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Abstract. String matching is the problem of finding all occurrences of a given pattern
in a given text. It is an extensively studied problem in computer science because of
its direct application to several areas such as text, image and signal processing, speech
analysis and recognition, data compression, information retrieval, computational bi-
ology and chemistry. Since 1970 more than 85 string matching algorithms have been
proposed, and more than 50% of them in the last ten years.
In this paper we present Smart, an efficient and flexible tool designed for developing,
testing, comparing and evaluating string matching algorithms. It also provides the most
comprehensive survey of online exact single string matching algorithms together with
a set of corpora available for testing purposes.
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1 Introduction

String matching is a very important subject in the wider domain of text process-
ing. It consists in finding all occurrences of a given pattern in a given text. It is
an extensively studied problem in computer science, mainly due to its direct appli-
cations in many areas related with information retrieval and information analysis.
String matching algorithms are also basic components used in implementations of
practical software existing under most operating systems. Moreover, they emphasize
programming methods that serve as paradigms in other fields of computer science.
Finally they also play an important role in theoretical computer science by providing
challenging problems.

Applications require two kinds of solutions depending on which string, the pattern
or the text, is given first. Algorithms based on the use of automata or combinatorial
properties of strings are commonly implemented to preprocess the pattern and solve
the first kind of problem. In this paper we are interested in this kind of problem, which
is generally referred as online string matching. Recently Faro and Lecroq presented a
comprehensive survey [17] of almost all online string matching algorithms appeared
in literature up to 2010.

In 1991 Hume and Sunday presented an efficient framework [20] for testing string
matching algorithms. It was developed in the C programming language and has been
extensively used in the field during the last few decades. The authors compiled their
framework using the stringsearch package1 including the implementations of 37 string
matching algorithms. Although their tool is very useful and simple to be used it
presents some questionable points.

First of all, it was designed in order to maintain the preprocessing and the search-
ing phase as separate functions. Although this allows an accurate measurement of

1 http://hackage.haskell.org/package/stringsearch-0.3.6.4



the preprocessing time, it needs also the pattern to be copied to some local buffer,
affecting the time measurement with an additional overhead which becomes negligible
only if the length of the text is large enough. In addition all data related with the
pattern are stored in common structure, thus guaranteeing a similar behavior of the
algorithms. However it may slightly increase the access time to pattern information
during the searching phase.

A useful feature of the tool from Hume and Sunday is that all algorithms are
implemented in separate files. However their compilation is not independent from the
whole framework. Thus when testing several algorithms there is always a risk that
they meddle with each other.

We also noticed that the use of the signed char type does not always work
properly, because indexing of arrays does not work with negative values. This could
be avoided by forcing the cast to the unsigned char type all values which are used
as indexes.

In this paper we introduce a new version of Smart (String Matching Algorithms
Research Tool), an efficient and flexible framework designed for developing, testing,
comparing and evaluating string matching algorithms. It includes most of the features
which characterize the tool by Hume and Sunday, but includes a lot of other useful
and interesting improvements. It allows the user to completely customize the testing
environment, adding new algorithms and testing them for correctness, without the
need of recompiling it. Moreover it includes the implementation of more than 120
algorithms, divided into more than 300 variants, and a large set of corpora, divided
into categories, which can be used inside the testing environment. Finally it has been
designed in order to provide a fair comparison between different solutions, thanks
also to a large variety of experimental observations.

In May 2010 a preliminary version of Smart was released to the scientific commu-
nity and referred in a technical report [13] were the authors discussed a comprehensive
evaluation of almost all exact string matching algorithms2 known up to 2010. In the
last six years it was used many times to perform experimental evaluation (see for
instance [18, 2, 23, 15, 10]) and to test the performances of new algorithms.

One of the most interesting features of the new version of Smart is a practical
and useful graphical interface which works over the standard framework and allows
the use of all functionalities of the tool.

The source file of Smart, together with a detailed description and documentation,
can be found at http://www.dmi.unict.it/~faro/smart/. It is distributed using
GitHub3 at https://github.com/smart-tool.

The paper is organized as follows. In Section 2 we give a brief description of the
Smart tool, including its main features and the principles of fair testing which are
at the basis of the framework. We give also a list of all implemented algorithms and
the corpora which are included in Smart. Then in Section 4 we give a brief survey of
the last comprehensive experimental evaluation performed with Smart, and describe
the directions of future works in Section 5.

