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Abstract. String matching is the problem of finding all the substrings
of a text which correspond to a given pattern. It’s one of the most in-
vestigated problem in computer science, mainly due to its various ap-
plications in many fields. In recent years most solutions to the problem
focused on efficiency and flexibility of the searching procedure and effec-
tive techniques appeared to speed-up previous solutions. In this paper
we present a simple and very efficient algorithm for string matching. It
can be seen as an extension of the Skip-Search algorithm to condensed
alphabets with the aim of reducing the number of verifications during
the searching phase. From our experimental results it turns out that the
new variant obtains in most cases the best running time when compared
against the most effective algorithms in literature. This makes the new
algorithm one of the most flexible solutions in practical cases.

Keywords: Exact text analysis, string matching, experimental algo-
rithms, text processing

1 Introduction

The exact string matching problem is one of the most studied problem in com-
puter science. It consists in finding all the (possibly overlapping) occurrences
of an input pattern x in a text y, over the same alphabet Σ of size σ. A huge
number of solutions have been devised since the 1980s [6, 17] and, in spite of such
wide literature, much work has been produced in the last few years, indicating
that the need for efficient solutions to this problem is high.

Solutions to such problem can be divided in two classes, counting solutions
simply counts the number of occurrences of the pattern in the text, while re-
porting solutions are also able to report the exact positions in which the pattern
occurs. Solutions in the first class are faster in general. In this paper we are
interested in the second class of algorithms.

From a theoretical point of view the exact string matching problem has been
extensively studied. If we indicate with m and n the lengths of the pattern and
of the text, respectively, the problem can be solved in O(n) worst case time
complexity [20]. However, in many practical cases it is possible to avoid reading
all the characters of the text achieving sub-linear performances on the average.
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The optimal average O(n logσm
m ) time complexity [23] was reached for the first

time by the Backward-DAWG-Matching algorithm [8] (BDM). Interested readers
can refer to [6, 14, 17] for a survey of the most efficient solutions to the problem.

In recent years most solutions to the problem focused on efficiency and flex-
ibility and effective techniques appeared to speed-up previous formerly efficient
solutions. Among such techniques bit-parallelism, string-packing, q-grams, filter-
ing and hashing deserve a special mention since they inspired a lot of work.
Filtering and hashing are two techniques particularly relevant in this paper.

Specifically, instead of checking at each position of the text if the pattern
occurs, it seems to be more efficient to filter positions of the text by checking only
if the corresponding content looks like the input pattern. When a resemblance
is detected a more detailed check is performed.

The first algorithm to take advantage of such technique was the well known
Karp-Rabin algorithm [19] in 1987. It uses hashing function for computing a
fingerprint value of the pattern. Subsequently a fingerprint value for each text
substring of length m is computed. Then a naive check at a given position of
the text is performed only if the fingerprint value of the corresponding substring
is equal to the fingerprint value of the pattern. The overall worst case time
complexity of the algorithm is O(nm) but a linear behavior can be observed on
average. The first solution based on filtering and hashing, showing a sub-linear
average behavior, was presented by Lecroq in 2007 [21]. The algorithm, named
Hashq, is simply a generalization of the Boyer-Moore-Horspool algorithm to
condensed alphabets. In this case groups of q characters (or q-grams) are hashed
in a single fingerprint value, generating an extended condensed alphabet. Such
condensed alphabet correspond to the set of all fingerprint values generated by
all possible combinations of q characters drawn from the original alphabet.

The idea of extending efficient solutions by condensed alphabets has been
later extensively adopted in string matching [17]. However, although several
algorithms have been proposed in the last decade, the Hashq algorithm is still
one of the most effective solutions in practical cases [14].

In this paper we present a simple, yet very efficient, algorithm for the exact
string matching problem based on a well known filtering solution, the Skip-Search
algorithm [7], extended with condensed alphabets. We will observe how the use
of a condensed alphabet allows to drastically reduce the number of verifications
of such filtering approach. The worst case time complexity of the algorithm is
O(nm). However, despite its quadratic worst case behavior, we will show in our
experimental evaluation that such extension leads to one of the most efficient
and flexible algorithms for string matching. Specifically it turns out that the new
solution obtains the best results, in terms of running times, in most cases and
especially for small alphabets and long patterns.

