
Verifiable Pattern Matching on Outsourced
Texts ?

Dario Catalano, Mario Di Raimondo, and Simone Faro

Dipartimento di Matematica e Informatica, Università di Catania, Italy.
{catalano,diraimondo,faro}@dmi.unict.it

Abstract. In this paper we consider a scenario where a user wants to
outsource her documents to the cloud, so that she can later reliably del-
egate (to the cloud) pattern matching operations on these documents.
We propose an efficient solution to this problem that relies on the homo-
morphic MAC for polynomials proposed by Catalano and Fiore in [14].
Our main contribution are new methods to express pattern matching
operations (both in their exact and approximate variants) as low degree
polynomials, i.e. polynomials whose degree solely depends on the size
of the pattern. To better assess the practicality of our schemes, we pro-
pose a concrete implementation that further optimizes the efficiency of
the homomorphic MAC from [14]. Our implementation shows that the
proposed protocols are extremely efficient for the client, while remaining
feasible at server side.

1 Introduction

Imagine that Alice wants to store all her data on the cloud in a way such that she
can later delegate, to the latter, basic computations on this data. In particular,
Alice wants to be able to do this while retaining some key properties. First, the
cloud should not be able to fool Alice by sending back wrong outputs. Specifi-
cally, the cloud should be able to provide a “short” (i.e. much shorter than a mere
concatenation of the inputs and the output) proof that the output it computed is
correct. Second, Alice should be able to check this proof without having to main-
tain a local copy of her data. In other words, the verification procedure should
not need the original data to work correctly. An elegant solution to this problem
comes from the notion of homomorphic authenticators. Informally, homomor-
phic authenticators are like their standard (non-homomorphic) counterparts but
come equipped with a (publicly executable) evaluation algorithm that allows
to obtain valid signatures on messages resulting from computing on previously
signed messages. Slightly more in detail, the owner of a dataset {m1, . . . ,m`}
uses her secret key sk to produce corresponding authenticating tags (σ1, . . . , σ`)
which are then stored on the cloud together with {m1, . . . ,m`}. Later, the server
can (publicly) compute m = f(m1, . . . ,m`) together with a succinct tag σ cer-
tifying that m is the correct output of the computation f . A nice feature of

? A full version of this paper is available at
http://www.dmi.unict.it/diraimondo/uploads/papers/vpm-full.pdf

homomorphic authenticators is that, as required above, the validity of this tag
can be verified without having to know the original dataset.

Homomorphic authenticators turned out to be useful in a variety of settings
and have been studied in several flavors. Examples include homomorphic sig-
natures for linear and polynomial functions [10, 11], redactable signatures [31],
transitive signatures and more [36, 39].

Our Contribution. In this paper we consider the setting where Alice wants
to reliably delegate the cloud to perform pattern matching operations (both in
their exact and approximate flavors) on outsourced text documents. While in
principle this problem can be solved by combining (leveled) fully homomorphic
signatures [29] and well known pattern matching algorithms (e.g. [33]), our focus
here is on efficient, possibly practical, solutions. To achieve this, we develop
new pattern matching algorithms specifically tailored to cope well with the very
efficient homomorphic MAC solution from [14]. Our methods are very simple and
allow to represent several text processing operations via (relatively) low degree
polynomials1. Specifically, our supported functionalities range from counting the
number of exact (or approximate) occurrences of a string in a text to finding the
n-th occurrence of a pattern (and its position).

Slightly more in detail, our basic idea is to use the homomorphic MAC for
polynomials from [14] to authenticate the texts one wishes to outsource, in a
bit by bit fashion. Very informally this can be done as follows. If Alice wants to
outsource her file grades, denoting with bi the i-th bit of grades, she proceeds by
first producing a MAC σi, for each bi and then storing grades together with all
the σi’s on the cloud. Later, when Alice delegates a computation f to the cloud,
she gets back an output z and a proof of correctness π that, by the properties of
homomorphic authenticators, can be verified without having to maintain a copy
of the data locally.

The catch with this solution is that, in order to be any practical, f has to be
a low degree arithmetic circuit. This is because a drawback of the construction
from [14] is that the size of π grows linearly with the degree d of the circuit2.

To address this issue we observe that, when dealing with bits, relevant pattern
matching functionalities can be expressed via polynomials of degree, at most, 2m
where m is the bit-size of the pattern. To briefly illustrate the ideas underlying
our techniques, let us focus on the case of exact pattern matching. There, the
key observation is that checking if a pattern x, of size m, occurs in a text y,
of size n, can be done via the following easy steps. First, one considers all the
(n − m + 1) possible substrings w of y of size m. Next, for each such w, one

1 In particular the degree of these polynomials solely depends on the size of pattern
string and is independent of the size of the texts

2 Notice that in [14] a solution where the size of π can be made independent of d
is also proposed. This solution however is computationally much less efficient as it
imposes larger parameters.

checks equality with x via the following simple formula

m−1∏
i=0

(2xiwi + 1− xi − wi) (1)

which is 1 if and only if all bits of x and w are equal (and 0 otherwise). Thus,
x appears in y if at least one such products is non zero. This can be tested by
summing the products corresponding to all possible w and checking if the result
is different than zero.

Dynamic Polynomials. Notice however that, for large n, a naive application
of the technique above might result in a prohibitively expensive computation
for the server3, as the latter would need to first compute and then add O(n)
polynomials of degree 2m.