2 The preliminary version of Smart included 85 different algorithms, divided in 130 variants.
3 The GitHub web page is accessible at https://github.com
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2 The Smart Tool in Short

Smart is an open source software which provides a standard framework for re-
searchers in string matching. It helps users to test, design, evaluate and under-
stand existing solutions for the exact string matching problem. Moreover it pro-
vides the implementation of (almost) all string matching algorithms and a wide cor-
pus of text buffers. The Smart source code can be downloaded at the web page
http://www.dmi.unict.it/~faro/smart/. It is released under the GNU general
public license4.

Smart is written in the C language and can be compiled in any operating system
with a standard gcc compiler. The tool uses shared memory for storing the text. Thus
Smart requires the system to allow the allocation of shared memory. The default size
of the text is 1MB, which is small enough to be supported by any system. However
if one wants to use Smart for testing algorithms on larger texts, system settings for
shared memory must be checked.

In the following sections we briefly describe Smart’s main features.

2.1 Implemented Algorithms

In the last 40 years tens of string matching algorithms (and even a larger number of
variants thereof) have been proposed. Smart provides the implementation of more
than 300 variants and more than 120 different algorithms. This number is on the rise
thanks to the continuous contributions of the community.

All implemented algorithms can be divided into four classes (but further classifica-
tions are possible): characters comparison, deterministic automata, bit parallelism and
packed string matching. Classical approaches to the problem make use of comparisons
between characters or perform transitions on some kinds of deterministic automata.
However in the last two decades a lot of work has been made in order to exploit the
power of the word RAM model of computation to speed-up classical string matching
algorithms. In this model, the computer operates on words of length ω, thus blocks
of characters are read and processed at once. This means that usual arithmetic and
logic operations on the words all take one unit of time. Most of the solutions which
exploit the word RAM model are based on the bit-parallelism technique or on the
packed string matching technique.

An almost comprehensive list of all algorithms implemented in the preliminary
version of Smart (more than 85) can be found in [13, 17]. In the present release of the
software we have extended such list introducing some additional variants of previous
solutions and the following new algorithms presented between 2010 and 2016. The
comprehensive list of algorithms implemented in the new version of Smart (more
than 120) can be found in [8].

• Three bit-parallel algorithms for exact searching of long patterns appeared in [7].
Two algorithms are modifications of the BNDM [22] algorithm and the third one
is a filtration method which utilizes locations of q-grams in the pattern. Two
algorithms apply a condensed representation of q-grams.
• Two generalizations of the Forward-SBNDM [12] algorithm presented in [23]. The

first generalizes the algorithm by using q-grams while the second introduces also
a q-gram lookahead approach.

4 http://www.gnu.org/licenses/gpl.html
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Tabella 1

comparison automata bit-parallelism packed

1970 1

1971

1972

1973

1974

1975

1976

1977 2

1978

1979

1980 1

1981 1

1982

1983

1984

1985

1986 1

1987 2

1988

1989 2

1990 3

1991 4

1992 4 1

1993 1

1994 1 4

1995

1996

1997

1998 3 1

1999 1 1

2000 1 1

2001

2002 1

2003 2 4

2004 4

2005 2 8

2006 2 2

2007 3

2008 2 3 3

2009 1 2 4 2

2010 3 7 2

2011 1 1

2012 7 1 2

2013 4 1

2014 4

2015 4

2016 1 2

2017 58 19 37 7

Tabella 1-1

comparison automata bit-parallelism packed

1970-1980 2 0 0 0

1980-1989 5 0 2 0

1990-1999 17 6 1 0

2000-2009 14 10 20 3

2010-2016 19 3 14 4
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Figure 1: (On the left) The temporal distribution of algorithms proposed in the last 26 years
(1990-2016) and (on the right) the percentage of all algorithms up to 2016.

• A solution based on a factorization of the pattern and on a particular encoding
of the suffix automaton [16], which turns out to lead to longer shifts than that
proposed by other known solutions which make use of suffix automata.

• A constant-space O(n)-time packed string matching algorithm [2] which runs in
optimal O(n/α)-time, where α = w/ log σ, and even in real-time.

• Several variants of previous solutions obtained by using a general approach to
string matching based on multiple sliding text-windows [14].

• A very fast string matching algorithm [11] for short patterns, which uses special-
ized word-size packed string matching instructions, based on the Intel streaming
SIMD extensions (SSE) technology.

