
Efficient Online Abelian Pattern Matching

in Strings by Simulating Reactive Multi-Automata

Domenico Cantone and Simone Faro

Università di Catania, Dipartimento di Matematica e Informatica
Viale Andrea Doria 6, I-95125 Catania, Italy

{cantone,faro}@dmi.unict.it

Abstract. The abelian pattern matching problem consists in finding all substrings of
a text which are permutations of a given pattern. This problem finds application in
many areas and can be solved in linear time by a näıve sliding window approach. In this
paper we introduce a new approach to the problem which makes use of a reactive multi-
automaton modeled after the pattern, and provides an efficient nonstandard simulation
of the automaton based on bit-parallelism.

Keywords: string permutations, nonstandard pattern matching, combinatorial algo-
rithms on words, bit-parallelism, reactive multi-automata.

1 Introduction

Given a pattern p and a text t, the abelian pattern matching problem [11] (also
known as jumbled matching [8, 7]) consists in finding all substrings of the text t,
whose characters have the same multiplicities as in p, so that they could be converted
into the input pattern just by permuting their characters.

It is a special case of the approximate string matching problem and naturally finds
applications in many areas, such as string alignment [4], SNP discovery [5], and also
in the interpretation of mass spectrometry data [6].

In the field of text processing and in computational biology, algorithms for abelian
pattern matching are used as a filtering technique [3], usually referred to as count-
ing filter, to speed up complex combinatorial searching problems. For instance, the
counting filter technique has been used in the solution to the k-mismatches [15] and
k-differences [17] problems. More recently, it has also been used in a solution to the ap-
proximate string matching problem allowing for inversions [9] and translocations [14].
A detailed analysis of the abelian pattern matching problem and of its solutions is
presented in [11].

In this paper we are interested in the online version of the problem, whose worst-
case time complexity is well known to be O(n), which assumes that the input pattern
and text are given together for a single instant query, so that no preprocessing is
possible.

Specifically, after introducing in Section 2 the relevant notations and describing in
Section 3 the related literature, we present in Section 4 a new solution of the online
abelian pattern matching problem in strings, based on a generalization of reactive
automata [10, 13] in which multiple links are allowed. In addition, we propose a non-
standard simulation of the automaton based on bit-parallelism. Despite its quadratic
worst-case complexity, the resulting algorithm performs very well in practice, better

than existing solutions in most practical cases (especially when the alphabet is large),
as can be inferred from the experimental results reported in Section 5. Finally, the
paper is closed with some concluding remarks in Section 6.

2 Notations and Definitions

We represent a string p of length |p| = m > 0 as a finite array p[0 ..m−1] of characters
from a finite alphabet Σ of size σ. Thus, p[i] will denote the (i+ 1)-st character of p,
for 0 ≤ i < m, whereas p[i .. j] will denote the substring of p contained between the
(i+ 1)-st and the (j + 1)-st characters of p.

For a character c ∈ Σ, we denote by ρp(c) the rightmost position in p of the
character c, if present, −1 otherwise. Likewise, λp(c) will denote the leftmost position
in p of the character c, if present, m otherwise. More formally, for c ∈ Σ, we have

ρp(c) := max
(
{i | 0 ≤ i < m and p[i] = c} ∪ {−1}

)
λp(c) := min

(
{i | 0 ≤ i < m and p[i] = c} ∪ {m}

)
.

For any index 0 ≤ i < m, we let νp(i) denote the smallest index i < j < m such that
p[j] = p[i], if such an index exists, m otherwise. In addition, we extend the definition
of νp to m by putting νp(m) := −1. In the rest of the paper, when the pattern p is
understood, we will simply write λ, ρ, and ν in place of λp, ρp, and νp, respectively.
For a function f , we use the notation f j, with j ≥ 0, for the j-th iterate of f .1 Thus,
for instance, f 3(i) = f(f(f(i))).

It is easy to see that, for any index 0 ≤ i < m, the sequence of indices〈
λ(p[i]), ν(λ(p[i])), ν2(λ(p[i])), . . . , νr(λ(p[i]))

〉
,

where r+1 is the multiplicity of p[i] in p (so that νr(λ(p[i])) = ρ(p[i])), is the sequence
of the positions of the character p[i] in p, in increasing order.

Example 1. Let p = gactaagtac be a pattern of length m = 10 over the alphabet
Σ = {a, c, g, t}. Then we have λ(a) = 1 and ρ(a) = 8. Moreover, ν(1) = 4, ν2(1) =
ν(4) = 5, and ν3(1) = ν(5) = 8 = ρ(a). Thus, 〈1, 4, 5, 8〉 is the increasing sequence of
the positions of the character a in p.