To overcome this limitation we observe that a more careful encoding of the
computation at server side, can drastically improve performances. The key point
here is that, for a given pattern x, the server can reduce its costs by adapting the
computation of the formula in (1) according to the bits of pattern x. Specifically,
the formula (1) can be rewritten as

m−1∏
i=0

(xiwi + (1− xi)(1− wi)) (2)

which can be computed in m steps my using the following procedure

P = 1
for i = 0 to m− 1 do

if (xi = 0) P ← P · (1− wi)
else P ← P · wi

return P

Thus, for each queried pattern, the computed formula is dynamically adapted
to the pattern. This leads to computations which are both simpler and more
efficient than those induced by (1). Our tests show that this simple observation
allows to reduce the computational costs of the server by a (rough) −71% !

Evaluation over Samples and Experimental Results. As already hinted
above, to better assess the efficiency of our solutions we ran extensive experi-
ments. In order to gain better performances we further optimized our techniques
as follows. First, as already suggested in [14], we adopt Fast Fourier Transform
(FFT) to speed up multiplications of polynomials. Inspired by FFT, we also
propose an alternative strategy, named “evaluation over samples”, where the
whole evaluation is performed representing the polynomials via set of samples

3 Indeed, our first implementations show that this cost can quickly become unbearable
even for texts of few thousands characters.

(rather than via their coefficients). This further simplifies the implementation of
polynomial multiplication and, for the case of low degree polynomials, provides
an additional speed up. Finally, we note that, using some basic precomputation
at client side (see [8]), verification costs can be made essentially negligible.

Our experiments show that our optimized implementations are extremely
fast for the client while remaining feasible for the server. In terms of concrete
numbers, our tests show that it is possible to count the exact occurrences of
a 4 characters pattern in a text of 10 KiB in about 4 seconds with a proof of
528 bytes verifiable in just 300 ms. With a bigger text of 100 KiB the evaluation
time raises roughly to 38 seconds. The usage of large patterns sensibly slows
down the evaluation process (i.e. the costs for the server). We remark that, for a
fixed pattern size, the evaluation costs for the server grow linearly with n (i.e. the
size of the text). This means that for very large n our protocols, while feasible,
cannot be considered practical anymore.

Related work. The problem of computing reliably on outsourced data can
be solved in principle using short non interactive arguments of knowledge on
authenticated data (AD-SNARKs) [7]. Such a solution would allow lower verifi-
cation costs (i.e. independent from the size of the computed circuit). The main
disadvantage of AD-SNARKs, with respect to our solution, is that they require
much more complex machinery (thus making the costs for the server even more
prohibitive). Moreover, even without considering efficiency, our homomorphic-
authenticators based solution is preferable for at least two reasons. First, it re-
quires shorter parameters: known AD-SNARKs [7] require evaluation/verification
keys that grow significantly with the size of the supported circuits. Also, our so-
lution requires only standard, falsifiable assumptions.

The questions considered in this paper share some similarities with those ad-
dressed by Verifiable Computation (VC)[26]. There, a client wants to outsource
some computationally intensive task and still be able to quickly verify the cor-
rectness of the received result. Typically, VC schemes assume that the input
remains available to the verifier. In our context, on the other hand, the difficulty
comes from the fact that the (not necessarily complex) task involves data not
locally available to the client.

The notion of homomorphic MAC was first considered (in the setting of linear
functions) by [1] and later extended to more general functionalities in [28, 14,
8, 15] In the asymmetric setting the idea of homomorphic signature was first
proposed by Desmedt [23] and later refined by Johnson et al. [31]. Starting from
the work of Boneh et al. [10], several other papers further studied this notion both
in the standard model [4, 19, 5, 20, 25, 6, 18] and in the random oracle model [27,
12, 11, 16, 17]. Beyond linear functions, Boneh and Freeman in [11] proposed
an homomorphic signature scheme for constant degree polynomials. This result
was later improved by Catalano, Fiore and Warinschi [21] and, more recently,
by Gorbunov et al. [29]. This latter construction provides the first realization
of a (leveled) fully homomorphic signature scheme. See [13] for a survey on
homomorphic authenticators.

Polynomial encodings have been extensively studied in past. Among others,
we recall the works by Applebaum et al. [3, 2] on randomized encodings.

Other related work. The string matching problem is one of the most funda-
mental problems in computer science. It consists in finding all the occurrences
of a given pattern x of length m, in a text y of length n. The worst case time
complexity of string matching problem is O(n + m), and was achieved for the
first time by the well known Knuth-Morris-Pratt algorithm [33]. However the
most efficient solutions to the problem in the average case have an O(nm) worst
case time complexity [24]. In the approximate string matching problem we allow
the presence of errors in the occurrences of the pattern in the text. Specifically
we are interested in the string matching problem with δ errors, where at most δ
substitutions of characters are allowed in order to make the pattern occur in the
text. Solution to both exact and approximate string matching problems are based
on comparisons of characters [33], deterministic finite state automata [22], sim-
ulation of non-deterministic finite state automata [9] and filtering methods [32].
In this paper we are interested in solving the string matching problem by using
polynomial functions. To our knowledge this is the first time the string matching
problem is defined in polynomial form.

In [37] Papadopoulos et al. propose an efficient solution for an outsourced
pattern matching scenario similar to the one considered here. Their idea com-
bines suffix trees with cryptographic accumulators. The resulting proofs have size
comparable to ours but, thanks to an heavy pre-processing over the outsourced
texts4, they can be generated very efficiently. We note also that this preprocess-
ing step is not update friendly: after the text is updated it becomes necessary
to re-create the whole suffix tree. Our solution is slightly better than this as, for
the specific case of append-updates it does not require any recomputations for
the original tags.

Road Map. In Section 2 we recall the efficient homomorphic MAC scheme
from [14]. Our new pattern matching algorithms are presented in Section 3, while
the details of the proposed implementation together with relevant experimental
results are given in Section 4.