The paper is organized as follows. In Section 2 we describe in detail the
Skip-Search algorithm and its variants. In Section 3 we introduce and analyze
the new algorithm based on condensed alphabets. In Section 4 we compare the
new presented algorithm against the most effective solutions known in literature.
We drawn our conclusions in Section 5.



2 The Skip Search and the Alpha Skip Search Algorithms

The Skip Search algorithm is an elegant and efficient solution to the exact pattern
matching problem, firstly presented in [7] and subsequently adapted to many
other problems and variants of exact pattern matching.

Let x and y be a pattern and a text of length m and n, respectively, over
a common alphabet Σ of size σ. For each character c of the alphabet, the Skip
Search algorithm collects in a bucket B[c] all the positions of that character in
the pattern x, so that for each c ∈ Σ we have:

B[c] = {i : 0 ≤ i ≤ m− 1 and x[i] = c}.

Plainly, the space and time complexity needed for the construction of the array
B of buckets is O(m+ σ).

Thus if a character occurs k times in the pattern, there are k corresponding
positions in the bucket of the character. Notice that when the pattern is shorter
than the alphabet size, some buckets are empty. This observation turns out to
be particularly suitable for our purpose.

The search phase of the Skip Search algorithm examines all the characters
y[j] in the text at positions j = km − 1, for k = 1, 2, . . . , bn/mc. For each such
character y[j], the bucket B[y[j]] allows one to compute the possible positions h
of the text in the neighborhood of j at which the pattern could occur.

By performing a character-by-character comparison between x and the sub-
string y[h . . h+m− 1] until either a mismatch is found, or all the characters in
the pattern x have been considered, it can be tested whether x actually occurs
at position h of the text.

The Skip Search algorithm has a quadratic worst-case time complexity, how-
ever, as shown in [7], the expected number of text character inspections is O(n).
In addition it is interesting to observe that the Skip Search algorithms performs
better in the case of large alphabets since most of the buckets in the array B
are empty.

Among the variants of the Skip Search algorithm, the most relevant one for
our purposes is the Alpha Skip Search algorithm [7], which collects buckets for
substrings of the pattern rather than for its single characters.

During the preprocessing phase of the Alpha Skip Search algorithm, all the
factors of length ` = blogσmc occurring in the pattern x are arranged in a trie
Tx, for fast retrieval. In addition, for each leaf ν of Tx a bucket is maintained
which stores the positions in x of the factor corresponding to ν. Provided that
the alphabet size is considered as a constant, the worst-case running time of the
preprocessing phase is linear.

The searching phase consists in looking into the buckets of the text factors
y[j .. j + `− 1], for all j = k(m− `+ 1)− 1 such that 1 ≤ k ≤ b(n− `)/mc, and
then test, as in the previous case, whether there is an occurrence of the pattern
at the indicated positions of the text.

The worst-case time complexity of the searching phase is quadratic, though
the expected number of text character comparisons is O(n logσm/(m−logσm)).



3 A new Fast Variant of the Skip-Search Algorithm

In this section we present an efficient extension of the Skip-Search algorithm
using condensed alphabets. The resulting algorithm has a quadratic worst case
time complexity while on average it shows a sublinear behavior.

Let x be a pattern of length m and let y be a text of length n. Moreover
suppose both strings are drawn from a common alphabet Σ of size σ and suppose
q is a constant value, with 1 ≤ q ≤ m. The algorithm can be divided in a
preprocessing and a searching phase.

The preprocessing phase of the algorithm indexes all subsequences of the
pattern (of length q) in order to be able to locate them during the searching
phase. For efficiency reasons, each substring of length q is converted into a nu-
meric value, called fingerprint, which is used to index the substring. A fingerprint
value ranges in the interval {0 . . 2α− 1}, for a given bound α. In our setting the
value α is set to 16, so that a fingerprint can fit into a single 16-bit register.

