
Short Read Alignment and Compression
via Shortest Unique Substring Identifiers?

B. Adaş1, E. Bayraktar1, S. Faro2, I. E. Moustafa3 and M. O. Külekci3

1Department of Computer Enginering, İstanbul Technical University, Turkey
2Department of Mathematics and Computer Science, University of Catania, Italy

3Department of Biomedical Enginering, İstanbul Medipol University, Turkey

{adas,bayrakterer}@itu.edu.tr, faro@dmi.unict.it,
{iemoustafa,okulekci}@medipol.edu.tr

Abstract. Aligning short reads produced by high throughput sequenc-
ing equipments onto a reference genome is the fundamental step of se-
quence analysis. Since the sequencing machinery generates massive vol-
umes of data, it is becoming more and more vital to keep those data com-
pressed also. In this study we present the initial results of an on-going
research project, which aims to combine the alignment and compression
of short reads with a novel preprocessing technique based on shortest
unique substring identifiers. We observe that clustering the short reads
according to the set of unique identifiers they provide us an opportunity
to combine compression and alignment. Thus, we propose an alterna-
tive path in high-throughput sequence analysis pipeline, where instead
of applying an immediate whole alignment, a preprocessing that clusters
the reads according to the set of shortest unique substring identifiers
extracted from the reference genome is to be performed first. We also
present an analysis of the short unique substrings identifiers on the hu-
man reference genome and examine how labeling each short read with
those identifiers helps in alignment and compression.

1 Introduction

Mapping short reads onto the reference genome is the fundamental initial step in
the analysis of high-throughput sequencing data, where a large number of align-
ment software packages have been developed in the last decade [7]. In this paper
we observe that clustering the short reads according to a set of unique identifiers
of the reference genome they include provide an opportunity to improve both
alignment and compression of short reads. To the best of our knowledge this is
the first time this approach is used for the analysis of biological sequences.

The general approach to achieve alignment fast in small memory footprint
has appeared to be indexing the reference genome, and then seeking the occur-
rences of short reads one-by-one by using that index. It is not always possible to

? This work has been supported by the Scientific & Technological Research Council
Of Turkey (TUBITAK), the Department Of Science Fellowships & Grant Programs
(BIDEB), 2221 Fellowship Program.

exactly align each read since sequencing errors as well as differences between the
sequenced individual and the reference are unavoidable. Thus, while mapping
the reads, error-tolerant approximate matches should be considered. However,
although there has been many efficient text indexing schemes for searching ex-
act occurrences of the patterns, matching with symbol insertions, deletions, and
mismatches is still an active research area.

Most of the aligners run with some parameters limiting the maximum number
of mismatches/insertions/deletions allowed to occur while mapping a short read,
and thus, especially large insertions or deletions are not easy to detect. With
the ever increasing length of the short reads due to the technological advance of
sequencing platforms, these limitations tend to become more severe. Underlining
this fact, more recent aligners [10, 1, 12] as well as the new versions of the previous
alignment packages [15, 14] prefer to use k–mers of the short reads to roughly
detect the mapping position on the reference genome, and then deploy a Smith-
Waterman [18] style dynamic programming to achieve the task. In other words,
instead of searching the whole read, the occurrences of k–mers extracted from
the short read are scanned on the reference genome. When enough number of
k–mers jointly points to a unique location, the Smith-Waterman algorithm is
applied on the detected short region.

The point that is open for improvement in that approach is the optimization
of the k value. The number of candidate regions increase with the short k values,
and then it becomes difficult to decide on the correct region. Similarly, when k
is set to a large value, sequencing errors or mutations are more likely to effect
the performance, which is contrary to the basic idea behind the approach.

Also sequencing technology is developing very fast that most recent high-
throughput equipments produce hundredths of millions short reads at each run.
While the accuracy of reading as well as the speed improves, the cost of sequenc-
ing decreases rapidly. Thus, each day it is becoming more and more feasible to
design larger experiments, which results increased rate of data growth. The data
flood will be worse when people begin using sequencing not only for research pur-
poses, but for regular tests and diagnosis in practice. The ever increasing size
of the data generated with high-throughput sequencing technologies requires to
develop special methods to tackle with the problems of the huge genomic data
sets [2]. In that sense, compressing fastq files has been one of the most active
research topics during the last few years [6], and many solutions have been pro-
posed to represent those files as small as possible in size [5, 8, 4, 11, 3]. However,
the real challenge in fastq compression is more than the efficient archival of data.

