be the same when |j− k| > 1. Therefore, we cannot use these filtration methods
for Cartesian tree matching.

4.2 Verification

In the verification phase, we have to check whether the candidates found by the
filtration phase are actual matches or not. This checking can be done using prefix-
parent and prefix-child representations by Theorem 1, which takes 2 comparisons
per element. In order to reduce the number of comparisons to 1, we introduce
another representation as follows.
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Definition 6. (Global-parent representation) Given a string S[1..n], the global-
parent representation of S is a function GPS , which is defined as follows:

GPS(i) =

{
j such that PCS(j) = i for j > i

PPS(i) if such j doesn’t exist.

GPS(i) is well-defined because there is at most one j > i which satisfies PCS(j) =
i. Fig. 2 shows the global-parent representation by arrows. The arrow starting
from S[i] indicates the global parent of S[i]. If GPS(i) = i, we omit the arrow.

Theorem 3. Two strings P [1..m] and S[1..m] have the same Cartesian trees if
and only if S[GPP (i)] � S[i] for all 1 ≤ i ≤ m.

Proof. We will prove that S[PPP (i)] � S[i] � S[PCP (i)] for all 1 ≤ i ≤ m if
and only if S[GPP (i)] � S[i] for all 1 ≤ i ≤ m.

(=⇒) It is trivial by definition of GP.
(⇐=) Assume S[GPP (i)] � S[i] for all 1 ≤ i ≤ m. For any 1 ≤ k ≤ m, we

first show S[k] � S[PCP (k)], and then we show S[PPP (k)] � S[k].

1. (Proof of S[k] � S[PCP (k)]) There are two cases: PCP (k) = k and PCP (k) 6=
k. If PCP (k) = k, then S[k] � S[PCP (k)] holds trivially. Otherwise, since
GPP (PCP (k)) = k, S[k] = S[GPP (PCP (k))] � S[PCP (k)]. Therefore, S[k] �
S[PCP (k)] holds.

2. (Proof of S[PPP (k)] � S[k]) If GPP (k) = PPP (k), then S[PPP (k)] =
S[GPP (k)] � S[k]. So we only have to consider the case that there is k1 > k
which satisfies PCP (k1) = k. Let k = k0 < k1 < · · · < kr ≤ m be a
sequence such that PCP (kl+1) = kl, and there is no kr+1 > kr which satisfies
PCP (kr+1) = kr. Since (k0, k1, . . . , kr) is a strictly increasing sequence, such
kr always exists. Note that GPP (kl) = kl+1 except for GPP (kr). On the
sequence, there may or may not exist j such that PPP (kj) = kj .
Suppose that there exists some j such that PPP (kj) = kj . Since kj−1 =
PCP (kj), P [kj−1] is the minimum element in P [1..kj−1], and so PPP (kj−1) =
kj−1. Proceeding inductively, PPP (kl) = kl for all l ≤ j. Thus S[PPP (k)] �
S[k] holds trivially.
Now we consider the case that PPP (kj) 6= kj for all j. Then, we have S[k0] �
S[k1] � · · · � S[kr] � S[GPP (kr)] = S[PPP (kr)] by the assumption that
S[GPP (i)] � S[i] for all i. We now show PPP (kr) = PPP (k) as follows. Since
PCP (kr) = kr−1, P [kr−1] is the minimum element in P [PPP (kr) + 1..kr −
1], and P [kr−1] � P [PPP (kr)]. Hence, we have PPP (kr−1) = PPP (kr).
Inductively, we can show that PPP (k0) = PPP (k1) = · · · = PPP (kr).
Therefore, S[PPP (k)] � S[k] holds. ut

By Theorem 3, we only have to compare once for each element in the ver-
ification phase. For a potential candidate obtained from the filtration phase
(say, it starts from T [i]), we compare T [i + q − 1] and T [i + GPP (q) − 1]
from q = 1 to m. The candidate is discarded when there exists q such that
T [i+ q − 1] ≺ T [i+ GPP (q)− 1].