The Parikh vector [1, 18] of p (denoted by pvp and also known as compomer [6],
permutation pattern [12], and abelian pattern [11]) is the vector of the multiplicities
of the characters in p. More precisely, for each c ∈ Σ, we have

pvp[c] := |{i : 0 ≤ i < m and p[i] = c}| .

In the following, the Parikh vector of the substring p[i .. i + h − 1] of p, of length h
and starting at position i, will be denoted by pvp(i,h).

In terms of Parikh vectors, the abelian pattern matching problem can be formally
expressed as the problem of finding the set Γp,t of positions in t, defined as

Γp,t := {s : 0 ≤ s ≤ n−m and pvt(s,m) = pvp}.
1 Formally, we put f0(x) := x and, recursively, f j+1(x) := f(f j(x)), provided that f is defined on
f j(x).

2

We close the section by recalling that a finite automaton is a 5-tupleA = (Q,Σ, δ, q0, F),
where Q is a set of states, q0 ∈ Q is the initial state, F ⊆ Q is the collection of final
states, Σ is an alphabet, and δ ⊆ (Q × Σ × Q) is the transition relation of A. We
also recall the notation of some bitwise infix operators on computer words, namely
the bitwise and “&”, the bitwise or “|”, and the left shift “�” operator (which
shifts its first argument to the left by a number of bits equal to its second argument):
in this context, we will say that a bit is set to indicate that its value is equal to 1.

3 Previous Results

For a pattern p of length m and a text t of length n over an alphabet Σ of size σ, the
online abelian pattern matching problem can be solved in O(n) time and O(σ) space
by using a näıve prefix based approach [11], which slides a window of size m over the
text while updating in constant time the corresponding Parikh vector. Indeed, for
each position s = 0, 1, . . . , n−m− 1 and character c ∈ Σ, we have

pvt(s+1,m)[c] = pvt(s,m)[c]−
∣∣{c} ∩ {t[s]}∣∣+

∣∣{c} ∩ {t[s+m]}
∣∣ ,

so that the vector pvt(s+1,m) can be computed from pvt(s,m) by incrementing the value
of pvt(s,m)[t[s + m]] and by decrementing the value of pvt(s,m)[t[s]]. Thus, the test
“pvt(s+1,m) = pvt(s,m)” can be easily performed in constant time.

A more efficient prefix-based approach, which uses less branch conditions, has been
recently proposed in [14]. Specifically, for each position 0 ≤ s ≤ n − m, a function
Gs : Σ → Z is defined by putting Gs(c) := pvp[c] − pvt(s,m)[c], for c ∈ Σ. Also, a
distance value δs can be defined as δs :=

∑
c∈Σ

∣∣Gs(c)
∣∣. Then the set Γp,t takes on

the form Γp,t = {s : 0 ≤ s ≤ n−m and δs = 0}. Observe that Gs+1(c) and δs+1 can
be computed in constant time from Gs(c) and from δs, respectively. Hence, it follows
that all values δs, for s = 0, . . . , n−m, can be computed in O(n) time.

A suffix-based approach to the problem has been presented in [11], as an adaptation
of the Horspool strategy [16]. Rather than reading the characters of the window from
left to right, characters are read from right to left. As soon as a frequency overflow
occurs, the reading phase is stopped and a new alignment is attempted by sliding
the window to the right. The resulting algorithm has an O(nm) worst-case time
complexity but performs well in practical cases.

Experimental results show that the prefix based algorithm outperforms the suffix
based algorithm only for abelian patterns over small alphabets (as, for instance, in
the case of binary data or DNA sequences) and for patterns whose characters have
a frequency distribution similar to that of the input text. In all other cases, the
suffix based approach achieves better results than the prefix based approach. The
gap becomes more significant in the case of very large alphabets as is the case, for
instance, in natural language texts.

In [11], a parameterized suffix based approach has been presented in which the
current frequency vector is reset only if the number of the characters read before an
overflow does not exceed εm, where ε is a user defined parameter. The worst-case time
complexity of the resulting algorithm is O(n

1−ε). However, experimental results show
that the algorithm never outperforms the prefix- and the suffix-based algorithms.

For the sake of completeness, we notice that recently the problem has also been
solved in its offline form, where one has to search for several patterns in the same

3

text, so that it makes sense to perform in advance a suitable preprocessing of the text.
We mention also a solution presented in [7, 8], in which a useful data structure over
the input text is constructed beforehand in O(n) time and space. As a result, each
query can be answered in O(n) worst-case time complexity, though with a sublinear
expected time complexity.

4 A New Algorithm Based on Reactive Multi-Automata

Reactive automata, introduced in [10, 13], are ordinary automata (deterministic or
nondeterministic) augmented with a switching mechanism to turn links on or off
during computation. Thanks to the switching mechanism, the number of states in an
ordinary automaton can be dramatically reduced.