In their compressive genomics definition, Loh et al. [16] stated “algorithms
that compute directly on compressed genomic data allow analyses to keep pace
with data generation”. The compression aiming to provide support for operations
directly on compressed data should provide some capabilities such as efficient
random access to any short-read in the original fastq file as well as retriev-
ing/extracting the reads mapped to a specific region of interest on the genome.
The recent survey by Giancarlo et al. [9] lists the capabilities of the compressors
in the genomic area in that sense.

2

The Idea and Our Contribution

A unique substring of the reference genome is a substring which is repeated only
once in the whole sequence. In this paper we start by the observation that if a
unique substring of the reference genome appears in a short read, then this short
read can be mapped directly to the unique location of that substring identifier
on the reference genome. This approach allows us to avoid to investigate any
other k–mers since the detected substring is unique on the reference, and thus
points to its location unambiguously.

Moreover we observe that clustering the short reads according to a set of
unique identifiers they include provide us an opportunity to combine compres-
sion and alignment. Thus, conforming to compressive genomics approach, we
present an alternative path in high-throughput sequence analysis pipeline, where
instead of applying an immediate whole alignment, a preprocessing that clusters
the reads according to the set of shortest unique substrings identifiers extracted
from the reference genome is performed first. At the end of this preprocessing
operation each read is assigned to a substring identifier. That binding represents
a rough alignment as we know the position of the unique substring on the refer-
ence, and therefore, the rough position of the read. Once each read is associated
with its unique substring identifier, the user may use this information both for
the alignment and compression, and even combining these two operations.

For the alignment, assume the user has a specific region of the interest on
the genome, and wants to see the reads sequenced from this section. One simply
selects the shortest unique substring identifiers of that region from the previ-
ously prepared dictionary, and retrieves the reads labelled with these substring
identifiers. The labels of the reads tell the rough position of the read, and a
Smith-Waterman type alignment may be called on the fly for full alignment
information.

For the compression task, the user may create the buckets which represents
regions on the genome. These buckets store the short reads which include the
unique substrings identifiers of the selected region, and can be compressed ef-
ficiently due to their high redundancy originating from the fact that they all
repeat the information from the same region.

A unified or combined approach would be first to create the buckets and
keep them compressed, and then, answer the alignment queries by extracting
and generating the full alignment information of the reads from the related
buckets.

Organization of the Paper

The paper is organized as follows. In Section 2 we briefly describe the process
we used for identifying the set of the shortest unique substrings from the human
genome and we analyze and describe in Section 3 the set extracted substrings.
In Section 4 we describe our dictionary matching algorithm for mapping the set
of short reads in their positions in the human genome. Finally we present our
results in Section 5 and draw our conclusions in Section 6.

3

Fig. 1. Illustration of the short reads matching with the sus identifier T [a . . . b] assum-
ing a constant read length d.

2 Shortest Unique Substring Identifiers of the Genome

Shortest Unique Substring (sus) finding [17] has received significant attention
very recently, and efficient methods have been developed to solve the problem
[19, 13]. Each position on a text has a corresponding sus for sure, where there
might be more than one sus for some positions. Interested readers may refer to
the regarding publications for the proofs and more detailed discussions.

Formally we have the following definition.

Definition 1 (Shortest Unique Substring). Given a text T [1, n] of length n,
the shortest unique substring covering the specific location i, for any 1 ≤ i ≤ n, is
the shortest string of length `, T [a . . . a+`−1], such that 1 ≤ a ≤ i ≤ a+`−1 ≤ n
and T [a . . . a+ `− 1] 6= T [b . . . b+ `− 1], for each 1 ≤ b ≤ n− `+ 1.