• Two algorithms, presented in [24], based on a combination of the Boyer-Moore [3]
and Horspool [19] algorithms. It takes the maximum shift proposed by the two
occurrence heuristics.

• Three improvements of the standard occurrence heuristics [4, 5].

• An improvement of Quick-Search algorithm [25] which improves the shift per-
formed by the occurrence heuristics by computing the shift to left performed by
the reverse of the pattern at a given fixed distance from the current window.

• A combination of Skip-Search and the Hashq algorithms which computes buckets
of positions for the fingerprint of each q-gram in the pattern. It was presented
in [9].

• Improved versions of the Shift-Or and Shift-And algorithms [1] using a two way
scan of the window and q-grams. They were presented in [6].

Fig.1 presents the temporal distribution of algorithms proposed in the last 26
years (1990-2016) and the percentage of algorithms belonging to each class, up to
2016. Observe that the number of proposed solutions have doubled in the last ten
years, demonstrating the increasing interest in this issue.

The class of algorithms based on comparison of characters is the wider class and
consists of almost 50% of all solutions. Also automata play a very important role in
the design of efficient string matching algorithms and have been developed to design
algorithms which have optimal sub-linear performance on average. Almost 20% of all
algorithms in Smart are based on automata.

Bit-parallelism [1] takes advantage of the intrinsic parallelism of the bit operations
automata. It is interesting to observe also that almost 50% of solutions in the last
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Table 1: The list of those string matching algorithms implemented in SMART which were published
1970-2016. Each algorithm is associated to its acronym used in Smart.

1. Brute-Force (BF) no date
2. Deterministic-Finite-Automaton (DFA)
3. Morris-Pratt (MP) 1970
4. Knuth-Morris-Pratt (KMP) 1977
5. Boyer-Moore (BM)
6. Horspool (HOR) 1980
7. Galil-Seiferas (GS) 1981
8. Apostolico-Giancarlo (AG) 1986
9. Karp-Rabin (KR) 1987

10. Zhu-Takaoka (ZT)
11. Shift-Or (SO) 1989
12. Shift-And (SA)
13. Quick-Search (QS) 1990
14. Optimal-Mismatch (OM)
15. Maximal-Shift (MS)
16. Apostolico-Crochemore (AC) 1991
17. Two-Way (TW)
18. Tuned-Boyer-Moore (TunBM)
19. Colussi (COL)
20. Smith (SMITH)
21. Galil-Giancarlo (GG) 1992
22. Raita (RAITA)
23. S.M. on Ordered ALphabet (SMOA)
24. Turbo-Boyer-Moore (TBM)
25. Reverse-Factor (RF)
26. Not-So-Naive (NSN) 1993
27. Reverse-Colussi (RCOL) 1994
28. Simon (SIM)
29. Turbo-Reverse-Factor (TRF)
30. Forward-DAWG-Matching (FDM)
31. Backward-DAWG-Matching (BDM)
32. Skip-Search (SKIP) 1998
33. Alpha-Skip-Search (ASKIP)
34. Knuth-Morris-Pratt Skip-Search (KMPS)
35. Nondeterministic BDM (BNDM)
36. Berry-Ravindran (BR) 1999
37. Backward-Oracle-Matching (BOM)
38. Double Forward DAWG Matching (DFDM) 2000
39. BNDM for Long patterns (BNDML)
40. Super Alphabet Simulation (SAS) 2002
41. Ahmed-Kaykobad-Chowdhury (AKC) 2003
42. Fast-Search (FS)
43. Simplified BNDM (SBNDM)
44. Two-Way NDM (TNDM)
45. Long patterns BNDM (LBNDM)
46. Shift Vector Matching (SVM)
47. Forward-Fast-Search (FFS) 2004
48. Backward-Fast-Search (BFS)
49. Tailed-Substring (TS)
50. Sheik et al. (SSABS)
51. Wide Window (WW) 2005
52. Linear DAWG Matching (LDM)
53. BNDM with loop-unrolling (BNDM2)
54. SBNDM with loop-unrolling (SBNDM2)
55. BNDM with Horspool Shift (BNDMBMH)
56. Horspool with BNDM test (BMHBNDM)
57. Forward NDM (FNDM)
58. Bit parallel Wide Window (BWW)
59. Average Optimal Shift-Or (AOSO)
60. Fast Average Optimal Shift-Or (FAOSO)
61. Thathoo et al. (TVSBS) 2006
62. Horspool using Probabilities (PBMH)
63. Improved LDM (ILDM1)