The procedure fng for computing the fingerprints is shown in Fig. 1 (on the
left). Given a sequence x of length m, an index i such that 0 ≤ i < m−q, and two
integers k and q such that kq ≤ α, the procedure fng computes the fingerprint
v of the substring x[i . . i+ q − 1]. Specifically the fingerprint v is computed as

v =

q−1∑
j=0

(x[i+ j]� kj) .

Plainly, the time complexity of the procedure fng is O(q). Observe that the the
fingerprint value is not unique for each substring of length q, i.e. two different
strings can be associated with the same fingerprint value. The preprocessing
phase of the algorithm, which is reported in Fig. 1 (on the left), consists in
compiling the fingerprints of all possible substrings of length q contained in the
pattern x. Thus a fingerprint value v, with 0 ≤ v < 2α, is computed for each
subsequence x[i . . i + q − 1], for 0 ≤ i < m − q. To this purpose a table F of
size 2α is maintained for storing, for any possible fingerprint value v, the set of
positions i such that fng(x, i, q, k) = v. More precisely, for 0 ≤ v < 2α, we have

F [v] =
{
i | 0 ≤ i < m− q and fng(x, i, q, k) = v

}
.

The preprocessing phase of the algorithm requires some additional space to store
the (m − q) possible alignments in the 2α locations of the table F . Thus, the
space requirement of the algorithm is O(m−q+2α) that approximates to O(m),
since α is constant. The first loop of the preprocessing phase just initializes the
table F , while the second loop is run (m − q) times, which makes the overall
time complexity of such phase O(m+ 2α) that, again, approximates to O(m).

Along the same line of the Skip Search algorithm, the basic idea of the
searching phase is to compute a fingerprint value every (m− q + 1) positions of
the text y and to check whether the pattern appears in y, involving the block
y[j . . j+ q−1]. If the fingerprint value indicates that some of the alignments are
possible, then the candidate positions are checked naively for matching.



fng(x, i, q, k)
2. v ← 0
3. for j ← q − 1 downto 0 do
4. v ← (v � k) + x[i + j]
5. return v

Preprocessing(x, q,m, k)
1. for v ← 0 to 2α − 1 do
2. F [v]← ∅
3. for i← 0 to m− q do
4. v ← fng(x, i, q, k)
5. F [v]← F [v] ∪ {(i + q − 1)}
6. return F

Skipq(x, r, y, n, q, k)
1. F ←Preprocessing(x, q,m, k)
2. for j ← m− 1 to n step m− q + 1 do
3. v ← fng(y, j, q, k)
4. for each i ∈ F [v] do
5. if x = y[j − i . . j − i + m− 1]
6. then output (j − i)

Fig. 1. The pseudo-code of the Skipq algorithm for the exact string matching problem.

The pseudo-code provided in Fig. 1 (on the right) reports the skeleton of
the algorithm. The main loop investigates the blocks of the text y in steps of
(m − q + 1) blocks. If the fingerprint v computed on y[j . . j + q − 1] points to
a nonempty bucket of the table F , then the positions listed in F [v] are verified
accordingly.

In particular F [v] contains a linked list of the values i marking the pat-
tern x and the beginning position of the pattern in the text. While looking for
occurrences on y[j . . j + q − 1], if F [v] contains the value i, this indicates the
pattern x may potentially begin at position (j − i) of the text. In that case, a
matching test is to be performed between x and y[j − i . . j − i + m − 1] via a
character-by-character inspection.

The total number of filtering operations is exactly n/(m−q). At each attempt,
the maximum number of verification requests is (m−q), since the filter provides
information about that number of appropriate alignments of the pattern. On the
other hand, if the computed fingerprint points to an empty location in F , then
there is obviously no need for verification. The verification cost for a pattern x of
length m is assumed to be O(m), with the brute-force checking approach. Hence,
in the worst case the time complexity of the verification is O(m(m− q)), which
happens when all alignments in x must be verified at any possible beginning
position. Hence, the best case complexity is O(n/(m− q)), while the worst case
complexity is O(nm).