The most obvious usage of sus detection appears in displaying the results of
a string search on a target text. Assume we are searching the occurrences of a
keyword that appears more than once in the given text. Thus, while displaying
the results, it is helpful to display a bit of the context including the detected
position of the occurrence. In such a scenario, the length of the to-be-displayed
context may be tuned according to the sus of that position, which uniquely
informs about the position of appearance.

In this study, we introduce a novel preprocessing based on the sus signatures
extracted from the reference genome that would help in sensitive read mapping
and compression. To this purpose we extract the sus identifiers from the refer-
ence genome, and build a sus dictionary, where each substring is stored with the
position of its occurrence on the reference. Notice that this is an operation that
will be done on a target reference just once.

Fig.1 illustrates how sus identifiers can be used in the alignment process.
Assume that T [a . . . b] is such a sus and d represents the short read length. The
reads that include T [a . . . b] are shown in the figure. If we do not let any insertions
or deletion during the mapping, the leftmost appropriate read including this sus
should map to T [b−d+1 . . . b], and similarly the rightmost one to T [a . . . a+d−1].

The good thing is that once we caught the sus in the read, we have the
flexibility to allow larger error thresholds, since we know exactly the address of

4

Fig. 2. A short read generally includes more than one sus.

the short read matching with the sus. Thus, to let insertion and deletions, the
region might be extended a bit further to the right and left, and then, the short
reads may be aligned to that extended region via a cache-oblivious dynamic
programming as performed in [10, 12].

Careful readers will quickly realize that in this scenario the length of the
sus identifier should be less than or equal to read length d. In addition to that,
we seek an exact match between the sus and short reads. Surely, we know
that the possibility of a mismatch becomes more significant as the length of
the sus increases. Hence, long sus identifiers are not supposed to help much,
and we neglect in the sus dictionary the ones that are longer than a predefined
threshold λ during the operation. For instance, we may assume that threshold
to be around λ = 30, where in practice the read length is around 100 bases long.

Fortunately, a short read includes generally more than one sus identifier
as shown in Fig.2, where the sample read and the sus candidates are marked
bold. This becomes useful as we may still expect to have appropriate length sus
candidates, when we exclude the long sus from the dictionary. Having more than
one candidate helps in case of errors also, since an exact match of the short read
at least with one of the sus is enough to map it appropriately. For example in
the Fig.2, the read can be located on the reference once one of the four possible
sus occur in it without an error.

Below we give the formal definition of the sus set of a region.

Definition 2 (Shortest Unique Substring Set of a Region). Assume a
region of interest T [i . . . j] on the reference genome T [1 . . . n] is specified and the
constant length of the short reads is d. The sus set of the specified region is the
list of the sus strings from the sus dictionary, whose beginning positions on the
reference genome are between i− d+ 1 and j + d− 1.

With the concern of aligning all the reads corresponding to an arbitrary
region of interest T [i . . . j], we seek the leftmost and rightmost sus identifiers
that are helpful to construct the region. With the term helpful, we mean there
exists a chance that a short read including this sus may cover at least one base
from the target region. This is depicted in Fig.2 as when the selected leftmost
(rightmost) sus appears leftmost (rightmost) on a short read, that short read
may cover the position ti (tj).

5

3 SUS Analysis of the Human Reference Genome

In this section we analyze the sus identifiers we extracted from human reference
genome GRCh381.

Under the commonly used IUPAC system, bases are represented by the first
letters of their chemical names: g (for Guanine), c (for Cytosine), a (for Ade-
nine), and t (for Thymine). However degenerate base symbols in biochemistry
include also eleven ambiguity characters associated with every possible combi-
nation of the four dna bases. Among them the symbol n is used to identify a
no-idea base, i.e. a jolly character.

During our analysis we concatenated all chromosomes of the genome into a
single string and changed everything other than a, c, g, t, n to n, and replaced
consecutive repeating ns with a single n letter. Considering the dna sequencing
technology, where short reads may originate from both the forward and reverse
strands of the dna, we appended the reverse complement of this string to its
end, and thus, the resulting whole human genome is of length 5875280183 ≈ 5.87
billions bases.

For each position on this string, we have detected the corresponding sus with
the method of [13]. The operation took roughly 75 minutes on a machine with
256 GB memory and Intel Core 2 Quad processor running Linux Centos 6.2.