Fast Cartesian Tree Matching 9

Algorithm 3 Compare integers in parallel

1: procedure CompareUsingSIMD(T [1..n], i)
2: m128i a ← mm loadu si128(( m128i *)(T + i))
3: m128i b ← mm loadu si128(( m128i *)(T + i+ 1))
4: m128i r ← mm cmpgt epi32(a, b)
5: return mm movemask ps( mm castsi128 ps(r))

We compute the global-parent representation using a stack, as in computing
the prefix-parent and the prefix-child representations. The only difference is that
first we set GPP (i) as PPP (i), and then if we find j such that PCP (j) = i we
update GPP (i) to j.

4.3 Sublinear time on average

The proof of sublinearity is similar to the analysis of order-preserving matching
with filtration [10]. Let’s assume that the elements in the pattern P and the text
T are independent of each other and the distribution is uniform. The verification
phase takes time proportional to the pattern length times the number of poten-
tial candidates. When alphabet size is |Σ|, the probability that βP [i] = 0 (i.e.,
probability that P [i] ≺ P [i+1]) is (|Σ|2+ |Σ|)/(2|Σ|2), since there are |Σ|2 pairs
and |Σ| pairs among them have equal elements. Similarly, the probability that
βP [i] = 1 is (|Σ|2−|Σ|)/(2|Σ|2), and it is the same for βT [i]. Therefore, the prob-
ability that βP [i] = βT [i] is ((|Σ|2 + |Σ|)/(2|Σ|2))2 + ((|Σ|2 − |Σ|)/(2|Σ|2))2 =
1/2 + 1/(2|Σ|2). As the pattern length increases, the number of potential candi-
dates decreases exponentially, and the verification time approaches zero. Hence,
the filtration time dominates. So if the filtration method takes a sublinear time
in the average case, the total algorithm takes a sublinear time in the average
case, too.

4.4 SIMD instructions

When we use the Boyer-Moore-Horspool algorithm [15] and the Alpha skip
search algorithm [8] as the filtration method, we pack four 32-bit numbers or
sixteen 8-bit numbers into a register, as in order-preserving matching algorithms
[9, 7]. Each pair of two corresponding packed data elements can be compared in
parallel using streaming SIMD extensions (SSE) [16]. In the case of 32-bit in-
tegers, for example, we compute (T [i + 3] > T [i + 4]), (T [i + 2] > T [i + 3]),
(T [i + 1] > T [i + 2]), and (T [i] > T [i + 1]) in parallel as in Algorithm 3, where
instruction mm loadu si128(( m128i *)(T + i)) loads four 32-bit integers from
memory T+i into a 128-bit register, instruction mm cmpgt epi32(a, b) compares
four pairs of packed 32-bit integers and returns the results of the comparisons
into a 128-bit register, instruction mm castsi128 ps casts the integer type to
the float type, and instruction mm movemask ps selects only the most signifi-
cant bits of the 4 floats. Comparing a pair of sixteen 8-bit numbers can be done
similarly.
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5 SIMD solution for short patterns

In this section we present an algorithm that works when the alphabet consists of
1-byte characters and the pattern lengthm is at most 16. As shown in Section 4.2,
we test T [s+ i−1] � T [s+GPP (i)−1] for 1 ≤ i ≤ m to check for an occurrence
at position s of the text T .

Let W be a word of 16 bytes containing the current window of the text, i.e.,
W = T [s..s + 15]. For 1 ≤ i ≤ m, we define Wi (word obtained from W by
shifting i − GPP (i) positions to the left or to the right, depending on the sign
of i− GPP (i)) as follows:

Wi =

{
W � (GPP (i)− i) if i < GPP (i)

W � (i− GPP (i)) if i > GPP (i).

