
Fast Packed String Matching for Short Patterns

Simone Faro∗ M. Oğuzhan Külekci†

Abstract

Searching for all occurrences of a pattern in a text is a fun-

damental problem in computer science with applications in

many other fields, like natural language processing, infor-

mation retrieval and computational biology. In the last two

decades a general trend has appeared trying to exploit the

power of the word RAM model to speed-up the performances

of classical string matching algorithms. In this model an al-

gorithm operates on words of length w, grouping blocks of

characters, and arithmetic and logic operations on the words

take one unit of time.

In this paper we use specialized word-size packed string

matching instructions, based on the Intel streaming SIMD

extensions (SSE) technology, to design very fast string

matching algorithms in the case of short patterns. From

our experimental results it turns out that, despite their

quadratic worst case time complexity, the new presented al-

gorithms become the clear winners on the average for short

patterns, when compared against the most effective algo-

rithms known in literature.

1 Introduction

Given a text t of length n and a pattern p of length m
over some alphabet Σ of size σ, the exact string match-
ing problem consists in finding all occurrences of the
pattern p in t. This problem has been extensively stud-
ied in computer science because of its direct application
to many areas. Moreover string matching algorithms
are basic components in many software applications and
play an important role in theoretical computer science
by providing challenging problems.

In a computational model where the matching
algorithm is restricted to read all the characters of the
text one by one the optimal complexity is O(n), and was
achieved the first time by the well known Knuth-Morris-
Pratt algorithm [22] (KMP). However in many practical
cases it is possible to avoid reading all the characters of
the text achieving sub-linear performances on average.
The optimal average O(n logσ m

m) time complexity [30]
was reached for the first time by the Backward-DAWG-

∗Dipartimento di Matematica e Informatica, Università di

Catania, Italy.
†TÜBİTAK National Research Institute of Electronics and

Cryptology, Turkey.

Matching algorithm [8] (BDM). However, all algorithms
with a sub-linear average behavior may have to read all
the text characters in the worst case. It is interesting to
note that many of those algorithms have an even worse
O(nm)-time complexity in the worst-case [7].

In the last two decades a lot of work has been made
in order to exploit the power of the word RAM model
of computation to speed-up classical string matching
algorithms. In this model, the computer operates on
words of length w, thus blocks of characters are read and
processed at once. This means that usual arithmetic
and logic operations on the words all take one unit of
time.

Most of the solutions which exploit the word RAM
model are based on the bit-parallelism technique or on
the packed string matching technique.

The bit-parallelism technique [1] takes advantage of
the intrinsic parallelism of the bit operations inside a
computer word, allowing to cut down the number of
operations that an algorithm performs by a factor up
to w. Bit-parallelism is particularly suitable for the
efficient simulation of nondeterministic automaton. The
first algorithm based on it, named Shift-Or [1] (SO),
simulates efficiently the nondeterministic version of the
KMP automaton and runs in O(ndmw e), which is still
considered among the best practical algorithms in the
case of very short patterns and small alphabets [17, 15].
Later a very fast BDM-like algorithm (BNDM), based
on the bit-parallel simulation of the nondeterministic
suffix automaton, was presented in [26]. Some variants
of the BNDM algorithm [12, 13, 9, 27] are among the
most practical efficient solutions in literature (see [17,
15]). However, the bit-parallel encoding requires one bit
per pattern symbol, for a total of dmw e computer words.
Thus, as long as a pattern fits in a computer word,
bit-parallel algorithms are extremely fast, otherwise
their performances degrades considerably as dmw e grows.
Though there are a few techniques to maintain good
performance in the case of long patterns [24, 10, 5, 6],
such limitation is intrinsic.