2 Homomorphic MACs

In this section we briefly recall the construction of homomorphic MACs from [14]
that is going to be used in our constructions. For details not discussed here we
defer the reader to the original paper. Intuitively, the constructions proposed
in [14], are given in the setting of labeled programs [28]. To authenticate a compu-
tation f one authenticates its inputs m1, . . .mn by also specifying corresponding
labels τ1 . . . τn. A label can be seen as an index of a database record or, simply,

4 Moreover this pre-processing has to be done by the text owner (the weak client in
our scenario) and cannot be delegated to the untrusted cloud server.

as a name given to identify the (outsourced) input. In the application considered
in this paper a label might simply be the name of the document followed by an
indexing of its characters (bits). For example, each bit bi of the documents exams
could simply be the string τi = exams||i (here || denotes concatenation).

The combination of f and the labels is a labeled program P, that is what
is later executed by the cloud. For the case of pattern matching applications,
labeled programs are used as follows. When outsourcing a text document T to
the cloud, the client proceeds as follows. First she computes a MAC of T , by
authenticating each bit bi of T using its corresponding label τi. Denoting with σbi
the MAC corresponding to the i-th bit of T , the client stores (T, σb1 , . . . , σb|T |)
on the cloud.

As in [14], we consider circuits where additive gates do not get inputs labeled
by constants. We stress that adding such gates can be done easily, as one can
adopt an equivalent circuit where a special variable/label for the value 1 is added.
A MAC of 1 is also added to the public parameters. It is worth mentioning the
fact that the construction given below does not provide succinct authenticating
tags, if the number of multiplications performed is too high. This is because the
size of the tag grows with the degree d of the arithmetic circuit one wants to
authenticate. In our case this is not going to be a problem as (see Section 3) d
is bounded by the size of the pattern.

The following description is taken (almost) verbatim from [14]

KeyGen(1λ). Let p be a prime of roughly λ bits. Choose a seed K of a pseudo-

random function FK : {0, 1}∗ → Zp and a random value x
$← Zp. Output

sk = (K,x), ek = p and let the message space M be Zp.
Auth(sk, τ,m). To authenticate a message m ∈ Zp with label τ ∈ {0, 1}λ,

compute rτ = FK(τ), set y0 = m, y1 = (rτ − m)/x mod p and output
σ = (y0, y1). Thus, y0, y1 are the coefficients of a degree-1 polynomial y(z)
with the special property that it evaluates to m on the point 0 (y(0) = m),
and it evaluates to rτ on a hidden random point x (y(x) = rτ).
Tags σ are seen as polynomials y ∈ Zp[z] of degree d ≥ 1 in some (unknown)
variable z, i.e., y(z) =

∑
i yiz

i.
Eval(ek, f,σ). The homomorphic evaluation algorithm takes as input the evalu-

ation key ek = p, an arithmetic circuit f : Znp → Zp, and a vector σ of tags
(σ1, . . . , σn).
Eval proceeds gate-by-gate as follows. At each gate g, given two tags σ1, σ2 (or
a tag σ1 and a constant c ∈ Zp), it runs the algorithm σ←GateEval(ek, g, σ1, σ2)
described below that returns a new tag σ, which is in turn passed on as input
to the next gate in the circuit.
When the computation reaches the last gate of the circuit f , Eval outputs
the tag vector σ obtained by running GateEval on such last gate.
To complete the description of Eval we describe the subroutine GateEval.

– GateEval(ek, g, σ1, σ2). Let σi = y(i) = (y
(i)
0 , . . . , y

(i)
di

) for i = 1, 2 and
di ≥ 1 (see below for the special case when one of the two inputs is a
constant c ∈ Zp).
If g = +, then:

• let d = max(d1, d2). Here we assume without loss of generality that
d1 ≥ d2 (i.e., d = d1).

• Compute the coefficients (y0, . . . , yd) of the polynomial y(z) = y(1)(z)+
y(2)(z). This can be efficiently done by adding the two vectors of co-
efficients, y = y(1) + y(2) (y(2) is eventually padded with zeroes in
positions d1...d2).

If g = ×, then:
• let d = d1 + d2.
• Compute the coefficients (y0, . . . , yd) of the polynomial y(z) = y(1)(z)∗
y(2)(z) using the convolution operator ∗, i.e., ∀k = 0, . . . , d, define

yk =
∑k
i=0 y

(1)
i · y

(2)
k−i.

If g = × and one of the two inputs, say σ2, is a constant c ∈ Zp, then:
• let d = d1.
• Compute the coefficients (y0, . . . , yd) of the polynomial y(z) = c ·
y(1)(z).

Return σ = (y0, . . . , yd).
Notice that the size of a tag grows only after the evaluation of a multiplica-
tion gate (where both inputs are not constants). It is not hard to see that
after the homomorphic evaluation of a circuit f , it holds |σ| = d+ 1, where
d is the degree of f .

Ver(sk,m,P, σ). Let P = (f, τ1, . . . , τn) be a labeled program, m ∈ Zp and
σ = (y0, . . . , yd) be a tag for some d ≥ 1. Verification proceeds as follows:
– If y0 6= m, then output 0 (reject). Otherwise continue as follows.
– For every input wire of f with label τ compute rτ = FK(τ).
– Next, evaluate the circuit on rτ1 , . . . , rτn , i.e., compute ρ←f(rτ1 , . . . , rτn),

and use x to check whether the following equation holds:

ρ =

d∑
k=0

ykx
k (3)

If this is true, then output 1. Otherwise output 0.