Fig.2 shows experimental evaluations to campare the performances of the
algorithm under various conditions and for different values of the parameter
q. Experimental evaluations have been conducted on random text of 4Mb over
alphabets of size 2, 16 and 128, respectively, with a uniform distribution of
characters (a detailed description of the experimental settings can be found in
Section 4).
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Fig. 2. Running times of the Skip-Search extended with condensed alphabets using
groups of q characters. We report running times of the algorithms for different values
of q. Experimental test have been conducted on random text over alphabets of size 2,
16 and 128, respectively, with a uniform distribution of characters.

It turns out from experimental evaluations shown in Fig.2 that the perfor-
mances of the algorithm strongly depend on the values of m, q and σ. When
the size of the alphabet is small then larger values of the parameter q are more
effective. Such difference is less sensible when the size of the alphabet gets larger.
However it turns out that the smaller is the length of the pattern the lower is
the performance of the algorithm. This behavior is more evident for larger val-
ues of the parameter q. Thus, the choice of the parameter q should be directed
to larger values when the size of alphabet decreases or when the length of the
pattern increases. Conversely the values of q should get smaller.



4 Experimental Results

In this section we evaluate the performance of the new presented algorithms
against the most efficient solution known in literature for the online exact string
matching problem. Specifically we compare the following 15 algorithms imple-
mented in 79 variants, depending on the values of their parameters:

– AOSOq: the Average-Optimal variant [18] of the Shift-Or algorithm [2] using
q.grams, with 1 ≤ q ≤ 6;

– BNDMq: the Backward-Nondeterministic-DAWG-Matching algorithm [22]
implemented using q-grams with 1 ≤ q ≤ 8;

– BSDMq: the Backward-SNR-DAWG-Matching algorithm [15] using con-
densed alphabets with groups of q characters, with 1 ≤ q ≤ 8;

– BXSq: the Backward-Nondeterministic-DAWG-Matching algorithm [22] with
Extended Shift [10] implemented using q-grams and 1 ≤ q ≤ 8;

– EBOM: the extended version [13] of the BOM algorithm [1];
– FSBNDMqs: the Forward Simplified version [13] of the BNDM algorithm [22]

implemented using q-grams and 1 ≤ q ≤ 8;
– KBNDM: the Factorized variant [5] BNDM algorithm [22];
– SBNDMq: the Simplified version of the Backward-Nondeterministic-DAWG-

Matching algorithm [1] implemented using q-grams and 1 ≤ q ≤ 8;
– FS-w: the Multiple Windows version [16] of the Fast Search algorithm [3]

implemented using w sliding windows, with 2 ≤ w ≤ 6;
– HASHq: the Hashing algorithm [21] using q-grams, with 3 ≤ q ≤ 5;
– IOM: the Improved Occurrence Matcher [4]
– WOM: the Worst Occurrence Matcher [4];
– JOM: the Jumping Occurrence Matcher [4];
– ASKIP the Alpha variant of the SKip-Search algorithm [7];
– SKIPq: the new Skip Search variants using q-grams, with 1 ≤ q ≤ 8 (observe

that when q = 1 we have the original Skip-Search algorithm [7]);

For the sake of completeness we evaluate also the following two string matching
algorithms for counting occurrences.

– EPSM: the Exact Packed String Matching algorithm [12];
– TSOq: the Two-Way variant of [9] the Shift-Or algorithm [2] implemented

with a loop unrolling of q characters, with q = 5;

All algorithms have been implemented in the C programming language and
have been tested using the Smart tool1. The experiments were executed locally
on an MacBook Pro with 4 Cores, a 2 GHz Intel Core i7 processor, 16 GB RAM
1600 MHz DDR3, 256 KB of L2 Cache and 6 MB of Cache L3. Algorithms have
been compared in terms of running times, including any preprocessing time.