In the packed string matching technique multiple
characters are packed into one larger word, so that
the characters can be compared in bulk rather than
individually. In this context, if the characters of a
string are drawn from an alphabet of size σ, then b w

log σ c

different characters fit in a single word, using blog σc bits
per characters. The packing factor is α = w

log σ .
A first theoretical result in packed string match-

ing was proposed by Fredriksson [18]. He presented a
general scheme that can be applied to speed-up many
pattern matching algorithms. His approach relies on
the use of the four russian technique (i.e. tabula-
tion), achieving in favorable cases a O(nεm)-space and
O(n

m log σ + nεm + occ)-time complexity, where ε > 0
denotes an arbitrary small constant, and occ denotes
the number of occurrences of p in t. Bille [4] presented
an alternative solution with O(n

logσ n
+ m + occ)-time

and O(nε + m)-space complexities by an efficient seg-
mentation and coding of the KMP automaton. Recently
Belazzougui [2] proposed a packed string matching algo-
rithm which works inO(nm+ n

α+m+occ) time and O(m)
space, reaching the optimal O(nα + occ)-time bound for
α ≤ m ≤ n

α . However, none of these results is of any
practical interest.

The first algorithm that achieves good practical
and theoretical results was very recently proposed by
Ben-Kiki et al. [3]. The algorithm is based on two
specialized packed string instructions, the pcmpestrm
and the pcmpestri instructions [20], and reaches the
optimal O(nα+occ)-time complexity requiring only O(1)
extra space. Moreover the authors showed that their
algorithm turns out to be among the fastest string
matching solutions in the case of very short patterns.
However, it has to be noticed that on current generation
Intel Sandy Bridge processors, pcmpestrm and pcmpestri
have 2-cycle throughput and 7- and 8-cycle latency,
respectively [20].

When the length of the searched pattern increases,
another algorithm named Streaming SIMD Extensions
Filter (SSEF), presented by Külekci in [23] (and ex-
tended to multiple pattern matching in [11]), exploits
the advantages of the word-RAM model. Specifically
it uses a filter method that inspects blocks of charac-
ters instead of reading them one by one. Despite its
O(nm) worst case time complexity, the SSEF algorithm
turns out to be among the fastest solutions when search-
ing for long patterns [17, 15]. Efficient solutions have
been also designed for searching on packed DNA se-
quences [28, 14]. However in this paper we do not take
into account this type of solutions since they require a
different type of data representation.

Streaming SIMD technology offers single-
instructions to perform a variety of tests on packed
strings. Unfortunately those instructions are heavier
than other instructions provided in the same family as
a consequence of their relatively high latencies. Hence,
in this paper we focus on design of algorithms using
instructions with low latency and throughput, when

compared with those used in [3]. Specifically we present
a new practical and efficient algorithm for the exact
packed string matching problem that turns out to be
faster than the best algorithms known in literature
in the case of short patterns. The algorithm, named
Exact Packed String Matching (EPSM), is based on
three different search procedures used for, respectively,
very short patterns (0 < m < α

2), short patterns
(α2 ≤ m < α) and medium length patterns (m ≥ α).
They use specialized packed string instructions with a
low latency and throughput, if compared with those
used in [3]. All search procedures have an O(nm) worst
case time complexity. However, they have very good
performances on average.

2 Notions and Terminology

Throughout the paper we will make use of the following
notations and terminology. A string p of length m > 0
is represented as a finite array p[0 . .m−1] of characters
from a finite alphabet Σ of size σ. Thus p[i] will denote
the (i+ 1)-st character of p, for 0 ≤ i < m, and p[i . . j]
will denote the factor (or substring) of p contained
between the (i + 1)-st and the (j + 1)-st characters of
p, for 0 ≤ i ≤ j < m. In some cases we will denote by
pi the (i + 1)-st character of p, so that pi = p[i] and
p = p0p1 . . . pm−1.

We indicate with symbol w the number of bits in
a computer word and with symbol γ = dlog σe the
number of bits used for encoding a single character
of the alphabet Σ. The number of characters of the
alphabet that fit in a single word is shown by α =
bw/γc. Without lose in generality we will assume along
the paper that γ divides w and that α is an even value.

In chunks of α characters, the string p is represented
by an array P [0 . . k − 1] of length k = (m − 1)/α + 1.
In particular we denote P = P0P1P2 . . . Pk−1, where
Pi = piαpiα+1piα+2 . . . piα+α−1, for 0 ≤ i < k. The last
block Pk−1 is not complete if m mod α 6= 0. In that
case, the rightmost remaining characters of the block
are set to zero.