In [14] it is proved that the scheme above is secure under the sole assumption
that pseudorandom functions exist.

3 String Matching Using Polynomial Functions

In this section we describe our new pattern matching solutions. These are specif-
ically tailored to work nicely with the practical homomorphic MACs from [14].
We start by describing a simple methodology to count the number of exact oc-
currences of a pattern in a text. Next, we describe how to modify this procedure
to encompass other cases.

Let X be the input pattern of length M , and let Y be the input text of
length N , both over the same alphabet Σ of size σ. We use the symbol Xi to
indicate the (i + 1)-th character of X, with 0 ≤ i < m. Moreover we use the

symbol X[i..j] to indicate the substring of X starting at position i and ending
at position j (included), where 0 ≤ i ≤ j < n. We say that X has an occurrence
in Y at position j if X = Y [j..j +m− 1].

Our methods performs computation using the bitwise representation of the
input strings. To this purpose, observe that each character in Σ can be repre-
sented using log(σ) bits. For instance each character in the set of 256 elements
of the ASCII table can be represented using 8 bits. Let x and y be bitwise
representation of X and Y , respectively. We use m to indicate the length of x
and n for the length of y, so that m = M log(σ) and n = N log(σ). Moreover
xi, yj ∈ {0, 1}, for each 0 ≤ i < m and 0 ≤ j < n.

In the following sections we will describe string matching problems in terms of
functions, where the input strings play the role of variables. Additional relevant
definitions will be introduced where needed. Proofs to lemmas and theorems
stated below are deferred to the full version of this paper.

3.1 Counting the Number of Exact Occurrences of a String.

In this section we address the problem of counting the number of exact occur-
rences of a string X of size M in a string Y of size N . We recall that a string X
has an exact occurrence at position j of Y if and only if X = Y [j..j + N − 1].
More formally the problem of counting all exact occurrences of a string can be
defined as the problem of computing the cardinality of the set

{j : 0 ≤ j < N and X = Y [j..j +M − 1]}

When both strings are defined over the binary alphabet Σ = {0, 1}, com-
parisons between strings and characters can be represented as polynomials. For
instance we can use the polynomial function (2ab + 1 − a − b) for computing
comparison between two given binary values a, b ∈ {0, 1}.

Formally we have

2ab+ 1− a− b =

{
1 if a = b
0 otherwhise

(4)

Specifically we come up with the following definition for a polynomial which
count the number of occurrences X in Y , using their bitwise representations, x
and y. For the sake of clarity and brevity we will use in the following the symbol
y(i,j) to indicate the character y[j log(σ) + i].

Definition 1 (Exact matches function).
Let X be a pattern of length M , and let Y be a text of length N , both over the
same alphabet Σ of size σ. Let x and y be their bitwise representations, of length
m and n, respectively. Then we can compute the number of exact occurrences of
X in Y by using the polynomial function α(X,Y) defined as

α(X,Y) =

N−M∑
j=0

(
m−1∏
i=0

(
2xiy(j,i) + 1− xi − y(j,i)

))
(5)

The function α(X,Y) defined above requires O(NM log(σ)) multiplications
while the resulting polynomial has degree 2m = 2M log(σ). When computing
such polynomial function we are able to retrieve the number of occurrences of X
in Y , but we are not able to know the positions of such occurrences. Theorem 1
given below proves the correctness of the function given in (5). We first prove
the following technical lemma which defines a method for comparing two binary
strings with the same length.

Lemma 1. Let x = x0x1..xm−1 and w = w0w1..wm−1 be two strings of length
m, both over the binary alphabet Σ = {0, 1}. Then we have that

x = w ⇔
m−1∏
i=0

(2xiwi + 1− xi − wi) = 1 (6)

ut

Theorem 1. Given a pattern X, of length M , and a text Y , of length N , both
over the binary alphabet Σ of size σ, let x and y their bitwise representations,
of length m and n, respectively. Then the exact matches polynomial function
given in Definition 1 computes correctly the number of occurrences of X in Y .
Formally

α(X,Y) =
∣∣{j : 0 ≤ j ≤ N −M and X = Y [j..j +M − 1]

}∣∣
ut

3.2 Finding the Positions of All Occurrences

In many applications it is required to find the positions of the occurrence of the
pattern X in Y . Let π(X,Y, j) be initial position of the j-th occurrence of X in
Y , with i > 0. We assume that π(X,Y, j) = ∞ if the number of occurrences of
X in Y is less than i. The position of the first occurrence (i.e. π(X,Y, 1)) can be
obtained by asking the server to compute such position, say p1, and subsequently
to verify if such information is correct. Specifically we have that

π(X,Y, 1) = p1 ⇔ α(X,Y [0..p1 +M − 2]) = 0 and α(X,Y [p1..p1 +M − 1]) = 1

If π(X,Y, 1) =∞, indicating that no occurrence of X is contained in Y , we can
verify such information by computing α(X,Y). Specifically we have

π(X,Y, 1) =∞⇔ α(X,Y) = 0

In general, if we are interested in computing the position of all occurrences
of X in Y it is possible to iterate the above procedure along the whole text Y .
Let pj be the position of the j-th occurrence of X in Y , i.e. π(X,Y, j) = pj , for
j > 0, and let k = α(X,Y) the total number of occurrences. Thus we have that
π(X,Y, j) =∞ for all j > k.

It turns out that, for all 0 < j ≤ k, π(X,Y, j) = pj if and only if we have
α(X,Y [pj−1 + 1..pj +M − 2]) = 0 and α(X,Y [pj ..pj +M − 1]) = 1. Moreover,
for j > k, we have that π(X,Y, j) =∞ if and only if α(X,Y [pk + 1..N]) = 0.