There may be more than one sus (with the same length) for a position. We
break the tie by choosing the leftmost one in such a case. Moreover one sus may
be shared by consecutive positions on the target string, and thus, we counted
the number of distinct sus in the sus database of the whole genome. We found
that 1924177251 ≈ 1.92 billion of the 5.87 billion items in the sus database are
unique when both the forward and reverse strands are taken into account.

Since long sus identifiers are not useful in our strategy, we excluded the ones
that are longer than a threshold value, which we set as 30 in our study (the
longest sus detected is nearly 1.2 million bases long). In addition, some of the
sus identifiers are either right or left extensions of neighbouring shorter ones.
For instance assume a sus is T [a . . . b], and while searching for the sus covering
position b+1, it might be the case that T [a . . . b+1] may be returned as the sus
of that position by the algorithm. We also get rid of such extension patterns, and
create our final sus dictionary composed of 963836205 ≈ 1 billion sus identifiers.

A sus has the potential to cover a position if it is in vicinity of d bases to
that position. That is because, when that sus appears at the very beginning or
end of a short read, then that short read covers all λ positions to the right or
left as shown in Figure 1. Certainly, it is much better for a position to have the
chance of being covered by large number of distinct sus.

For some positions on the human genome it might not be possible to detect
a sus identifier longer than the selected threshold 30 bases. If such positions
does not have a neighbouring sus in close vicinity, then the reads originating
from this area has the danger of not being caught by any of the sus identifiers

1 Available at http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/.

6

Fig. 3. The theoretical sus coverage of the human reference genome.

from the dictionary. To measure this problem, we define below the theoretical
sus coverage of an individual position.

Definition 3 (Theoretical sus coverage of a position). The leftmost short
read possible to cover an inspected position i is T [i−d+1 . . . i], and the rightmost
short read including position i is T [i . . . i+ d− 1]. Notice that these short reads
may be produced from both the forward and reverse strands by the sequencing
equipment. Any sus identifier T [a . . . b], such that i− d+ 1 ≤ a ≤ b ≤ i+ d− 1,
may appear in those short reads covering the position i. Therefore, we define the
theoretical sus coverage of position i as the total number of such sus identifiers
on both the forward and reverse strands.

Figure 3 shows the theoretical sus coverage of the human reference genome.
The short reads that include the positions, which have 0 sus coverage, have no
chance of being identified by the proposed scheme. We call these reads orphan,
and observed that less than 5% of the genome remains orphan. Those orphan
positions are non avoidable due to the repetitive nature of the genome, but they
can be handled efficiently by the regular k–mer approaches.

4 Sus Dictionary Matching

In this section we describe the algorithm we used to match the sus collected
in the dictionary against the set of short reads. Before entering into details we
observe that an important property of the sus dictionary is that none of the
item appears as a substring of another item. This property is formally stated by
the following lemma.

Lemma 1. Let S = {s1, s2, . . . sm} be the sus dictionary, where si is a unique
substring of the reference genome T . There exists no si in S, which appears as
a substring in any other sj, with j 6= i.

7

Proof. Assume si appears in sj , where i 6= j. We know that si and sj are unique
on the reference genome by definition of sus. We have also deleted from the set
the right or left extensions of sus identifiers while creating the dictionary, and
thus, sj cannot be a right or left extension of si. Hence, if si occurs in sj , this
means si is not unique, which contradicts the hypothesis. ut

Based on Lemma 1 we devised an algorithm for fast scanning of the short
reads against the sus dictionary. Specifically during the preprocessing phase it
builds a data structure in order to index all the sus in the dictionary. Then This
index is used to speed up the searching process in the subsequent phase, where
the short reads are searched, one by one, for any occurrence of the given sus.

In our algorithm we make use of the longest common prefix of two sequences
as define below.

Definition 4 (Longest Common Prefix). Given two strings, x and y over
the same alphabet, the longest common prefix array (LCP) between x and y, in
symbol lcp(x, y), is the maximal length ` such that x[1 . . . `] = y[1 . . . `], where
` ≤ max(|x|, |y|).