Although different values of α and γ are possible,
in most cases we assume that α = 16 and γ = 8, which
is the most common case when working with characters
in ASCII code and in a word RAM model with 128-bit
registers, which are almost all available in recent com-
modity processors supporting single instruction multi-
ple data (SIMD) operations.

Finally, we recall the notation of some bitwise infix
operators on computer words, namely the bitwise and

“&”, the bitwise or “|” and the left shift “�”
operator (which shifts to the left its first argument by a
number of bits equal to its second argument).

3 A New Packed String Matching Algorithm

In this section we present a new packed string matching
algorithm, named Exact Packed String Matching algo-
rithm (EPSM), which turns out to be efficient in the
case of short patterns. EPSM is based on three different
auxiliary algorithms, which we name EPSMa, EPSMb
and EPSMc, respectively.

The first two auxiliary algorithms are designed to
search for patterns of length, at most, α/2. When the
length of the pattern is longer than α/2 the algorithms
adopt a filter mechanism: they first search for a sub-
string of the pattern of length α/2 and, when a candi-
date occurrence has been found, a naive check follows.
The third algorithm adopts a filtering based solution.

All three algorithms run in O(nm) worst case time
complexity and use, respectively, O(min{m,α}), O(1)
and O(2k) additional space, where k is a constant
parameter. However, when m ≤ α/2 the EPSMa
and EPSMb algorithms reach, respectively, an O(mα+
mn
α + occ) and O(nα + occ) time complexity. The first

search procedure is designed to be extremely fast in
the case of very short patterns, i.e. when m ≤ α

2 ,
the second algorithm turns out to be a good choice
when α

2 ≤ m < α, while the third algorithm turns
out to be effective when m ≥ α. In practical cases
we tuned the EPSM algorithm in order to run EPSMa
when 0 < m < 4, EPSMb when 4 ≤ m < 16, and to run
EPSMc in all other cases.

In what follows, we first describe in Section 3.1 the
computational model we use for the description of our
solutions. Then we independently present the three
auxiliary algorithms EPSMa, in Section 3.2, EPSMb,
in Section 3.3, and EPSMc in Section 3.4.

3.1 The Model
In the design of our algorithms we use specialized
word-size packed string matching instructions, based on
the Intel streaming SIMD extensions (SSE) technology.
SIMD instructions exist in many recent microproces-
sors supporting parallel execution of some operations
on multiple data simultaneously via a set of special in-
structions working on limited number of special regis-
ters. Although the usage of SIMD is explored deeply
in multimedia processing, implementation of encryp-
tion/decryption algorithms, and on some scientific cal-
culations, it has not been much addressed in pattern
matching.

In our model of computation we suppose that w
is the number of bits in a word and σ is the size of
the alphabet. We indicate with the symbol α = w

log σ
the number of characters which fit in a single computer
word.

In most practical applications we have σ = 256

(ASCII code). Moreover SSE specialized instructions
allow to work on 128-bit registers, thus reading and
processing blocks of sixteen 8-bit characters in a single
time unit (thus α = 16).

In the design of our algorithms we make use of the
following specialized word-size packed instructions. For
each instruction we describe how it could be emulated
by using SSE specialized intrinsics.

wscmp(a, b) (word-size compare instruction)
Compares two w-bit words, handled as a block of α
characters. In particular if a = a0a1 . . . aα−1 and
b = b0b1 . . . bα−1 are the two w-bit integer parameters,
wscmp(a, b) returns an α-bit value r = r0r1 . . . rα−1,
where ri = 1 if and only if ai = bi, and ri = 0
otherwise. Fig.1 shows an example of the application
of wscmp(a, b), assuming w = 48, γ = 4 and α = 12.