For fixed i, we can find the positions j which satisfy W [j + i − 1] � W [j +
GPP (i) − 1] for 0 ≤ j ≤ 15 in parallel by comparing Wi to W using SIMD
instructions. The satisfying positions for all 1 ≤ i ≤ m are the occurrences
of the pattern. The details of the algorithm are as follows. We test whether
Wi[j] � W [j] for 0 ≤ j ≤ 15 in parallel using the SIMD instruction Ri =
mm cmpgt epi8(W,Wi) for i < GPP (i) or Ri = ∼ mm cmpgt epi8(Wi,W ) for
i > GPP (i). (In order to get only significant bits when computing Ri, we use
instruction mm movemask epi8.) Then we compute q = ANDm

i=1(Ri � (i−1)).
Finally, we report a match at position s+ j of the text if q[j] = 1.

Example 1. Let’s consider an example of the pattern P = (3, 1, 6, 4, 8) and the
window of the text W = (10, 12, 16, 15, 6, 14, 9, 12, 11, 14, 9, 17, 12, 13, 12, 10). We
observe that since 1 − GPP (1) = 3 − GPP (3), R1 = R3. Moreover we do not
need to compute R2, since 2−GPP (2) = 0. Hence we compute R1, R4, and R5.

W = 10, 12, 16, 15, 06, 14, 09, 12, 11, 14, 09, 17, 12, 13, 12, 10
W1 = 12, 16, 15, 06, 14, 09, 12, 11, 14, 09, 17, 12, 13, 12, 10
R1 = 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, -

W = 10, 12, 16, 15, 06, 14, 09, 12, 11, 14, 09, 17, 12, 13, 12, 10
W4 = 10, 12, 16, 15, 06, 14, 09, 12, 11, 14, 09, 17, 12, 13
R4 = -, -, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1

W = 10, 12, 16, 15, 06, 14, 09, 12, 11, 14, 09, 17, 12, 13, 12, 10
W5 = 10, 12, 16, 15, 06, 14, 09, 12, 11, 14, 09, 17, 12, 13, 12
R5 = -, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0

The final result q can be computed as follows:

R1 = 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, -
R3 � 2 = 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, -, 0, 0
R4 � 3 = 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0
R5 � 4 = 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0
q = 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
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Dataset m
KMP IKMP SBNDMCT BMHCT SKSCT PM
CT CT 2 4 6 4 8 12 16 4 8 12 16 CT

Random 5 10.52 6.84 4.99 4.42 4.17 3.31
int 9 10.71 6.83 2.71 2.31 1.95 1.95 1.64 1.91 2.26

17 10.69 6.83 1.39 1.34 0.95 1.31 0.80 0.86 1.60 1.13 0.45 0.61 3.91
33 10.69 6.83 0.72 0.70 0.65 1.07 0.51 0.51 1.01 0.76 0.32 0.30 0.48
65 10.71 6.83 0.72 0.71 0.66 0.98 0.44 0.43 0.71 0.61 0.27 0.24 0.28

Seoul 5 5.08 3.07 2.67 2.91 2.52 2.27
temp 9 5.11 3.14 1.56 1.45 1.55 1.55 1.23 1.27 1.77

17 5.51 3.12 0.89 0.81 0.71 1.10 0.62 0.63 0.84 0.88 0.44 0.49 2.55
33 5.56 3.12 0.49 0.48 0.45 0.84 0.40 0.34 0.41 0.68 0.32 0.20 0.25
65 5.52 3.11 0.48 0.48 0.46 0.77 0.26 0.19 0.28 0.57 0.25 0.13 0.12

Random 5 10.24 6.86 4.80 4.44 3.95 3.22 0.50
char 7 10.32 6.86 3.53 2.89 4.47 2.39 2.40 0.84