For our purposes, we will need to slight generalize the notion of reactive automata
as given in [10, 13], by also allowing multiple links labeled by a same character be-
tween any two states.2 We will therefore provide in Section 4.1 a formal definition of
reactive multi-automata and of the related acceptance notion. Then, in Section 4.2,
we show how to construct a compact reactive multi-automaton which recognizes all
abelian occurrences of a given input pattern, and prove its correctness in Section 4.3.
Subsequently, in Section 4.4, we present an algorithm for the online abelian pattern
matching problem which makes use of such an automaton and, finally, in Section 4.5
we describe how to efficiently simulate it using bit-parallelism.

4.1 Reactive Multi-Automata

A reactive automaton is an ordinary automaton extended with reactive links between
its (ordinary) links. These can be of two types, namely activation and deactivation
reactive links. At any step of the computation of a reactive automaton on a given input
string S, states and links are distinguished as active and non-active. At start (step
0), the initial state is the only active state and all links of a given initial transition
relation are active.3 Active states at step h+ 1 are all states which are reachable by
a direct active link (at step h), labeled by the character S[h], from any active state
(at step h). Active links at step h + 1 are all links which are active at step h and
are not deactivated in the transition from step h to step h + 1, plus all links which
are activated in the transition from step h to step h + 1. A link is activated in the
transition from step h to step h + 1, if it is the endpoint of an activation reactive
link from an active (ordinary) link at step h labeled by the character S[h]. A link
is deactivated in the transition from step h to step h + 1, if it is the endpoint of
a deactivation reactive link from an active (ordinary) link at step h labeled by the
character S[h] and it does not get activated at the same time (in other words, we
stipulate that when a link is both activated and deactived, activation prevails).

Reactive multi-automata extend reactive automata in that they allow the presence
of multiple links labeled by a same character between any two states. We choose to
represent multiplicity by means of multiplicity labels drawn from a finite set of labels
L. Thus, a link in a multi-automata is a quadruple (q, c, `, q′), where q, q′ are states,

2 In fact, we will only need multiple self-loops.
3 As we will see, the initial transition is a subset of the transition relation of the underlying au-

tomaton.

4

c is an alphabet character, and ` is a multiplicity label. From an operational point of
view, two links differing only on their multiplicity label are regarded just the same.

Let us be more formal. Let Q, Σ, L be finite sets of states, of characters, and
of labels, respectively, and let D := Q × Σ × L × Q denote the collection of all
possible labeled links on Q, Σ, and L. Also, let T+, T− ⊆ D × D be two collections
of activation and deactivation reactive links, respectively. Given a set ψ ⊆ D of links
(which are supposed to be the active links at a certain step h) and a subset ϕ ⊆ ψ
(of the links in ψ from active states and labeled by the input word character which
is being read at step h), then the set of active links (at the subsequent step h + 1)
relative to ϕ and to the collections T+, T− of reactive links, denoted by ψ(ϕ,T+,T−), is

ψ(ϕ,T+,T−) :=
(
ψ \ {γ | ∃ τ ∈ ϕ such that (τ, γ) ∈ T−}

)
∪ {γ | ∃ τ ∈ ϕ such that (τ, γ) ∈ T+} .

The map ψ 7→ ψ(ϕ,T+,T−) just defined is the switch reactive transformation relative to
T+, T−.

We are now ready to give a precise definition of reactive multi-automata and of
their nondeterministic runs.

Definition 2 (Reactive multi-automata). Let Q,Σ,L be finite sets of states, of
characters, and of labels, respectively.

A reactive multi-automaton is a nonuple R =
(
Q,Σ,L, q0, δ, δ, T

+, T−, F
)
, where

– (Q,Σ,L, q0, δ, F) is a multi-automaton (called the multi-automaton underlying
R), with q0 ∈ Q (initial state), F ⊆ Q (set of final states), and δ ⊆ Q×Σ×L×Q
(transition relation);

– T+, T− ⊆ δ × δ are the sets of activation and deactivation reactive links;
– δ ⊆ δ is the set of initially active links (initial transition relation).

Definition 3 (Nondeterministic runs). Let R =
(
Q,Σ,L, q0, δ, δ, T

+, T−, F
)

be
a reactive multi-automaton and let S = s0s1 . . . sn−1 be a word on the alphabet Σ.