We report experimental evaluations on a three random sequences (see Tables
1 and 2 ) and on three real data (see Tables 3, 4 and 5 ). Specifically random
sequences are over alphabets of 2 and 16 characters, with a uniform distribution.

1 The Smart tool is available online at http://www.dmi.unict.it/~faro/smart/.



For the case of real data evaluations we used a genome sequence, a protein
sequence and an english text. All sequences have a length of 5MB, are provided
by theSmart research tool and are available online for download.

During the experimental evaluations patterns of length m were randomly
extracted from the sequences, with m ranging over the set of values {2i | 2 ≤ i ≤
10}. For each case, the mean over the running times, expressed in hundredths
of seconds, of 500 runs has been reported.

In the following tables we report the running times of our evaluations. Each
table is divided in four blocks. The first and the second block present the most
effective algorithms known in literature based on automata and comparison of
characters, respectively. Best results among this two sets of algorithms have been
bold-faced in order to easily locate the best solutions among previous known
algorithms. The third block contains the running times of the new algorithm,
including the speed up (in percentage) obtained against the best running time in
the first two blocks. Positive values indicate a braking of the running time while
a negative percentage represent and improvements of the performance. Running
times with an improvement of the performance have been bold-faced.

The last block reports the running times obtained by the best two algorithms
for counting occurrences (we do not compare them against the other algorithms).

Among the previous solutions it turns out that the BSDMq algorithm is
fastest in the case of small alphabets (2 and 16 characters), however it is second
to the Hashq algorithm for σ = 2 and very long patterns, and to the EBOM
algorithm for σ = 16 and short patterns. Regarding the performance of the new
algorithm, it obtains always the best results in the case of small alphabets. In
such cases the gain in performance is up to 7%. When the size of the alphabet
increases the new algorithm maintain the best results only in the case of medium
and long patterns (i.e. for m ≥ 32).

The same behavior can be observed in the case of real data experimental
results, where the new solution obtains the best running time in most cases.
In the case of a genome sequence it is always the best choice, with a gain in
performance up to 12%. Such gain is less evident when the size of the alphabet
increases. It is up to 2.5% when searching protein sequences and natural language
texts.

5 Conclusions

In this paper we presented a simple, yet efficient, variant of the Skip-Search
algorithm, based on condensed alphabets. Although such extension has been
applied to many algorithms in recent years, it turns out that when applied to
the Skip-Search algorithm, it produces a very fast searching procedure. It will be
interesting to investigate whether the use of multiple hash function can reduce
the number of false positives detected during the filtering phase.



Table 1. Experimental results on a random sequence over an alphabet of 2 characters.

m 4 8 16 32 64 128 256 512 1024

AOSOq 41.70(2) 35.62(4) 14.37(4) 4.54(4) 4.64(4) 4.59(4) 4.58(4) 4.62(4) 4.57(4)

BNDMq 16.55(4) 8.67(6) 5.10(6) 4.06(6) 4.92(4) 4.92(4) 4.92(4) 4.89(4) 4.90(4)

BSDMq 15.35(4) 7.52(6) 4.30(8) 3.30(8) 2.99(8) 2.79(8) 2.78(8) 2.74(8) 2.73(8)

BXSq 22.33(4) 10.97(6) 5.47(8) 3.74(8) 3.75(8) 3.75(8) 3.76(8) 3.74(8) 3.75(8)

EBOM 25.12 20.32 13.65 8.72 6.27 4.62 3.77 3.28 2.98

FSBNDMqs 16.66(4,1) 7.80(6,1) 5.08(6,1) 4.05(6,1) 4.00(6,1) 4.07(6,1) 4.05(6,1) 4.05(6,1) 4.05(6,1)

KBNDM 27.67 19.08 11.31 7.07 5.82 5.71 5.75 5.78 5.79

SBNDMq 15.36(4) 8.33(6) 5.05(6) 4.01(6) 4.05(6) 4.08(6) 4.07(6) 4.08(6) 4.09(6)