3.3 Counting the Approximate Occurrences of a String

In our setting of the approximate string matching problem, given a pattern X of
length M , a text Y of length N , and a bound δ < M , we want to find all substring
of the text of length M which differ from the pattern of, at most, δ characters.
In literature such variant of the approximate string matching problem is referred
as string matching with δ errors [35].

More formally we want to find all substrings Y [j..j +M − 1], for 0 ≤ j < N ,
such that ∣∣∣{i : 0 ≤ i < M and Xi 6= Yj+i

}∣∣∣ ≤ δ
We first define the following k-error constant τk, for a strung of length M , which
will be used later. Specifically we set

τk =

k∏
i=1

i×
−1∏

i=k−M

i (7)

We next prove the following lemma which introduces a polynomial function for
computing the number of mismatches between two strings of equal length. We
recall that we use the symbol y(j,i) to indicate yj log(σ)+i.

Lemma 2 (Mismatch function). Let X and W two strings over a common
alphabet Σ of size σ. Let x and w be their bitwise representations of length
m = M log(σ). The mismatch function Ψ : ΣM ×ΣM → {0, 1, ..,M}, defined as

Ψ(X,W) =

M−1∑
j=0

[
1−

log σ−1∏
i=0

(
2x(j,i)w(j,i) + 1− x(j,i) − w(j,i)

)]
(8)

counts the number of mismatches between X and W .
ut

Let us take into account the value τk(x,w), defined as the product of the
differences between Psi(x,w) and the values int he range {1..m}. Formally

τ(X,W) =

M∏
i=0

(Ψ(X,W)− i) . (9)

Since 0 ≤ Ψ(X,W) ≤M , it turns out that the value of τ(X,W) is always equal
to 0. In fact one (and only one) of the factors in (9) is equal to zero.

We are now ready to prove the following lemma which introduces a polyno-
mial function for detecting if X and W differs exactly of k characters.

Lemma 3 (k-mismatch function). Let X and W be two strings of length M
over an alphabet Σ of size σ. Moreover let k an error value in {0, ..,M}. Then
the k-mismatch function, τk : Σm ×Σm → {0, 1}, defined as

τk(X,W) =
1

τk

k−1∏
i=0

(Ψ(X,W)− i)×
M∏

i=k+1

(Ψ(X,W)− i) . (10)

is equal to 1 if X and W has k mismatches, otherwise it is equal to 0. ut

Observe that the resulting polynomial for computing τ(X,Y) has degree 2m
while the polynomial for computing τk has degree (m− 1).

The following corollary gives a method to compute the number of approx-
imate occurrences of a given pattern X in a text Y with exactly k errors. It
trivially follows from Lemma 3.

Corollary 1 (Count k errors matches function). Given a pattern X, of
length M , a text Y , of length N , and an error value k ≤M , we can compute the
number of occurrences of X in Y with (exactly) k errors by using the function
βk(X,Y) defined as

βk(X,Y) =

N−M∑
i=0

τk(X,Y [i..i+M − 1])

Finally, the following corollary introduces the function for computing the
number of approximate occurrences of X in Y assuming an error bound δ. It
trivially follows from Corollary 1.

Corollary 2 (Count δ-approximate matches function). Given a pattern
X, of length M , a text Y , of length N , and an error bound δ ≤ M , we can
compute the number of occurrences of X in Y with at most δ errors by using the
function γ(X,Y) defined as

γ(X,Y) =

δ∑
k=0

βk(X,Y) (11)

As previously described we can also adapt such technique to find the position
of the first occurrence, as the position of all occurrences of X in Y .

3.4 Using Dynamic Polynomials.

In our experimental results, using the polynomials introduced above, we observed
a prohibitively expensive computation for the server, especially for large texts.
It turns out, in fact, that for both exact and approximate pattern matching we
need to first compute and then add O(N) polynomials of degree 2m.

In this section we present a method to overcome this limitation and decrease
the degree of the resulting polynomials. Specifically we observe that a more
careful encoding of the computation at server side can drastically improve the
performances. The key point here is that, for a given pattern X, the server can
reduce its costs by adapting the computation of the polynomials according to
the bits of the pattern X.

Specifically, the formulas (6) and (8) can be rewritten, respectively, as

m−1∏
i=0

(xiwi + (1− xi)(1− wi)) (12)

M−1∑
i=0

[
1−

log σ−1∏
i=0

(
x(j,i)(1− w(j,i)) + (1− x(j,i))w(j,i)

)]
(13)

Thus for instance, if all bits in x are equal to 0, i.e x = 0m, then the polynomial
in (12) is equal to

∏m−1
i=0 (1 − wi), while it is equal to

∑m−1
i=0 wi when x = 1m.

According to such observation the number of exact and approximate occurrences

Exact-Matching(X,M, Y,N)
1. F = 0
2. for j = 0 to N −M do
3. P = 1
4. for i = 0 to m− 1 do
5. if (xi = 0) then
6. P ← P · (1− y(j,i))
6. else P ← P · y(j,i)
7. F ← F + P
8. return F

Product-Factors(X,M, Y,N)
1. for j = 0 to N −M do
2. for i = 0 to M − 1 do
3. P [j, i] = 1
4. for h = 0 to log(σ)− 1 do
5. if (x(i,h) = 0) then
6. P [j, i]← P [j, i] · (1− y(j,h))
6. else P [j, i]← P · y(j,h)

Approximate-Matching(X,M, Y,N, δ)
1. Product-Factors(X,M, Y,N)
2. for k = 0 to δ do

3. τk =
∏k

i=1 i ·
∏−1

i=k−M i

4. F = 0
5. for j = 0 to n−m do
6. Ψ = 0
7. for i = 0 to M − 1 do
8. Ψ ← Ψ + (1− P [j + i, i])
9. for k = 0 to δ do
10. βk = 1
11. for i = 0 to m do
12. if (i 6= k) then
13. βk ← βk · (Ψ − i)
14. βk = βk/τk
15. F = F + βk
16. return F

Fig. 1: Procedure Exact-Matching (on the left) for computing the dynamic polyno-
mial given in (5) and procedure Approximate-Matching (on the right) for computing
the dynamic polynomial in (11).

of the string X in Y can be computed using the algorithms shown in Figure 1,
which construct the polynomial according to the bits contained in X.