64. Improved LDM 2 (ILDM2)

65. Franek-Jennings-Smyth (FJS) 2007

66. 2-Block Boyer-Moore (2BLOCK)

67. Wu-Manber for Single S.M. (HASHq)

68. Horspool with q-grams (BMHq) 2008

69. Two Sliding Windows (TSW)

70. Extended BOM (EBOM)

71. Forward BOM (FBOM)

72. Succint BDM (SBDM)

73. Forward BNDM (FBNDM)

74. Forward Simplified BNDM (FSBNDM)

75. Bit-Parallel Length Invariant (BLIM)

76. Genomic Rapid Algo for S.M. (GRASPm) 2009

77. Simplified Extended BOM (SEBOM)

78. Simplified Forward BOM (SFBOM)

79. BNDM with q-grams (BNDMq)

80. Simplified BNDM with q-grams (SBNDMq)

81. FNDM with q-grams (UFNDMq)

82. Small Alphabet Bit-Parallel (SABP)

83. Packed String Search (PSS)

84. Streaming SIMD Extensions Filter (SSEF)

85. Bounded Boyer-Moore (BBM) 2010

86. Bounded Fast-Search (BFS)

87. Bounded Forward-Fast-Search (BFFS)

88. BNDM with Extended Shifts (BXS)

89. BNDMq Long (BQL)

90. Q-Gram Filtering (QF)

91. Bit-Parallel2 Wide-Window (BP2WW)

92. Bit-Parallel Wide-Window2 (BPWW2)

93. Factorized Shift-And (KSA)

94. Factorized BNDM (KBNDM)

95. Packed Belazzougui (PB)

96. Packed Belazzougui-Raffinot (PBR)

97. FSBNDM with q-grams (FSBNDMqf) 2011

98. Packed Crochemore-Perrin (SSECP)

99. Fast-Search using Multiple Windows (FSw) 2012

100. TVSBS with Multiple Windows (TVSBSw)

101. Max Shift Boyer-Moore (MSBM)

102. Max Shift Horspool (MSH)

103. Enhanced Two Sliding Windows (ETSW)

104. Hashq using Multiple Hashing (MHASHq)

105. Enhanced Berry-Ravindran (RSA)

106. Backward SNR DAWG Matching (BSDM)

107. Multiple Windows SBNDM (SBNDMw)

108. Multiple Windows FSBNDM (FSBNDMw)

109. Enhanced RS-A (ERSA) 2013

110. Improved Occurrence Heuristics (IOM)

111. Worst Occurrence Heuristics (WOM)

112. Jumping Occurrence Heuristics (JOM)

113. Exact Packed String Matching (EPSM)

114. Improved Two-Way Shift-And (TSA) 2014

115. Improved Two-Way Shift-Or (TSO)

116. Two-Way Shift-And using q-grams (TSAq)

117. Two-Way Shift-Or using q-grams (TSOq)

118. Simple String Matching (SSM) 2015

119. Quantum Leap Quick-Search (QLQS)

120. Enhanced ERS-A (EERSA)

121. Four Sliding Windows (FSW)

122. Skip-Search using q-grams (SKIPq) 2016

123. BSDM with q-grams (BSDMqx)

124. BSDMqx multiple windows (BSDMqxw)

5



ten years (and 31% all along) are based on bit-parallelism, and it seems that such
number follows an increasing trend.

In packed string matching, multiple characters are packed into one larger word, so
that the characters can be compared in bulk rather than individually. In this context,
if the characters of a string are drawn from an alphabet of size σ, then bw/ log σc
different characters fit in a single word, using blog σc bits per characters. Although
algorithms in this class appeared in the last four years they turn out to be among
the fastest solutions [21, 10], reaching in some cases the optimal O(n log σ/w) time
complexity [2].

2.2 Algorithm Testing and Evaluation

The main command provided by the tool, smart indeed, is used for running experi-
mental tests. The experimental settings could be almost completely customized. The
easiest way to use Smart is to run a single search for a custom pattern and a custom
text. To this purpose one should use the -simple parameter followed by the pattern
and the text. Otherwise it is possible to select the corpus which will be used to com-
pute the experimental results by typing the parameter -text followed by the name of
the selected corpus (for ex. smart -text genome). It is also possible to select more
than one corpus by typing the name of the corpora, separated by a dash symbol (for
ex. smart -text genome-protein). You can also type the parameter -text all in
order to run experimental tests for all corpora, in which case the corpora will be
processed one after another.