FS-w 26.30(2) 20.20(2) 15.16(2) 11.63(2) 9.42(2) 8.00(2) 6.90(2) 6.11(2) 5.52(2)

FJS 28.78 33.80 36.59 34.94 36.25 36.02 36.51 36.36 36.55

HASHq 25.44(3) 11.94(5) 6.07(5) 3.99(8) 3.20(8) 2.97(8) 2.95(8) 2.71(8) 2.62(8)

ASKIP 34.24 22.43 13.14 6.50 4.62 3.62 3.27 3.16 3.52
IOM 23.90 24.64 26.64 26.58 26.76 26.60 26.69 26.51 26.67
WOM 30.32 26.31 23.00 20.37 17.94 16.47 14.94 13.78 12.76

SKIPq 14.37(4) 7.24(6) 4.30(8) 3.20(8) 2.77(8) 2.65(8) 2.65(8) 2.55(8) 2.51(8)

speed-up -6.4% -3.7% 0.0% -3.0% -7.3% -5.0% -4.7% -5.9% -4.2%

EPSM 6.51 8.46 3.20 2.45 2.25 2.22 2.30 2.31 2.30

TSOq 12.67(5) 10.01(5) 6.67(5) 4.39(5) 3.17(5) - - - -

Table 2. Experimental results on a random sequence over an alphabet of 16 characters.

m 4 8 16 32 64 128 256 512 1024

AOSOq 10.70(2) 4.29(4) 3.75(4) 3.75(4) 3.07(6) 3.11(6) 3.13(6) 3.09(6) 3.14(6)

BNDMq 11.99(4) 4.20(4) 2.96(4) 2.38(4) 2.39(4) 2.41(4) 2.38(4) 2.35(4) 2.39(4)

BSDMq 4.82(2) 3.79(4) 2.67(4) 2.27(4) 2.10(4) 2.02(4) 1.98(4) 1.96(4) 1.99(4)

BXSq 6.86(2) 4.29(2) 3.08(2) 2.46(2) 2.47(4) 2.50(4) 2.51(4) 2.52(4) 2.48(4)

EBOM 3.75 2.92 2.51 2.25 2.16 2.19 2.16 2.16 2.30

FSBNDMqs 4.28(2,0) 3.21(2,0) 2.55(3,1) 2.18(3,1) 2.20(3,1) 2.18(3,1) 2.19(3,1) 2.19(3,1) 2.21(3,1)

KBNDM 7.38 4.94 3.76 3.17 2.95 3.04 2.90 3.00 2.98

SBNDMq 5.26(2) 3.62(2) 2.73(2) 2.31(2) 2.36(4) 2.37(4) 2.37(4) 2.39(4) 2.42(4)

FS-w 5.15(6) 3.69(6) 3.05(6) 2.72(6) 2.72(6) 2.68(6) 2.64(6) 2.64(6) 2.66(6)

FJS 9.38 7.08 5.27 4.94 4.65 4.54 4.18 4.65 4.49

HASHq 19.81(3) 8.35(3) 5.07(3) 3.61(5) 3.10(5) 2.97(5) 2.89(5) 2.73(5) 2.62(5)

ASKIP 9.04 7.48 4.98 3.35 2.84 2.82 3.07 3.76 6.23
IOM 8.96 6.40 5.11 4.49 4.35 4.28 4.28 4.31 4.35
WOM 9.39 6.66 5.16 4.43 4.17 3.97 3.85 3.80 3.72

SKIPq 4.85(2) 3.70(3) 3.13(3) 2.24(4) 2.06(4) 1.99(4) 1.93(4) 1.86(4) 1.84(4)

speed-up +29% +26% +24% -0.4% -1.9% -1.5% -2.5% -5.1% -7.5%

EPSM 6.62 25.55 2.72 2.10 1.94 1.89 1.81 1.74 1.78

TSOq 5.45(5) 3.88(5) 3.11(5) 2.51(5) 2.20(5) - - - -



Table 3. Experimental results on a genome sequence.