For example, if x = acatac and y = acttagc then lcp(x, y) = 2.
In the following we describe separately the preprocessing and the searching

phase of our algorithm.

The Preprocessing Phase

Let S be the sus dictionary and let R be the set of the short reads as described
above. In this section we give a description of the data structure we use for
matching the sus against the short reads and briefly describe the preprocessing
of the input data.

As described before, the set S of the sus contains dna sequences with a
length between 12 and 30 bases. We indicate the minimum length of an sus in
S with the symbol m = 12. For each si ∈ S, let pi be the prefix of length m of
si, and let ri be the suffix of si of length |si| −m. It is clear that ri = ε when
si = m. In this context we can write si = pi · ri for each si ∈ S.

When preprocessing the set S we compute a fingerprint f(si) for each si ∈
S. The fingerprint of an sus si is computed by translating its prefix pi in an
integer number as f(si) =

∑m−1
j=0 code(pi[j])×4m−1−j , where code : {a,c,g,t} →

{0, 1, 2, 3} is a function which maps each character in an integer number. It is
trivial to observe that the prefix of a sus in S is uniquely described by a single
fingerprint value. However there are sus which share the same prefix, although
they are different. Since the fingerprint value is computed on the prefix of length
m = 12 of each sus we have that 0 ≤ f(si) < 224 (where 224 = 16.777.216), for
each si ∈ S.

During the preprocessing phase we construct an index table B of 224 locations
which is used to index all the sequences of length m = 12 over an alphabet of 4
elements. Then, for each si in S, we define a bucket, b(si), containing useful in-
formation about the sus and insert it in B according to its fingerprint. Thus each

8

element B[k] of the table is the set of buckets of all the sus which share the same
fingerprint k. More formally we have B[k] = {b(si) : si ∈ S and f(si) = k}, for
0 ≤ k < 224. The set B[k] is represented by a linked list where the buckets are
lexicographically ordered according to the corresponding sus. In this context we
indicate with prev(si) the sus which precedes si in its linked list.

The bucket of each si in S is a triple b(si) = {i, lcpi, ri}, where

– i is the index of the sus in the dictionary S. Such information is used to
locate the sus and its position in the reference genome.

– lcpi is the longest common prefix between si and prev(si).

– ri is the suffix of si of length |si| −m.

The Searching Phase

During the searching phase we select each short read from the set R, one by one,
and search it for the occurrence of any sus in the dictionary S.

Let t be a short read in R and let n be the length of t. During the searching
of t we open a substring w of length m over t, initially aligned with the left end
of t so that w = t[1 . . .m]. We call such a substring the window of t. Then the
window is slided to the right character by character until it reaches the right end
of t.

For each alignment of the window w at position i of t (so that w = t[i . . . i+
m − 1]), we check if any sus in S has an occurrence beginning at position i of
t. If no sus occurs in t at position i the next iteration is started with a new
alignment of the window at position i+ 1.

For each iteration, say at position i, the algorithm computes the fingerprint
k of the window w = t[i . . . i+m− 1]. Then it easy to observe that only the sus
in the set B[k] can occur at position i of t, since they share the same prefix as
the window. Thus the algorithm checks the element of the set B[k], one by one,
until an occurrence is found or all possible candidates have been checked. The
elements of the set B[k] are checked by following a lexicographical order of the
correspondent sus.

Let si1 , si2 , . . . , sin be the n sus in the setB[k], in lexicographical order. Since
we already know that the first m characters of si1 are equal to t[i . . . i+m− 1],
the algorithm scans the characters of the read t starting from position i+m and
comparing them with the corresponding characters in si1 , until the whole sus is
scanned or a mismatch is encountered. In the first case an occurrence is reported
and the algorithm stops searching the read t. In the second case the algorithms
discards si1 and continue comparing t with the next sus si2 .

Suppose that the algorithm scanned j characters of si1 , starting from position
i+m, before finding a mismatch. Thus we have si1 [m+ j− 1] = t[i+m+ j− 1]
and si1 [m+ j] 6= t[i+m+ j].