The nondeterministic run of R over S is a sequence of pairs (Qh, δh), for h =
0, . . . , n, where Qh ⊆ Q and δh ⊆ δ are respectively the set of active states and the
set of active transitions at step h, where, for h = 0,

(Q0, δ0) :=
(
{q0}, δ

)
and, recursively, for 0 < k ≤ n,

Qh :=
{
q | (r, sh−1, `, q) ∈ δh−1, for some r ∈ Qh−1, ` ∈ L

}
δh := δ

(ϕh−1,T
+,T−)

h−1 ,

where ϕh−1 := {(r, sh−1, `, q) | (r, sh−1, `, q) ∈ δh−1 and r ∈ Qh−1} and δ
(ϕh−1,T

+,T−)
h−1

is the result of a switch reactive transformation applied to δh−1, relative to ϕh−1, T
+,

T−.
We say that the word S is accepted by R provided that the nondeterministic run〈

(Q0, δ0), (Q1, δ1), . . . , (Qn, δn)
〉

of R over S is such that Qn ∩ F 6= ∅.

5

Remark 4. The above definitions of switch reactive transformation, reactive multi-
automaton, and nondeterministic run can be easily extended to the case in which
ε-transitions are present, at least when no reactive link is allowed to have an ε-
transition as its first component, which is what we will assume in the rest of the
paper. In the context of multi-automata, ε-transitions take the form (q, ε, `, q′), where
q, q′ are states and ` is a label. In the nondeterministic run over a word S, if at a
certain step h the ε-transitions

(q, ε, `, q′), (q′, ε, `′, q′′), . . . , (q(r−1), ε, `(r−1), q(r))

are active and the states q, q′, . . . , q(r−1) are also active, the state q(r) will become
active at step h+ 1, independently of the (h+ 1)-st character of S.

In view of the above observation, it is not hard to extend formally Definitions 2
and 3 to the case in which ε-transition are allowed.

4.2 The Abelian Reactive Multi-Automaton

Next we define the abelian reactive multi-automaton for a given pattern p of length m
over an alphabet Σ, which accepts all and only the m!∏

c∈Σ(pvp[c])!
distinct permutations

of p, where pvp is the Parikh vector of p.

Definition 5 (Abelian Reactive Multi-Automaton). Let p be a pattern of length
m over an alphabet Σ and let 〈b0, b1, . . . , bk−1〉 be the sequence of the distinct char-
acters occurring in p, ordered by their first occurrence. The abelian reactive multi-
automaton (ARMA) for p is the reactive multi-automaton with ε-transitions

R =
(
Q,Σ,L, q0, δ, δ, T

+, T−, F
)

such that

– Q = {q0, q1, . . . , qk, ω} is the set of states, where q0 is the initial state and ω is a
special state called the overflow state;

– F = {qk} is the set of final states;
– L = {`0, `1, . . . , `m−1} is a set of labels of size m;
– the transition relation δ of R and its subset δ ⊆ δ of the links initially active

(initial transition relation) are defined as follows

δ := {(qi, ε, `0, qi+1) | 0 ≤ i < k} (ε-transitions)

∪ {(q0, p[i], `i, q0) | 0 ≤ i < m} (self-loops)

∪ {(q0, c, `0, ω) | c ∈ Σ} (overflow transitions)

∪ {(ω, c, `0, ω) | c ∈ Σ} (overflow self-loops)

δ := {(q0, c, `λ(c), q0) | c ∈ Σp}
∪ {(q0, c, `0, ω) | c ∈ Σ \Σp}
∪ {(ω, c, `0, ω) | c ∈ Σ}

– the sets T+ and T− of activation and deactivation reactive links are defined as
follows

T+ := {((q0, p[ρ(bi)], `ρ(bi), q0), (qi, ε, `0, qi+1)) | 0 ≤ i < k}
∪ {((q0, p[ρ(bi)], `ρ(bi), q0), (q0, p[ρ(bi)], `ρ(bi), ω)) | 0 ≤ i < k}
∪ {((q0, p[i], `i, q0), (q0, p[ν(i)], `ν(i), q0)) | 0 ≤ i < m and i 6= ρ(pi)}

T− := {((q0, p[i], `i, q0), (q0, p[i], `i, q0)) | 0 ≤ i < m} .

6

Figure 1. A portion of the general structure of an abelian reactive automaton. Stan-
dard transitions in δ are represented with solid and dashed lines, reactive links in T+

are represented with dotted lines while reactive links in T− are not represented. Non
active links are represented in gray color.

Fig. 1 shows the general structure of a portion of an abelian reactive automaton,
whereas Fig. 2 shows the complete abelian reactive automaton for the pattern P =
acca, up to deactivation reactive links, which are not shown.

The following property states that the size of the abelian reactive automaton for
a given pattern p of length m is linear in the size of p and of the underlying alphabet.
This contrasts with the O(2m) size of the minimal standard automaton accepting the
same language.

Property 6. The abelian reactive automaton for a pattern p of length m, with k ≤ m
distinct characters, over an alphabet of size σ has size O(m + σ). Specifically it has
k+ 2 states, k+m+ 2σ transitions, and 2m+ k reactive links. In addition, it can be
constructed and initialized in O(m+ σ) time and space.