9 10.34 6.85 2.65 2.32 1.94 1.74 1.24 1.91 1.47 1.32
13 10.32 6.85 1.75 1.68 1.10 1.23 0.70 0.68 1.34 0.45 1.15 3.76
17 10.35 6.86 1.28 1.25 0.87 1.04 0.52 0.49 0.79 1.04 0.27 0.32 1.64
33 10.34 6.85 0.61 0.60 0.54 0.78 0.29 0.26 0.43 0.66 0.16 0.09 0.11
65 10.36 6.86 0.63 0.63 0.55 0.74 0.20 0.17 0.27 0.47 0.13 0.04 0.05

Table 1: Execution times in seconds for random patterns in texts (Random datasets:
for 100 patterns, Seoul temperatures dataset: for 1000 patterns).

Therefore, we can report 3 matches. After we have tested a window of the
text, we shift the current window to the right by 17−m positions. This algorithm
takes O(mn/(17−m)) SIMD instructions.

6 Experiments

In this section we conduct experiments comparing the following algorithms.

– KMPCT: algorithm of Park, Amir, Landau, and Park [21]
– IKMPCT: our improved linear-time algorithm based on prefix-parent and

prefix-child representations (Section 3)
– PMCT: SIMD solution for short patterns (Section 5)
– SBNDMCTq: algorithm based on the SBNDMq filtration implemented by

Faro and Lecroq [13] on the binary representations of the text and the pat-
tern (Section 4.1) and verification using the global-parent representation
(Section 4.2) [12] (The following algorithms have the same framework as
SBNDMCTq; only SBNDMq is replaced by another filtration method.)

– BMHCTq: algorithm based on the q-gram Boyer-Moore-Horspool filtration
using SIMD instructions [15, 22, 9]

– SKSCTq: algorithm based on the q-gram Alpha skip search filtration using
SIMD instructions [8, 7]

We tested for two random datasets and one real dataset, which is a time series
of Seoul temperatures. The first random dataset consists of 10,000,000 random
integers. The second random dataset consists of 10,000,000 random characters.
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Fig. 3: Execution times for the random character dataset.

The Seoul temperatures dataset consists of 658,795 integers referring to the
hourly temperatures in Seoul (multiplied by ten) in the years 1907-2019. In
general, temperatures rise during the day and fall at night. Therefore, the Seoul
temperatures dataset has more matches than random datasets. We picked 100
random patterns per pattern length from random datasets and 1000 random
patterns per pattern length for the Seoul temperatures dataset.

The experimental environments and parameters are as follows. All algorithms
were implemented in C++11 and compiled with GNU C++ compiler version
4.8.5, and O3 and msse4 options were used. The experiments were performed on
a CentOS Linux 7 with 128GB RAM and Intel Xeon CPU E5-2630 processor.

Table 1 shows the total execution times of Cartesian tree matching algo-
rithms for random patterns (including the preprocessing). The best results are
boldfaced. We choose the best results of the random character dataset from each
algorithm regardless of q and present them in Fig. 3 (except KMPCT because
of readability). Our linear-time algorithm IKMPCT improves upon algorithm
KMPCT of [21] by about 35%. In the random character dataset, PMCT is the
fastest algorithm for short patterns. However, as the pattern length grows, algo-
rithms based on the filtration method are much faster in practice. It can be seen
that SKSCT is the fastest algorithm in most cases. When the pattern length
is equal to 9, BMHCT utilizing 8-grams is the fastest algorithm, irrespective of
the datasets. As pattern length grows, SKSCT utilizing 12-grams becomes the
fastest algorithm.

Regardless of the data type, the results are almost consistent. In details, how-
ever, there are several differences. First, filtration algorithms, especially SKSCT
algorithms, are slower at the Seoul temperatures dataset relatively. It’s because
there are more matches in the Seoul temperatures dataset. Second, when q
is large, BMHCT and SKSCT algorithms are faster in the random character
dataset than in the random integer dataset. It’s because the maximum number
that we can compute in parallel is 16 in the character dataset while it is 4 in the
integer dataset.
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