m 4 8 16 32 64 128 256 512 1024

AOSOq 16.98(2) 9.63(2) 3.93(4) 3.39(4) 2.98(6) 2.97(6) 2.99(6) 3.00(6) 3.03(6)

BNDMq 11.13(4) 4.10(4) 2.99(4) 2.47(4) 2.38(4) 2.39(4) 2.41(4) 2.47(4) 2.45(4)

BSDMq 8.37(4) 3.71(4) 2.78(4) 2.46(4) 2.25(8) 2.15(8) 2.11(8) 2.16(6) 2.11(6)

BXSq 11.86(2) 4.78(4) 3.25(4) 2.53(6) 2.50(6) 2.52(4) 2.49(4) 2.55(4) 2.54(4)

EBOM 7.72 7.15 5.66 4.10 3.17 2.67 2.40 2.32 2.41

FSBNDMqs 6.46(3,1) 3.87(4,1) 2.94(4,1) 2.38(4,1) 2.35(6,2) 2.31(6,1) 2.33(6,1) 2.38(3,1) 2.37(6,1)

KBNDM 10.88 8.21 6.15 4.17 3.27 3.09 3.10 3.13 3.14

SBNDMq 8.75(2) 3.95(4) 2.97(4) 2.47(4) 2.39(4) 2.39(4) 2.36(4) 2.38(4) 2.38(4)

FS-w 12.33(2) 9.39(2) 7.76(2) 6.89(2) 6.16(2) 5.63(2) 5.06(2) 4.73(2) 4.42(2)

FJS 18.60 16.69 16.96 15.96 16.09 16.80 16.71 16.61 16.59

HASHq 18.09(3) 7.68(3) 4.67(5) 3.31(5) 2.78(5) 2.60(5) 2.63(5) 2.51(5) 2.40(5)

ASKIP 17.19 7.45 4.32 3.17 2.66 2.60 2.79 3.24 5.18
IOM 14.41 11.88 11.08 11.17 11.17 11.13 11.03 11.03 10.98
WOM 16.69 12.48 9.88 8.61 7.75 7.16 6.72 6.29 6.11

SKIPq 6.02(3) 3.71(4) 2.76(4) 2.34(4) 2.15(4) 2.08(6) 2.01(8) 1.91(8) 1.88(8)

speed-up -6.8% 0.0% -0.7% -4.9% -4.4% -3.3% -4.7% -12% -11%

EPSM 5.87 3.72 2.50 1.93 1.75 1.72 1.66 1.62 1.65

TSOq 5.54(5) 3.85(5) 3.08(5) 2.42(5) 2.05(5) - - - -

Table 4. Experimental results on a protein sequence.

m 4 8 16 32 64 128 256 512 1024

AOSOq 10.80(2) 4.27(4) 3.84(4) 3.81(4) 3.18(4) 3.17(4) 3.16(4) 3.16(4) 3.16(4)

BNDMq 12.20(4) 4.29(4) 3.06(4) 2.46(4) 2.45(4) 2.43(4) 2.42(4) 2.40(4) 2.40(4)

BSDMq 4.68(2) 3.71(2) 2.75(4) 2.35(4) 2.06(4) 1.98(4) 1.97(4) 1.97(4) 1.94(4)

BXSq 6.91(2) 4.29(2) 3.12(2) 2.52(2) 2.48(2) 2.52(2) 2.50(2) 2.51(2) 2.52(2)

EBOM 3.87 2.94 2.57 2.29 2.11 2.18 2.20 2.24 2.42

FSBNDMqs 4.32(2,0) 3.28(2,0) 2.59(3,1) 2.26(3,1) 2.22(3,1) 2.25(3,1) 2.25(3,1) 2.20(3,1) 2.26(3,1)

KBNDM 7.46 4.97 3.81 3.24 3.04 3.01 2.95 2.96 2.95

SBNDMq 5.25(2) 3.67(2) 2.79(2) 2.34(2) 2.45(4) 2.41(4) 2.42(4) 2.41(4) 2.40(4)