Given a pattern p of length m with k distinct characters b0, b1, . . . , bk−1 (ordered by
their first occurrence in p), the abelian reactive multi-automaton for p contains k+ 1
‘ordinary’ states q0, q1, . . . , qk and a path of k consecutive ε-transitions (qi, ε, `0, qi+1),
for i = 0, 1, . . . , k − 1, starting from the initial state q0 and ending on its final state
qk. For i = 0, 1, . . . , k − 1, we will refer to (qi, ε, `0, qi+1) as the ε-transition of the
automaton for the character bi. Initially, all such transitions are non-active.4

An additional state ω, named overflow state, is used to detect when the number of
occurrences of a character in the current text window exceeds its multiplicity in the
pattern. For each character c in the alphabet, the automaton contains a transition
labeled by c from the initial state to the overflow state, called the overflow transition
for c, and from the overflow state to itself, called the overflow self-loop for c. Initially,

4 As we will see, the final state becomes reachable only when all such ε-transitions have been
activated during the recognition process.

7

Figure 2. The complete abelian reactive automaton for the pattern P = acca over
the DNA alphabet Σ = {a, c, g, t}. Standard transitions are represented with solid
lines while reactive links in T+ are represented with dashed lines. Reactive links in
T− are not represented. Non active transitions are represented in gray color.

all overflow self-loops and all overflow transitions for the characters not occurring in
the pattern are active,5 whereas the overflow transitions for the characters occurring
in the pattern are non-active.

For each character c occurring in the pattern p with multiplicity mc (and, specif-
ically, at positions 0 ≤ h0 < h1 < . . . < hmc−1 < m), the automaton contains also
a set Mc := {(q0, c, `hi , q0)|i = 0, 1, . . . ,mc − 1} (called the monad of c) of mc self-
loops labeled by c, from state q0 into itself. Initially, only the first self-loop in Mc,
corresponding to the leftmost occurrence of c in the pattern, is active, whereas the re-
maining ones are all non-active. Each self-loop in Mc has a deactivation reactive link
pointing to itself. In addition, each of the first mc−1 self-loops in Mc has an activation
reactive link pointing to the next self-loop in the monad, whereas the last self-loop
in Mc has two activation reactive links, one pointing to the overflow transition for c
and one pointing to the ε-transition relative to c.

4.3 Correctness

Next we show that the language accepted by the abelian reactive multi-automaton
for a pattern p is exactly the set of all the permutations of p.

As in the previous section, let p be a pattern of length m with k distinct characters
b0, b1, . . . , bk−1 (ordered by their first occurrence in p) and let

R =
(
Q,Σ,L, q0, δ, δ, T

+, T−, {qk}
)

be the ARMA for p, with Q = {q0, q1, . . . , qk, ω} and L = {`0, `1, . . . , `m}. In addition,
let s be an input string to be recognized by R.

To begin with, we observe that as soon as an overflow transition is followed (in
which case we say that an overflow condition has occurred), the computation gets

5 In fact, all overflow self-loops and all overflow transitions for the characters not occurring in the
pattern remain active during the whole recognition process.

8

trapped in the overflow state ω, so that q0 is no longer active and the final state qk
cannot be reached anymore. As we will soon see, this happens when it is detected
that s contains some character whose multiplicity in s exceeds that in the pattern p.

As long as the initial state q0 is active, the transitions in the monad Mb of b,
for each character b in p, allow one to count the number of occurrences of b which
have been read so far from the string s, when this number does not exceed the
multiplicity mb of b in p. Specifically, as a result of the interplay of the deactivation
and activation reactive links on each of the first mb − 1 transitions of the monad,
when exactly 0 ≤ i < mb occurrences of b have been read from the string s, it
turns out that (q0, b, `hi , q0) is the only active transition in the monad Mb, where
0 ≤ h0 < h1 < . . . < hmb−1 < m are the positions of the occurrences of b in p
in increasing order. In addition, just after the mb-th occurrence of b is read from
the string s, all transitions in Mb are non-active (and remain so for the rest of the
recognition process), whereas the overflow transition and the ε-transition for b (which
initially were non-active) become active and stay active until the end. Thus, if a
further occurrence of b is read, the overflow transition for b is followed, leading to the
overflow state ω, where the computation gets trapped.

Since the overflow transition for any character not occurring in p is active for the
whole recognition process, as soon as an occurrence of a character not in p is found
in s, the overflow transition associated to it is followed, leading again to the overflow
state ω. This corresponds to having an empty monad for each character not occurring
in p.

The above considerations allow us to conclude that if the string s contains any
character whose multiplicity in s exceeds that in p, then the recognition process gets
trapped in the overflow state ω, so that s is correctly rejected by the automaton R.