For each input file, Smart generates sets of r patterns of fixed length, randomly
extracted from the text, where the length of the patterns ranges over the set of values
{2k | 1 ≤ k ≤ 12}, so that running times can be easily reported in a log-scale plot.
The value r is set to 500 by default, but it is allowed to use the parameter -pset

in order to modify the size of the set of patterns generated by the tool (for ex. you
can type smart -text genome -pset 100). You can also use the parameter -short
in order to perform experimental tests on short patterns, whose length ranges over
the set of values {2 + ` | 0 ≤ ` ≤ 30}. If necessary, it is also allowed to restrict the
pattern’s length to a given range by using the parameter -plen and indicating an
upper bound and a lower bound for such lengths (for ex. you can type the command
smart -text genome -plen 8 64).

Many algorithms are very slow under particular conditions. In order to avoid
excessive running times during the experimental evaluation it is possible to set a time
bound which cannot be exceeded by any single run. This can be done by using the
parameter -tb, followed by a value expressed in milliseconds. By default such bound
is set to 300 ms.

The Smart tool has been developed in order to follow the principles of fair testing
in string matching. In particular the experimental testing is based on the following
features:

Algorithm verification
The tool verifies that all tested algorithms work properly. This verification is done by
counting the number of matches returned by the procedure and testing whether the
search stops properly at the end of the text. Since all searched patterns are always
randomly extracted from the text, it is guaranteed that the number of occurrences
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is always equal or greater than 1. It is not uncommon that some algorithms do not
work for specific input parameters. For instance a q-gram based algorithm does not
work for patterns shorter than q characters. The framework also provides a control
mechanism able to distinguish a malfunctioning from a not working instance, in which
case an error message is returned by the tool.

Clean time measuring
The Smart tool has been designed in order to rule out from time measurements
all disturbing events. To this purpose the reading of data (text and patterns) be-
longs to an outer part of the test setting, so that times spent to reading is excluded
from time measurements. Moreover printing of matches is not performed during time
measurement, since printing produces also an additional overhead, which is partly
unsynchronized. Finally the framework has been developed in order that the time
measurement itself does not disturb the work of algorithms.

Fair comparison
Since in Smart the measuring is focused on performance, the tested algorithms have
been implemented in a uniform way, using the same standard for processing string
characters, compare them, performing automata transitions, computing matches and
for more other common tasks. Then Smart uses the -O3 level of optimization, which
is the highest optimization level. All algorithms are available online and can be an-
alyzed and improved by the community. During time measurement all tested algo-
rithms share the same input data in order to allow a fair comparison. Moreover the
Smart tool has been designed in order to ensure that no residual information in
cache, during multiple executions of the same algorithm, may be used in the next
attempt affecting the time measurement.

Algorithm preprocessing
It has never been clear in the literature if preprocessing should be included in the
measurements. The work done in preprocessing is only a proportion of the whole
task, and it may depend on the pattern length and on the alphabet size. According
to Horspool [19] in string matching the timings do not include the work of initializing
tables, however for an online algorithm, preprocessing time is spent to compute useful
informations which are then used for speeding up the search process. Moreover, it is
also true that in most cases the longer is the preprocessing time the faster is the
searching. This line of reasoning finds its borderline case in an offline algorithms,
where a preprocessing of the text leads to an extremely fast searching phase. For this
reason the Smart tool has been developed in order to include the preprocessing time
in the performance measurement.

However the tool can be set up in order to separate time measurements in search-
ing and preprocessing times. This can be done by using the parameter -pre. By
default Smart produces only a single time measurement which includes preprocess-
ing and searching time.

Stability measurement
It is also useful to find out how accurately repeatable the results are. To this purpose
using only average running times easily hides important details. It is common, in
fact, that for some algorithms running times move away from the mean value. This is
what in general we associate with the stability of a given algorithm: the smaller is the
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standard deviation of the running times the superior is its stability. Thus the Smart
tool can be set up in order to compute also standard deviation values of running
times (use the parameter -std). In addition the tool also allows the computation of
the best and worst running times obtained during the experimental evaluation (use
the parameter -dif).