Specifically, the algorithm Exact-String-Matching shown in Figure 1
(on the left) computes the dynamic polynomial correspondent to the function
in (5) in O(NM log(σ)) time. The resulting polynomial has a degree equal
to m = M log(σ). Similarly, the algorithm Approximate-String-Matching
shown in Figure 1 (on the right) computes the dynamic polynomial correspon-
dent to the function in (11). Procedure Product-Factors computes a matrix
P of dimension N × M where P [j, i] is 1 if Yj = Xi, and 0 otherwise. Such
computation is performed in time O(NM log(σ)). The overall time complexity
of procedure Approximate-String-Matching is O(NMδ log(σ)) while the
resulting polynomial has a degree equal to m.

4 Implementation Details

In this section we discuss the details of our implementation together with some
optimizations. These, in particular, target both server evaluation and client ver-
ification.

Optimizations. The first optimization we consider is the usage of the dynamic
polynomials technique described in Section 3.4. Beyond reducing computational
costs at server side, this technique also reduces bandwidth costs both when the
client sends a pattern query and when the server provides back the answer.
In the first case, the gain comes from the fact that the pattern can be sent
unauthenticated (i.e. without authenticating it bit by bit, as the basic, non
dynamic, version of our technique would require). In the second case, one gains
from computing a lower degree polynomial (m instead of 2m)5.

The second optimization (referred as “Evaluation over Samples” in our ta-
bles) works at a lower level: the way the server evaluates tags (i.e. polynomials).
Recall that in our case a MAC is a polynomial with coefficients in Zp and Eval
essentially performs additions and multiplications of polynomials (with multipli-
cation being the computationally most intensive operation). A naive implemen-
tation of polynomial multiplication has time complexity O(n2), when starting
from polynomials of degree n. It is well known, that this can be reduced to
O(n log n) using FFT. Very informally, FFT allows to quickly perform multi-
plication by temporarily switching to a more convenient representation of the
starting polynomials. In particular a set of complex points is (carefully) chosen
and the polynomials are computed over such points. Multiplication can now be
achieved by multiplying corresponding points and then going back to the original
representation via interpolation.

Inspired by this, we notice that, since we work with low degree polyno-
mials, we can stick to a “fast” point representation the whole time, without
switching representation at each multiplication, as done in FFT. Specifically,
instead of representing each polynomial f via its coefficients, we keep the points
f(i1), . . . , f(i`), where i1, . . . , i` are (non complex) fixed points and ` is large
enough to perform interpolation at the end. In particular addition (multipli-
cation) of polynomials is obtained by adding (multiplying) the corresponding
points6. We stress that, differently than FFT we keep this alternative represen-
tation along the whole evaluation: polynomial interpolation is applied only once,
to compute the final tag that the server sends back to the client. We also remark
that our technique is alternative to FFT and they cannot be used together.

Our experiments show that verification at client’s side is very fast (few sec-
onds even with the largest considered texts). Still, we could reduce these costs

5 Recall that in the homomorphic MAC scheme from [14] the size of the tags grows
with the degree of the arithmetic circuit.

6 Notice that the fact that we consider low degree polynomials is crucial here. Our
technique is efficient solely because ` does not need to be too big to be able to
interpolate correctly at the end.

even further via preprocessing. This is because the homomorphic MAC from [14]
allows for a two phase verification procedure. The most expensive phase is the
one that involves the computation of ρ (see Section 2). This phase, however, can
be done “offline”, before knowing of the answer provided by the server (in par-
ticular it can be done while waiting for the server’s response). Once receiving an
answer, the client can complete the residual verification procedure with a total
cost of O(d) multiplications, where d is the degree of the tag. Our experimental
results show that this on-line phase has a negligible cost of few milliseconds.

Testing environment and experiment parameters. Our code was written
in C using (mainly) the GMP [30] library but also exploiting NTL [38] and
gcrypt [34] codes, respectively, for a good implementation of the FFT-based
polynomial multiplication and for AES (as underlying PRF). Our single-thread
code was executed on a laptop equipped with a 64-bit Intel i7 6500U dual-core
CPU running at 2.50 GHz speed. Given a specific experiment, the reported
timing is obtained as the average value over multiple runs.

In our experiments, we first implemented the pattern matching algorithm
reporting the number of exact matches of a pattern in a given text, as explained
in Section 3. Then, we progressively applied the proposed optimizations in order
to properly quantify the contribution added by each technique. We also imple-
mented the approximate variant of our algorithm to test its performances. The
algorithmic solutions of Section 3 producing the position of selected occurrences
are clearly a mere application of previous algorithms, so no specific tests were
conducted.

All the involved cryptographic tools where tuned to work with a long-term
security level of 128 bits. We also implemented a (very) low security, 64 bit
variant of our methods7. In this latter case it is possible to get an additional
20%− 30% gain in performances.