On the other hand, if the multiplicity of no character in s exceeds that in p, then
the state q0 remains active until the end of the recognition process by R. However,
at termination, the accepting state qk is active only if all the ε-transitions from q0 to
qk (initially non-active) have been activated. As seen above, since q0 is always active,
this happens only if the string s and the pattern p contain the same characters and
each of them occurs in s and in p with the same multiplicity; in other words, only if
s is a permutation of p.

In conclusion, the language accepted by the ARMA R for p is the set of all the
permutations of p.

4.4 The Algorithm

The algorithm that we present in this section makes use of the abelian reactive multi-
automaton defined above for locating all occurrences of the permutations of a given
pattern p of length m in a text t of length n.

In the preprocessing phase, the algorithm computes in O(m+ σ) time and space
the Parikh vector pvp of the pattern and constructs the corresponding reactive multi-
automaton.6

The algorithm works by sliding a window of size m over the text. At start, the
left ends of the window and of the text are aligned. An attempt consists in checking
whether the current window is a permutation of the pattern. This is done by executing

6 The construction of the reactive multi-automaton is straightforward and details have been omitted.

9

the ARMA for the pattern over the window text. When the whole window has been
read (or as soon as an overflow condition occurs) the window is shifted to the right
of the last character examined. The attempts take place in sequence, until the right
end of the window goes past the right end of the text.

Let us consider a generic attempt at position s of the text t, so that the current
window is the substring t[s .. s+m−1]. At the beginning of the attempt, the automa-
ton is initialized in time O(m). Then, during the attempt, the algorithm scans the
window from right to left, while executing the corresponding automaton transitions.

If the whole text window has been scanned and no overflow condition has occurred,
an occurrence of a permutation of the pattern is reported at position s. In this case
the window is advanced by one position to the right.

On the other hand, if an overflow condition occurs while reading the character at
position j in the text, with s ≤ j < s+m, then the substring t[j .. s+m− 1] cannot
be a permutation of the pattern, as it contains too many occurrences of the character
t[j]. Thus, it is safe to shift the window by j − s+ 1 positions to the right.

Each attempt takes O(m) worst-case time. Since the minimum advancement per-
formed at the end of each attempt is by one position, the worst-case time complexity
of the whole algorithm is O(nm).

4.5 An Efficient Bit-Parallel Simulation

In this section we show how to simulate efficiently the abelian reactive multi-automaton
for an input pattern p (cf. Definition 5), by using the bit-parallelism technique [2].

Let again b0, b1, . . . , bk−1 be the distinct characters in p.

The underlying idea is to associate a counter to each distinct character in p, plus
a single 1-bit counter for the remaining characters of the alphabet which do not
occur in p, maintaining them in the same computer word. In particular, the counter
associated to the character bi in p, for i = 0, 1, . . . , k − 1, will be represented by a
group of li bits, where li := dlog(pvp[bi])e+ 1. These are just enough to allocate the
multiplicity pvp[bi] of bi in p, plus an extra bit called the i-th overflow bit. Whenever
an occurrence of the character bi is read in the current text window (which, as before,
is scanned backwards), its counter is incremented. Initially, the counter for bi is set to
the value 2li−pvp[bi]−1, so that its overflow bit is 0 and it remains so for up to pvp[bi]
increments. Hence, the overflow bit gets set only when the (pvp[bi] + 1)-st occurrence
of bi is encountered in the text window, if it exists, at which point it becomes clear
that the text window cannot be a permutation of the pattern p. Likewise, the 1-bit
counter reserved for all the characters not occurring in p is initially null and it gets
set as soon as any character not in p is encountered in the text window, at which
point, again, it becomes clear that the text window cannot be a permutation of the
pattern p. By suitably masking the computer word allocating all the counters, it is
possible to check in a single pass whether the character of the text window that has
just been read has caused any of the k + 1 overflow bits to be set. If this is the case,
the window text is advanced just past the last character read. Otherwise, when the
current text window has been scanned completely and no overflow bit has been set,
a matching is reported and the window text is advanced one position to the right.

The resulting algorithm, named Bit-Parallel Abelian Matcher (BAM) is shown
in Fig. 3. It works in a similar way as the ARMA algorithm.