2.3 Output Formats

The Smart tool associates to any experimental test a unique alphanumeric code on
13 characters, beginning with the prefix EXP and followed by a string of 10 numbers
computed from the timestamp. At the end of the execution of an experimental test
Smart stores experimental data in the directory results/EXPCODE, where EXPCODE is
the unique code associated with the experimental test. Files containing experimental
data are named with the name of the corpus which has been selected. The system
can store experimental data in different formats: simple text, LATEX, xml, html and
php format.

Files in xml format report data in a structured way suitable to be processed or
included in other documents, while html files present data in a tabular format. An
additional index.html file is generated which contains the list of all html pages con-
taining the experimental results computed during the test. Figure 2 shows a portion
of the HTML output produced by Smart.

Finally, LATEX files can be generated to make easy the inclusion of tables containing
the experimental results in LATEX source files.

2.4 Text Corpora

Smart comes with a set of corpora which can be selected in for running experimental
results. The corpora are stored in a directory named “data”, and each corpus consists
of a set of texts stored in a sub-directory with the same name of the corpus. Each sub-
directory contains and index file (index.txt) containing the names and a description
of all the files contained in the corpus. It is possible to select the corpus which will
be used to compute the experimental results by typing the parameter -text followed
by the name of the selected corpus.

The Smart tool allows to set an upper bound dimension of the text size used
during the experimental results. By default this upper bound dimension is set to
1MB. This means that (at most) the first 1MB of the selected corpus will be used for
testing. The default upper bound dimension can be changed by using the parameter
-tsize, followed by an integer value which indicate the dimension, in Mbytes, which
will be used (for ex. smart -text genome -tsize 5).

Then all files listed in the index will be loaded in a text buffer, one by one, until
the upper bound is reached. If the upper bound is larger than the whole size of the
corpus the list of files is processed again in order to fill the whole buffer5. In details,
Smart provides the following set of 15 corpora.

(i) englishTexts, a set of english texts (6.1 MB) over an alphabet of 94 characters.
It includes two text of size 3.9 MB and 2.4 MB, respectively.

5 Note that during the experimental evaluation the text buffer is stored in shared memory, thus
if you set the upper bound to a value K MB it is necessary to ascertain your system allows the
allocation of at least K MB of shared memory
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Figure 2: A portion of the HTML output produced by Smart. Experimental data are reported in
tabular and in graphical form. Here we observe average running times, worst running times and best
running times of Horspool and Boyer-Moore compared on a Rand2 text buffer.

(ii) italianTexts, a set of italian texts (5 MB) over an alphabet of 120 characters.
It includes seven texts whose size ranges from 281 KB to 1.5 MB.

(iii) frenchTexts, a set of french texts (6.6 MB) over an alphabet of 119 characters.
It includes seven texts whose size ranges from 631 KB to 1.2 MB.

(iv) chineseTexts, a set of chinese texts (5.7 MB) over an alphabet of 160 charac-
ters. It includes five texts whose size ranges from 745 KB to 2.3 MB.

(v) genome, a set of DNA sequences (4.4 MB) over an alphabet of 4 characters. It
includes Complete genome of the E. Coli bacterium (4.4 MB).

(vi) protein, a set of protein sequences (3.1 MB) over an alphabet of 20 characters.
It includes a protein sequence from the Human genome (3.1 MB).
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(vii) midimusic, a set of midi sequences (2.7 MB) over an alphabet of 117 characters.
It includes 206 midi files on Johann Sebastian Bach work (1685-1750) whose size
ranges from 4 KB to 205 KB.

(viii) randσ, random texts (5 MB) over an alphabet of size σ with a uniform distri-
bution, where σ ranges over the values {2, 4, 8, 16, 32, 64, 128, 256}.

Files (i) and (v) are from the Large Canterbury Corpus6, files (ii), (iii) and (iv)
are from the Gutenberg project7 while file (vi) is from the Protein Corpus8. Finally
files in (vii) are from the Johann Sebastian Bach Midi Page9.

In addition the Smart tool provides a simple way for adding new corpora to the
default set. This can be done by simply introducing a new sub-directory named with
the name of the corpus, and containing the set of selected files together with an index
file listing their names.

2.5 Adding New Algorithms

The Smart tool is not only a framework for testing all known string matching algo-
rithms. It provides also an easy and fast way for assisting researchers to develop and
test new efficient algorithms. It is possible to add new string matching algorithms to
Smart, testing them for correctness and compare their efficiency against the previous
solutions.