Optimization timings. A former set of experiments were carried on in order
to estimate the single contribution of each considered optimization. The usage
of (standard) FFT on the single tag multiplications was also included. The ex-
periments involved a wide range of parameters (mainly varying text and pattern
length). Here we report, the timings of a representative sample: a 1024 characters
long text with a pattern of 8 characters. The time complexity of the evaluation
step is clearly linear in the size of the text, so the performance on larger or
smaller texts can be easily deduced.

For the chosen parameters, the timings for the server evaluation are reported
in Table 1. It is interesting to note that evaluation over samples beats FFT only
when used in conjunction with the dynamic polynomials optimization.

7 These timings are not reported in this paper but are available upon request.

algorithm + optimizations evaluation time (s)

“count exact occurrences” algorithm 35.585
+FFT 8.572
+evaluation over sample 15.937
+dynamic polynomials 10.012
+dynamic polynomials +FFT 3.835
+dynamic polynomials +evaluation over samples 1.424

Table 1: Evaluation of an 8 chars pattern on a 1024 chars text

Additional tests. Next, we considered the behaviour of our methods when
considering different text sizes and pattern lengths8.

We consider three possible pattern lengths: 4, 8 and 16 characters. These
patterns are searched in texts of sizes: 1 KiB, 10 KiB and 100 KiB. As stated
above, the linear complexity in the length of the text allows to easily deduce the
behaviour with longer texts.

The timings and some bandwidth/memory measures using the considered
settings are reported in Table 2. For a specific pattern size, the sampled eval-
uation and verification timings confirm the linearity in the text length. On the
other side, it rapidly grows using longer patterns. The reported verification tim-
ings do not include the possible on-line/off-line optimization discussed before (in
such a case the off line cost of verification becomes essentially the whole cost).

text pattern key
gen.

text
auth.

evaluation verification text tags proof tag

(chars) (ms) (bytes)

1K 4 0.107 12 408 29 256K 528
1K 8 0.107 12 1424 59 256K 1040
1K 16 0.100 12 7685 117 256K 2064

10K 4 0.100 117 4106 307 2.5M 528
10K 8 0.100 113 15263 581 2.5M 1040
10K 16 0.100 116 81383 1176 2.5M 2064

100K 4 0.100 1430 37826 3274 25M 528
100K 8 0.133 1169 151369 6431 25M 1040
100K 16 0.133 1155 788093 11717 25M 2064

Table 2: Timings and sizes of exact pattern matching with both optimizations applied

The cloud storage space for the authenticated text indicates a non-negligible
fundamental factor of 1 KiB/character: it could be almost halved with a smart

8 We stress that we focused on our optimized techniques, as they are better than the
alternative solutions discussed before in essentially all settings considered here.

implementation considering that the known term of the 1-degree polynomial
representing the tag is always a single bit and not a full 128 bits field element.
The size of the proof reported by the server is quite small and it grows linearly
with the size of the pattern.

Further experimental results on the approximate pattern matching algo-
rithms are available in the full version of this paper.

Acknowledgements. This research was supported in part by a FIR 2014 grant
by the University of Catania. Thanks to Nuno Tiago Ferreira de Carvalho for
his Homomorphic MACs library9.

References

1. Shweta Agrawal and Dan Boneh. Homomorphic MACs: MAC-based integrity
for network coding. In Michel Abdalla, David Pointcheval, Pierre-Alain Fouque,
and Damien Vergnaud, editors, ACNS 09, volume 5536 of LNCS, pages 292–305.
Springer, June 2009.

2. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally pri-
vate randomizing polynomials and their applications. Computational Complexity,
15(2):115–162, 2006.

3. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness:
Efficient verification via secure computation. In Samson Abramsky, Cyril Gavoille,
Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis, editors,
ICALP 2010, Part I, volume 6198 of LNCS, pages 152–163. Springer, July 2010.

4. Nuttapong Attrapadung and Benôıt Libert. Homomorphic network coding signa-
tures in the standard model. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and
Antonio Nicolosi, editors, PKC 2011, volume 6571 of LNCS, pages 17–34. Springer,
March 2011.

5. Nuttapong Attrapadung, Benôıt Libert, and Thomas Peters. Computing on au-
thenticated data: New privacy definitions and constructions. In Xiaoyun Wang and
Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 367–385.
Springer, December 2012.

6. Nuttapong Attrapadung, Benôıt Libert, and Thomas Peters. Efficient completely
context-hiding quotable and linearly homomorphic signatures. In Kaoru Kurosawa
and Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 386–404.
Springer, February / March 2013.

7. Michael Backes, Manuel Barbosa, Dario Fiore, and Raphael M. Reischuk. AD-
SNARK: Nearly practical and privacy-preserving proofs on authenticated data. In
2015 IEEE Symposium on Security and Privacy, pages 271–286. IEEE Computer
Society Press, 2015.

8. Michael Backes, Dario Fiore, and Raphael M. Reischuk. Verifiable delegation of
computation on outsourced data. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and
Moti Yung, editors, ACM CCS 13, pages 863–874. ACM Press, November 2013.

9. Ricardo A. Baeza-Yates and Gaston H. Gonnet. A new approach to text searching.
Commun. ACM, 35(10):74–82, 1992.

9 Available at https://bitbucket.org/ntfc/cf-homomorphic-mac/

10. Dan Boneh, David Freeman, Jonathan Katz, and Brent Waters. Signing a linear
subspace: Signature schemes for network coding. In Stanislaw Jarecki and Gene
Tsudik, editors, PKC 2009, volume 5443 of LNCS, pages 68–87. Springer, March
2009.