10

BAM(p,m, t, n,Σ)

1. for each c ∈ Σ do M [c]← pvp[c]← 0

2. I ← F ← sh← 0

3. for i← 0 to m− 1 do pvp[p[i]]← pvp[p[i]] + 1

4. for each c ∈ Σ do

5. if pvp[c] > 0 then

6. M [c]←M [c] | (1� sh)

7. I ← I | (((1� logm)− pvp[c]− 1)� sh)

8. F ← F | (1� (sh+ logm))

9. sh← sh+ logm+ 1

10. F ← F | (1� sh)

11. for each c ∈ Σ do

12. if pvp[c] = 0 then M [c]←M [c] | (1� sh)

13. s← 0

14. while s ≤ n−m do

15. D ← I; j ← s+m− 1

16. while j ≥ s do

17. D ← D +M [t[j]]

18. if (D & F) then break

19. j ← j − 1

20. if j < s then

21. Output(s)

22. s← s+ 1

23. else s← j + 1

Figure 3. The Bit-Parallel Abelian Matcher for the abelian pattern matching prob-
lem (BAM).

During the preprocessing phase (lines 4-12), for each distinct character bi occurring
in p, a bit mask M [bi] of l + 1 bits is computed, where

l :=
k−1∑
i=0

li and M [bi] := 1�
(i−1∑
j=0

lj

)
.

The bit mask M [bi] is then used in line 17 to increment the counter in D associated
to the character bi.

Two additional bit masks of l + 1 bits are used: the bit mask I, which contains
the initial values for each counter, and the bit mask F , whose bits set are exactly the
overflow bits. These are defined by

I :=
k−1∑
i=0

[(
2li − pvp[bi]− 1

)
�

i−1∑
j=0

lj

]
and F :=

k−1∑
i=0

[
1�

(i∑
j=0

lj − 1
)]
.

Let us consider a generic attempt at position s of the text (lines 14-23), so that
the current text window is the substring t[s .. s + m − 1]. At the beginning of each
attempt, a bit mask D of l + 1 bits (intended to represent the Parikh vector of the
text window) is initialized to I (line 15). Then, during the attempt, the window is
read character by character, proceeding from right to left (lines 16-19). When reading
the character t[j] of the text, the bit mask D is updated accordingly by setting it to
D +M [t[j]] (line 17).

11

The attempt stops when the left end of the window is reached or when an overflow
bit in D is set. In the first case, an occurrence is reported at position s and the window
is advanced to the right by one position (lines 20-22). In the second case, i.e., when
the counter update for a character t[j] has set an overflow bit in D (and therefore
D&F 6= 0 holds), the substring t[j .. s + m− 1] cannot be involved in any match, as
it contains too many occurrences of the character t[j], and therefore it is safe to shift
the window to the right by j − s+ 1 positions (line 23).

As in the case of the ARMA algorithm, each attempt takes O(m)-worst case time
and at most n attempts take place during the whole execution. Thus the worst-case
time complexity of the BAM algorithm is O(nm), whereas the space requirement for
maintaining a bit mask for each character of the alphabet is O(σ).

So far we have implicitly assumed that l + 1 ≤ w, where w is the size of a
computer word, so that each of the vectors D, I, F , and M [bi], for bi in p, fits in a
single computer word.

When l + 1 > w, we must content ourselves to maintain the counters only for a
proper selection Σ ′p of the set of characters occurring in p. In this case, when a match
relative to the characters in Σ ′p is reported, an additional verification phase must be
run, in order to discard possible false positives.

5 Experimental Results

In this section we evaluate the performance of the bit-parallel simulation BAM de-
scribed in the previous section and compare it with some standard solutions known
in literature. In particular we compare the performances of the following three algo-
rithms: the prefix based algorithm due to Grabowsky et al. (GFG) [14], the algorithm
using the suffix based approach (SBA) [11], and the Bit-parallel Abelian Matcher
(BAM) described in Section 4.5.

All algorithms have been implemented in C and compiled with the GNU C Compiler

4.2.1, using the optimization option -O3. The experiments have been executed locally
on a MacBook Pro with 4 Cores, a 2 GHz Intel Core i7 processor, 4 GB RAM 1333
MHz DDR3. The three algorithms have been compared in terms of their running
times, including any preprocessing time, measured with a hardware cycle counter,
available on modern CPUs.

In our tests we used a genome sequence, with an alphabet of size σ = 4 (Ta-
ble 1, on the left) and a protein sequence, with an alphabet of size σ = 20 (Ta-
ble 1, on the right), both of 4MB length.7 For each input file, we have generated
sets of 500 patterns of fixed length m randomly extracted from the text, where
m ∈ {2, 4, 8, 16, 32, 64, 128, 256}, and reported the mean time over the 500 runs,
expressed in milliseconds.

From the experimental results it turns out that the GFG algorithm has a linear
behavior in practice and is almost insensitive to the size of the pattern, whereas the
algorithms based on a backward approach, such as SBA and BAM, show a sublinear
behavior although their theoretical worst-case time complexity is quadratic.

In all cases, when the pattern is longer than 4 characters, the BAM algorithm
outperforms the other two algorithms.