The following few requirements must be guaranteed: a new algorithm must be im-
plemented in the C programming language and must include the header file “include/main.h”.
The main method must be defined as

int search(unsigned char *x, int m, unsigned char *y, int n)

where x maintains the pattern, y maintains the text, while m and n are their lengths,
respectively. The method must return the number of occurrences of the pattern in
the text. In addition, if the algorithm does not run under particular conditions (for
instance when the length of the pattern is less than a given value), it is required the
algorithm to return the value −1.

Since preprocessing time is computed separately from searching time, it is re-
quired to arrange the code concerning the preprocessing phase between the macros
BEGIN PREPROCESSING and END PREPROCESSING, while the code concerning the search-
ing phase must be arranged between the macros BEGIN SEARCHING and END SEARCHING.
Figure 3 present the C code of the Horspool algorithm in a format suitable for inclusion
in Smart.

Before compiling the C file, copy the header file main.h (which is stored in the
folder source/algos/include) in the same directory. Then put the compiled bi-
nary file in the directory “source/bin”. Before running a new experimental setting
you can test the correctness of your algorithm by executing the command “./test
algoname”, where algoname is the name of the binary file of your algorithm. Then
it will be possible to include the new algorithm in Smart by typing the command
“./select -add algoname”.

6 http://www.data-compression.info/Corpora/CanterburyCorpus/
7 http://www.gutenberg.org
8 http://data-compression.info/Corpora/ProteinCorpus/
9 http://www.bachcentral.com
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#include "include/define.h"

#include "include/main.h"

int search(unsigned char *P, int m, unsigned char *T, int n) {

int i, s, count, hbc[SIGMA];

BEGIN_PREPROCESSING

for(i=0;i<SIGMA;i++) hbc[i] = m;

for(i=0;i<m-1;i++) hbc[P[i]] = m-i-1;

END_PREPROCESSING

BEGIN_SEARCHING

s = 0;

count = 0;

while(s <= n-m) {

i = 0;

while( i<m && P[i]==T[s+i] ) i++;

if( i==m ) count++;

s += hbc[T[s+m-1]];

}

END_SEARCHING

return count;

}

Figure 3: The C code of the Horspool algorithm for string matching.

3 A Graphical User Interface

The new version of Smart comes with a useful Graphical User Interface (SmartGUI)
which could be used for running experimental results. It is implemented in C++ using
the Qt WebKit, one of the major engine to render webpages and execute JavaScript
code. Figure 4 shows a screenshot of the SmartGUI where reporting the average
running times of the Horspool and Boyer-Moore algorithms when compared on a
genome sequence.

The central part of SmartGUI is dedicated to report graphs of running times.
The text output is reported next to the graphs, giving a familiar feedback to users
which execute Smart using the terminal. When several experimental evaluations are
executed, SmartGUI organizes the graphs using tabs.

SmartGUI has been developed to make easier the use of Smart. It allows to
view in real-time all the results of the experimental evaluations and to compare the
single algorithms of the experiments through the tabs.

In addition SmartGUI makes easy the customization of the tests through input
text parameters and checkbox to choose the output format (txt, LATEX, pdf, etc.)
and the text buffers. It also allows to select algorithms or add new algorithms and
run tests on it. During any test SmartGUI shows the status through a progress
bar. When a single experimental evaluation ends SmartGUI shows more statistics
through a web view opening the html format results.

Executable binaries of SmartGUI are available at the Smart web page for Win-
dows, Linux and Mac. It can be downloaded and installed in any folder of your
computer, even different from your main Smart folder. At the first execution of
SmartGUI it is necessary to link the main Smart folder using the setup procedure
available at the menu button setup smart gui.
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Figure 4: A screenshot of the Graphical User Interface of Smart. Here we observe average running
times of Horspool and Boyer-Moore algorithms when compared on a genome sequence.

4 Experimental Evaluation

In this section we discuss experimental results which could be performed using Smart.
The details of the experimental evaluation can be analyzed at the Smart web page
(http://www.dmi.unict.it/~faro/smart/).

A recent survey [13] already presents an extensive experimental evaluation of
almost all string matching algorithms used for searching in different texts. The authors
used Smart for computing the experimental results, indeed.

Other more recent experimental evaluations using the Smart tool appeared in
[16, 14, 2, 11] where new efficient algorithms were presented.