We now recall that the value lcpi2 is the maximal length of the shared prefix
between si1 and si2 . Thus if lcpi2 < m + j we know that si2 cannot occur at
position i of t. Moreover, for the same reason, none of the other sus in the set

9

{si2 , si3 , . . . , sin} can occur at position i of t. Thus in this case the scanning is
stopped and a new iteration is started with a new window.

In the other case, if lcpi2 ≥ m + j the algorithm continues comparing t and
si2 starting at position i+m+j of t until the whole sus is scanned or a mismatch
is encountered.

When a new iteration on the new window w′ = t[i+1 . . . i+m] is started the
algorithm can remember the length of the prefix which has been scanned in the
previous iteration. Suppose j is the length of such a prefix, so that si1 [m+j−1] =
t[i+m+ j − 1] and si1 [m+ j] 6= t[i+m+ j] and suppose lcpi2 < m+ j so that
a new iteration is started. Let k′ be the new fingerprint value of the window w′.
By Lemma 1 we know that any sus in B[k′], with a length less than j − 1, can
occur at position i + 1. Thus the algorithm can discard from B[k′] all the sus
with a length less than j − 1.

This process stops when an occurrence of any sus in S is found in t or when
the starting position i of the window reaches the value |t| −m.

Observe that the computation of the fingerprint of a given window w′ =
t[i + 1 . . . i + m] can be computed in constant time from the fingerprint of the
previous window w = t[i . . . i+m− 1] by the following relation

f(w′) = (f(w)− code(t[i])× 4m−1) + code(t[i+m])

Thus the computation of all windows along a short read of length d can be done
in O(d) time. However each iteration of the searching process requires O(λ−m)
time in the worst case. Thus the worst case time complexity for searching a short
read of length d for any occurrence of the sus in S is O((λ−m)d).

Despite its quadratic worst case time complexity it turns out from our exper-
imental evaluation that the average number of text characters inspection during
the search is less than ?????. Thus we can state that our dictionary matching
algorithm shows on average a linear behavior.

5 Results

We have implemented the SUS pattern matching algorithm and applied on the
short reads of the whole human genome NA18507 which was sequenced with
Illumina HiSeq2500. The machine we have conducted this matching had 32GB
of memory, LinuxMint 17 operating system. Table 1 summarizes what percent of
the short reads could be identified with how many SUS signatures. For instance,
3.74% of the short reads include 1 to 5 distinct SUS signatures, and ≈ 50 % have
at least 30 and at most 50 distinct SUS identifiers. Remember that maximum
SUS length was set to 30 bases, and the read lengths in this experiment was 101
bases per short read. When one of the two pairs in a pair-end tuple is identified
with an SUS, we assume we can successfully align both pairs since we know that
they are in a certain distance. Considering this fact, we have observed that, of
the 4 million pair-end reads it is possible to identify ≈ 96 percent directly. This
means those reads uniquely map to the area pointed by the SUS identifier they
include. For the rest, it is necessary to run the regular k–mer approach to decide
where they can map to.

10

% of short-reads identified by X SUS signatures
unidentified 1–5 6–10 11–20 21–30 31–50 71–100

3.19 3.74 3.42 11.16 28.23 49.73 0.53

Table 1. Percentages of the short reads including SUS identifiers on the first 4 million
of the pair-end sequences of the NA18507.

6 Conclusions and Future Works

We have introduced clustering of the short reads according to the SUS signatures
extracted from the target species’ reference genome. This clustering is supposed
to help in two directions so as to improve the compression and alignment. Re-
ordering the reads in the fastq file so that the ones having neighboring SUS signa-
tures are kept close would keep the related items in the same bucket, and hence,
better compression might be available. For the alignment, once an SUS is de-
tected inside a short read, its position can be uniquely identified on the reference
genome, and thus, more sensitive alignment might be possible with running the
SW algorithm with a gretaer insertion–deletion flexibility. The proposed pipeline
is shown in Figure 6. Within this study we have build the SUS dictionary for the
human reference genome and developed an efficient SUS matching algorithm.

Fig. 4. Proposed sequence analysis pipeline.