11. Dan Boneh and David Mandell Freeman. Homomorphic signatures for polynomial
functions. In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of
LNCS, pages 149–168. Springer, May 2011.

12. Dan Boneh and David Mandell Freeman. Linearly homomorphic signatures over
binary fields and new tools for lattice-based signatures. In Dario Catalano, Nelly
Fazio, Rosario Gennaro, and Antonio Nicolosi, editors, PKC 2011, volume 6571 of
LNCS, pages 1–16. Springer, March 2011.

13. Dario Catalano. Homomorphic signatures and message authentication codes. In
SCN 14, LNCS, pages 514–519. Springer, 2014.

14. Dario Catalano and Dario Fiore. Practical homomorphic MACs for arithmetic
circuits. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013,
volume 7881 of LNCS, pages 336–352. Springer, May 2013.

15. Dario Catalano, Dario Fiore, Rosario Gennaro, and Luca Nizzardo. Generalizing
homomorphic MACs for arithmetic circuits. In Hugo Krawczyk, editor, PKC 2014,
volume 8383 of LNCS, pages 538–555. Springer, March 2014.

16. Dario Catalano, Dario Fiore, Rosario Gennaro, and Konstantinos Vamvourellis.
Algebraic (trapdoor) one-way functions and their applications. In Amit Sahai,
editor, TCC 2013, volume 7785 of LNCS, pages 680–699. Springer, March 2013.

17. Dario Catalano, Dario Fiore, Rosario Gennaro, and Konstantinos Vamvourellis. Al-
gebraic (trapdoor) one-way functions: Constructions and applications. Theoretical
Computer Science, 592:143–165, 2015.

18. Dario Catalano, Dario Fiore, and Luca Nizzardo. Programmable hash functions go
private: Constructions and applications to (homomorphic) signatures with shorter
public keys. In CRYPTO 2015, Part II, LNCS, pages 254–274. Springer, August
2015.

19. Dario Catalano, Dario Fiore, and Bogdan Warinschi. Adaptive pseudo-free groups
and applications. In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume
6632 of LNCS, pages 207–223. Springer, May 2011.

20. Dario Catalano, Dario Fiore, and Bogdan Warinschi. Efficient network coding
signatures in the standard model. In Marc Fischlin, Johannes Buchmann, and
Mark Manulis, editors, PKC 2012, volume 7293 of LNCS, pages 680–696. Springer,
May 2012.

21. Dario Catalano, Dario Fiore, and Bogdan Warinschi. Homomorphic signatures
with efficient verification for polynomial functions. In Juan A. Garay and Rosario
Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 371–389.
Springer, August 2014.

22. Maxime Crochemore and Wojciech Rytter. Text Algorithms. Oxford University
Press, 1994.

23. Yvo Desmedt. Computer security by redefining what a computer is. NSPW, 1993.
24. Simone Faro and Thierry Lecroq. The exact online string matching problem: A

review of the most recent results. ACM Comput. Surv., 45(2):13, 2013.
25. David Mandell Freeman. Improved security for linearly homomorphic signatures:

A generic framework. In Marc Fischlin, Johannes Buchmann, and Mark Manulis,
editors, PKC 2012, volume 7293 of LNCS, pages 697–714. Springer, May 2012.

26. Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 465–482. Springer, August 2010.

27. Rosario Gennaro, Jonathan Katz, Hugo Krawczyk, and Tal Rabin. Secure network
coding over the integers. In Phong Q. Nguyen and David Pointcheval, editors,
PKC 2010, volume 6056 of LNCS, pages 142–160. Springer, May 2010.

28. Rosario Gennaro and Daniel Wichs. Fully homomorphic message authenticators.
In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume
8270 of LNCS, pages 301–320. Springer, December 2013.

29. Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homo-
morphic signatures from standard lattices. In 47th ACM STOC, pages 469–477.
ACM Press, 2015.

30. Torbjrn Granlund and the GMP development team. GNU MP: The GNU Multiple
Precision Arithmetic Library, 6.1.0 edition, 2016.

31. Robert Johnson, David Molnar, Dawn Xiaodong Song, and David Wagner. Homo-
morphic signature schemes. In Bart Preneel, editor, CT-RSA 2002, volume 2271
of LNCS, pages 244–262. Springer, February 2002.

32. Juha Kärkkäinen and Joong Chae Na. Faster filters for approximate string match-
ing. In Proceedings of the Nine Workshop on Algorithm Engineering and Exper-
iments, ALENEX 2007, New Orleans, Louisiana, USA, January 6, 2007. SIAM,
2007.

33. Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern
matching in strings. SIAM J. Comput., 6(2):323–350, 1977.

34. Werner Koch and the Libgcrypt development team. Libgcrypt, 1.7.0 edition, 2016.
35. Gad M. Landau and Uzi Vishkin. Efficient string matching with k mismatches.

Theor. Comput. Sci., 43:239–249, 1986.
36. Silvio Micali and Ronald L. Rivest. Transitive signature schemes. In Bart Preneel,

editor, CT-RSA 2002, volume 2271 of LNCS, pages 236–243. Springer, February
2002.

37. Dimitrios Papadopoulos, Charalampos Papamanthou, Roberto Tamassia, and
Nikos Triandopoulos. Practical authenticated pattern matching with optimal proof
size. Proceedings of the VLDB Endowment, 8(7):750–761, 2015.

38. Victor Shoup. NTL: A Library for doing Number Theory, 9.7.1 edition, 2016.
39. Xun Yi. Directed transitive signature scheme. In Masayuki Abe, editor, CT-

RSA 2007, volume 4377 of LNCS, pages 129–144. Springer, February 2007.