FS-w 6.18(2) 4.33(2) 3.55(2) 3.20(2) 3.05(2) 2.94(2) 2.90(2) 2.87(2) 2.86(2)

FJS 9.68 18.54 4.18 3.02 2.92 2.89 2.82 3.16 4.11

HASHq 19.92(3) 8.36(3) 5.05(3) 3.75(5) 3.19(5) 2.99(5) 2.92(5) 2.76(5) 2.66(5)

ASKIP 8.63 7.06 5.07 3.52 2.87 2.87 3.13 3.92 6.56
IOM 8.87 6.36 5.02 4.41 4.04 3.92 3.86 3.86 3.79
WOM 9.31 6.61 5.13 4.32 4.03 3.72 3.56 3.43 3.33

SKIPq 4.56(2) 3.41(3) 2.64(3) 2.26(3) 2.00(3) 1.94(4) 1.92(4) 1.90(4) 1.92(4)

speed-up +17% +16% +2.7% -1.3% -2.2% -2.0% -2.5% -2.5% -1.0%

EPSM 6.67 25.55 2.77 2.16 1.91 1.91 1.90 1.83 1.86

TSOq 5.41(5) 3.90(5) 3.29(5) 2.59(5) 2.17(5) - - - -



Table 5. Experimental results on a natural language sequence.

m 4 8 16 32 64 128 256 512 1024

AOSOq 11.14(2) 4.58(4) 3.89(4) 3.76(4) 3.16(6) 3.16(6) 3.18(6) 3.21(6) 3.16(6)

BNDMq 12.30(4) 4.35(4) 3.17(4) 2.49(4) 2.53(4) 2.52(4) 2.51(4) 2.54(4) 2.51(4)

BSDMq 4.73(2) 3.85(2) 2.86(4) 2.35(4) 2.20(4) 2.09(4) 2.07(4) 2.02(4) 2.00(4)

BXSq 7.38(2) 4.85(2) 3.43(4) 2.59(4) 2.59(4) 2.64(4) 2.62(4) 2.62(4) 2.63(4)

EBOM 4.33 3.47 3.05 2.74 2.54 2.51 2.40 2.40 2.57

FSBNDMqs 4.66(2,0) 3.55(3,1) 2.77(3,1) 2.39(3,1) 2.39(3,1) 2.38(3,1) 2.41(3,1) 2.42(3,1) 2.43(3,1)

KBNDM 7.84 5.49 4.22 3.59 3.28 3.08 3.04 3.03 3.03

SBNDMq 5.75(2) 4.18(2) 3.13(4) 2.43(4) 2.52(4) 2.50(4) 2.52(4) 2.51(4) 2.52(4)

FS-w 6.05(6) 4.25(6) 3.39(6) 2.89(6) 2.73(6) 2.54(6) 2.43(6) 2.40(6) 2.39(6)

FJS 7.06 25.33 3.68 2.95 2.96 2.81 3.18 3.42 3.83

HASHq 19.96(3) 8.34(3) 5.02(3) 3.68(5) 3.17(5) 2.95(5) 2.96(5) 2.76(5) 2.65(5)

ASKIP 10.17 7.78 5.25 3.65 2.97 2.89 3.14 3.77 5.90
IOM 9.37 6.67 5.26 4.38 3.96 3.73 3.47 3.30 3.20
WOM 9.98 7.01 5.28 4.32 3.91 3.53 3.25 3.11 3.02

SKIPq 4.62(2) 3.58(3) 2.78(3) 2.30(3) 2.13(4) 2.07(4) 2.06(4) 1.97(4) 1.96(4)

speed-up +6.7% -3.2% -2.8% -2.1% -3.2% -1.0% -0.5% -2.5% -2.0%

EPSM 6.72 26.36 2.86 2.13 1.94 1.94 1.92 1.86 1.87

TSOq 5.54(5) 4.05(5) 3.26(5) 2.61(5) 2.23(5) - - - -
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