Next steps of the project will be building the actual alignment and compres-
sion blocks and benchmarking each against the current state–of–the–art solu-
tions. Surely, decreasing the computational resource requirement at each step
will be an important point, while it is not very much considered at this early
proof-of–concept study.

References

1. Can Alkan, Jeffrey M Kidd, Tomas Marques-Bonet, Gozde Aksay, Francesca An-
tonacci, Fereydoun Hormozdiari, Jacob O Kitzman, Carl Baker, Maika Malig, Onur
Mutlu, et al. Personalized copy number and segmental duplication maps using
next-generation sequencing. Nature genetics, 41(10):1061–1067, 2009.

11

2. Bonnie Berger, Jian Peng, and Mona Singh. Computational solutions for omics
data. Nature Reviews Genetics, 14(5):333–346, 2013.

3. James K Bonfield and Matthew V Mahoney. Compression of fastq and sam format
sequencing data. PloS one, 8(3):e59190, 2013.

4. Anthony J Cox, Markus J Bauer, Tobias Jakobi, and Giovanna Rosone. Large-scale
compression of genomic sequence databases with the burrows–wheeler transform.
Bioinformatics, 28(11):1415–1419, 2012.

5. Sebastian Deorowicz and Szymon Grabowski. Compression of dna sequence reads
in fastq format. Bioinformatics, 27(6):860–862, 2011.

6. Sebastian Deorowicz and Szymon Grabowski. Data compression for sequencing
data. Algorithms for Molecular Biology, 8(1):25, 2013.

7. Nuno A Fonseca, Johan Rung, Alvis Brazma, and John C Marioni. Tools for map-
ping high-throughput sequencing data. Bioinformatics, 28(24):3169–3177, 2012.

8. Markus Hsi-Yang Fritz, Rasko Leinonen, Guy Cochrane, and Ewan Birney. Effi-
cient storage of high throughput dna sequencing data using reference-based com-
pression. Genome Research, 21(5):734–740, 2011.

9. Raffaele Giancarlo, Simona E Rombo, and Filippo Utro. Compressive biological se-
quence analysis and archival in the era of high-throughput sequencing technologies.
Briefings in bioinformatics, page bbt088, 2013.

10. Faraz Hach, Fereydoun Hormozdiari, Can Alkan, Farhad Hormozdiari, Inanc Birol,
Evan E Eichler, and S Cenk Sahinalp. mrsfast: a cache-oblivious algorithm for
short-read mapping. Nature methods, 7(8):576–577, 2010.

11. Faraz Hach, Ibrahim Numanagić, Can Alkan, and S Cenk Sahinalp. Scalce: boost-
ing sequence compression algorithms using locally consistent encoding. Bioinfor-
matics, 28(23):3051–3057, 2012.

12. Faraz Hach, Iman Sarrafi, Farhad Hormozdiari, Can Alkan, Evan E Eichler, and
S Cenk Sahinalp. mrsfast-ultra: a compact, snp-aware mapper for high performance
sequencing applications. Nucleic acids research, page gku370, 2014.

13. A. Mert İleri, Külekci M. Oğuzhan, and Bojian Xu. Shortest unique substring
query revisited. In to appear in Combinatorial Pattern Matching. Springer, 2014.

14. Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with bowtie
2. Nature methods, 9(4):357–359, 2012.

15. Heng Li and Richard Durbin. Fast and accurate long-read alignment with burrows–
wheeler transform. Bioinformatics, 26(5):589–595, 2010.

16. Po-Ru Loh, Michael Baym, and Bonnie Berger. Compressive genomics. Nature
biotechnology, 30(7):627–630, 2012.

17. Jian Pei, WC-H Wu, and Mi-Yen Yeh. On shortest unique substring queries. In
Data Engineering (ICDE), 2013 IEEE 29th International Conference on, pages
937–948. IEEE, 2013.

18. Temple F Smith and Michael S Waterman. Identification of common molecular
subsequences. Journal of molecular biology, 147(1):195–197, 1981.

19. Kazuya Tsuruta, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Shortest
unique substrings queries in optimal time. In SOFSEM 2014: Theory and Practice
of Computer Science, pages 503–513. Springer, 2014.

12