7 The text buffers are described and available for download at the Smart web page (http://www.
dmi.unict.it/~faro/smart/).

12

m GFG SBA BAM

2 23.56 39.20 27.03

4 23.56 33.27 23.17

8 23.54 27.54 19.01

16 23.49 24.05 16.21

32 23.52 23.78 15.63

64 23.50 25.33 16.12

128 23.57 28.74 17.69

256 23.53 33.14 19.63

m GFG SBA BAM

2 23.08 18.07 12.51

4 23.00 15.39 10.36

8 22.96 13.67 9.40

16 23.03 11.91 8.44

32 23.04 9.58 7.16

64 23.01 8.46 6.64

128 22.97 7.82 6.49∗

256 22.96 7.84 7.69∗

Table 1. Experimental results on a genome sequence (on the left) and a on a pro-
tein sequence (on the right). An asterisk symbol (∗) indicates those runs where false
positives have been detected. All best results have been boldfaced.

The SBA and the BAM algorithms improve their performances in the case of
larger alphabets and turn out to be the best solutions when searching for a protein
sequence. In this case their performances are up to 3 times faster than the GFG
algorithm.

In the case of the protein sequence, we observed some cases where false positive
occurrences were detected by an additional verification. Such events are indicated in
Table 5 with an asterisk (∗). However, in all cases the average number of additional
verification runs, for each text position, turned out to be less than 10−4.

6 Conclusions

We have presented a new approach to solve the abelian pattern matching problem
for strings which is based on a reactive multi-automaton with only O(k) states and
O(m) transitions. We have also proposed an efficient simulation of such automaton
using bit-parallelism. Our solution is based on a backward approach and, despite its
quadratic worst-case time complexity, shows a sublinear behavior in practical cases.

References

1. A. Amir, A. Apostolico, G. M. Landau, G. Satta, Efficient Text Fingerprinting Via Parikh
Mapping. Journal of Discrete Algorithms, 1(56) (2003) 409421.

2. R. A. Baeza-Yates, G. H. Gonnet, A new approach to text searching, Commun. ACM 35 (10)
(1992) 74–82.

3. R. A. Baeza-Yates, G. Navarro, New and faster filters for multiple approximate string matching,
Random Struct. Algorithms 20 (1) (2002) 23–49.

4. G. Benson, Composition alignment, in: WABI, 2003, pp. 447–461.

5. S. Böcker, Simulating multiplexed snp discovery rates using base-specific
cleavage and mass spectrometry, Bioinformatics 23 (2) (2007) 5–12.
doi:http://dx.doi.org/10.1093/bioinformatics/btl291.

6. S. Böcker, Sequencing from compomers: Using mass spectrometry for dna de novo sequencing
of 200+ nt, Journal of Computational Biology 11 (6) (2004) 1110–1134.

7. P. Burcsi, F. Cicalese, G. Fici, Z. Lipták, Algorithms for jumbled pattern matching in strings,
Int. J. Found. Comput. Sci. 23 (2) (2012) 357–374.

8. P. Burcsi, F. Cicalese, G. Fici, Z. Lipták, On approximate jumbled pattern matching in strings,
Theory Comput. Syst. 50 (1) (2012) 35–51.

9. D. Cantone, S. Cristofaro, S. Faro, Efficient matching of biological sequences allowing for non-
overlapping inversions, in: CPM, 2011, pp. 364–375.

13

10. M. Crochemore, D. M. Gabbay, Reactive automata. Inf. Comput., 209(4) (2011) 692–704.

11. E. Ejaz, Abelian pattern matching in strings, Ph.D. Thesis, Dortmund University of Technology
(2010), http://d-nb.info/1007019956.

12. R. Eres, G. M. Landau, L. Parida. Permutation Pattern Discovery in Biosequences, Journal of
Computational Biology, 11(6) (2004)10501060.

13. D. M. Gabbay, Pillars of computer science, Springer-Verlag, ch. Introducing reactive Kripke
semantics and arc accessibility, (2008) 292–341.

14. S. Grabowski, S. Faro, E. Giaquinta, String matching with inversions and translocations in linear
average time (most of the time), Inf. Process. Lett. 111 (11) (2011) 516–520.

15. R. Grossi, F. Luccio, Simple and efficient string matching with k mismatches, Inf. Process. Lett.
33 (3) (1989) 113–120.

16. R. N. Horspool, Practical fast searching in strings, Software - Practice & Experience 10 (6)
(1980) 501506.

17. P. Jokinen, J. Tarhio, E. Ukkonen, A comparison of approximate string matching algorithms,
Softw. Pract. Exp. 26 (12) (1996) 1439–1458.

18. A. Salomaa, Counting (scattered) subwords., Bulletin of the EATCS 81 (2003) 165–179.

14