Thus in this section we do not give another extensive experimental evaluation of
string matching algorithms, but we focus our attention on new general experimen-
tal observations which Smart allows to do. In particular Smart allows to analyze
string matching algorithms from three different points of view: their efficiency, their
stability and their flexibility.

Efficiency Measurement
The efficiency of an algorithm is evaluated in Smart by computing the mean of
running times over a large set of attempts.

Most string matching algorithms are characterized by a performance plot with a
decreasing trend. Thus on average the performances increases when the length of the
pattern increases. Almost all efficient algorithms, in fact, are based on a sliding win-
dow approach whose shift is at most long as the length of the pattern. This behavior
is evident, for instance, in Figure 2 and in Figure 4, where we show the experimental
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results of the well known Horspool [19] and Boyer-Moore [3] algorithms, which are
comparison based algorithms based on the occurrence heuristic. Also automata show
such decreasing trend, however almost all of them show a decrease in performances
in the case of longer patterns. This is due to the size explosion of the underlying
automaton and of the correspondent preprocessing time.

Algorithms based on q-grams are quite efficient on average. In general their per-
formance increases when the length of the pattern increases or when the value of q
increases. However, on the other hand in the case of short patterns their performances
drastically decreases when the value of q increases.

Stability Measurement
In Smart the stability of an algorithm is computed as the standard deviation of
running times observed during the evaluation. Such value shows how much variation
exists from the average, i.e. the mean of the running times. A low standard deviation
indicates that the running times tend to be very close to the mean, underlying a high
stability of the algorithm. On the other hand a high standard deviation indicates
that the running times are spread out over a large range of values, thus indicating
a low stability. It turns out from our observations that almost all algorithms have a
low stability for short patterns while their stability increases when the length of the
pattern increases. Such behavior becomes more evident for larger alphabets.

Sometimes an opposite behavior can be observed when searching on texts over a
small alphabet like DNA sequences. This is the case, for instance, of some comparison
based algorithms based on the occurrence heuristic whose stability decreases when
the length of the pattern gets shorter. This trend can be explained by the reduced
combination of strings which could be obtained when the pattern is short and the
alphabet is small.

Flexibility Measurement
Flexibility is used as an attribute of various types of systems. In the field of string
matching, it refers to algorithms that can adapt when changes in the input data occur.
Thus a string matching algorithm can be considered flexible when, for instance, it
maintains good performances for both short and long patterns, or in the case of both
small and large alphabets.

As already observed most string matching algorithms obtain good performances
only in the case of long patterns sacrificing their performance for short ones. This is a
common behavior, for instance, for all algorithm which make use of a sliding window
approach. Such approach allows the pattern to slide along the text by performing
subsequent shifts. Each shift can be at most as long as the length of the pattern.
It turns out that statistically the shift increases when the length of the pattern in-
creases, or when the size of the alphabet increases. Although bit-parallel algorithms
are designed to be extremely efficient in the case of long patterns, also this class of
algorithms suffers of a lack in flexibility.

Only packed string matching algorithms turn out to have good performances for
short patterns. This is the case of the SSECP algorithm [2] whose performances
degrade when the length of the pattern increases. It is also the case of the EPSM
algorithm [11], whose flexibility is obtained only by combining different algorithms,
depending on the length of the pattern.
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5 Conclusions, Future Works and Acknowledgements

We presented Smart (http://www.dmi.unict.it/~faro/smart/) a flexible testing
and evaluation tool for single exact string matching algorithms. It contains the imple-
mentation of almost all string matching algorithms appeared since 1970 up to 2016.
The tool helps researchers in the filed in various way and we encourage them to con-
tribute to the project by providing their own code for testing. Many improvements
are possible to enhance Smart, including its adjustment in order to work with 128
bit processors.

We wish to thank Prof. Jorma Tarhio, Dr. M. Oğuzhan Külekci and Dr. Arseny
Kapoulkine for helpful comments and suggestions in improving the Smart frame-
work. We wish also to thanks the authors of several string matching algorithms for
having provided their codes for inclusion in Smart.
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and Nivio Ziviani, editors, String Processing and Information Retrieval - 19th International
Symposium, SPIRE 2012, Cartagena de Indias, Colombia, October 21-25, 2012. Proceedings,
volume 7608 of Lecture Notes in Computer Science, pages 217–228. Springer, 2012.

14
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