The wscmp specialized instruction can be emulated
in constant time by using the following sequence of
specialized SIMD instructions

h← mm cmpeq epi8(a, b)
r ← mm movemask epi8(h)

Specifically the mm cmpeq epi8 instruction com-
pares two 128-bit words, handled as a block of sixteen 8-
bit values, and returns a 128-bit value h = h0h1 . . . h15,
where hi = 18 if and only if ai = bi, and hi = 08 other-
wise. It has a 0.5-cycle throughput and a 1-cycle latency
The mm movemask epi8 instruction gets a 128 bit pa-
rameter h, handled as sixteen 8-bit integers, and creates
a 16-bit mask from the most significant bits of the 16
integers in h, and zero extends the upper bits.

wsmatch(a, b) (word-size matching instruction)
reports all occurrences of a short string b in a w-bit
parameter a, handled as a string of α characters. The
parameter b is a string of length k ≤ α.
Specifically, if a = a0a1 . . . aα−1, and b = b0b1 . . . bk−1,
then the wsmatch(a, b) instruction returns an α-bit
integer value, r = r0r1 . . . rα−1, where ri = 1 if and
only if ai+j = bj for j = 0 . . . k − 1, i.e. an occurrence
of b in a begins at position i. Notice that ri = 0 for
α− k < i < α, since no occurrence of b in a could begin
at a position greater than α−k. Fig.2 shows an example
of the application of wsmatch(a, b), assuming w = 48,
γ = 4, α = 12 and k = 3.

The wsmatch(a, b) instruction can be emulated in
constant time by using the following sequence of SIMD
specialized instructions

h← mm mpsadbw epu8(a, b)
`← mm cmpeq epi8(h, z)
r ← mm movemask epi8(`)

a: 0110. 0010. 0111. 1010. 0010. 1110. 0010. 0100. 0110. 0111. 0100. 0010

0 1 2 3 4 5 6 7 8 9 10 11

b: 0100. 0010. 0000. 0111. 1111. 0010. 0010. 1100. 0110. 0100. 1110. 0010

r: 0 1 0 0 0 0 1 0 1 0 0 1

Figure 1: An example of the application of wscmp(a, b), assuming w = 48, γ = 4 and α = 12.

a: 0110. 1010. 0111. 1010. 0100. 1010. 0111. 1010. 0000. 1010. 0100. 0010

0 1 2 3 4 5 6 7 8 9 10 11

b: 1010. 0111. 1010

r: 0 1 0 0 0 1 0 0 0 0 0 0

Figure 2: An example of the application of wsmatch(a, b), assuming w = 48, γ = 4, α = 12 and k = 3

where z is a 128-bit register with all bits set to 0, i.e.
z = 0128.

Specifically the mm mpsadbw epu8(a, b) instruc-
tion gets two 128-bit words, handled as a block of
sixteen 8-bit values, and returns a 128-bit value r =
r0r1 . . . r7 (handled as a block of eight 16-bit values),

where ri is computed as ri =
∑4
j=0 |ai+j − bj | for

i = 0 . . . 7.
Thus we have that ri = 016 if and only if ai+j =

bj for j = 0 . . . 3, i.e. an occurrence of the prefix
of b with length 4 begins in a at position i. The
mm mpsadbw epu8 instruction has 1-cycle through-

put and a 4-cycle latency. The mm cmpeq epi8 and
mm movemask epi8 instructions have been described

above.

wsblend(a, b) (word-size blend instruction)
blends two w-bit parameters, handled as two blocks
of α characters. Specifically if a = a0a1 . . . aα−1 and
b = b0b1 . . . bα−1, the instruction returns a w-bit integer
r = r0r1 . . . rα−1, where ri = ai+α/2, if 0 ≤ i <
α/2, and ri = bi−α/2 if α/2 ≤ i < α, i.e. r =
aα

2
aα

2 +1 . . . aα−1b0b1 . . . bα
2−1. Fig.3 shows an example

of the application of wsmatch(a, b), assuming w = 48,
γ = 4 and α = 12.

The wsblend(a, b) instruction can be emulated in
constant time by using the following sequence of SIMD
specialized instructions

h← mm blend epi16(a, b, c)
SHUFFLE ← MM SHUFFLE(1, 0, 3, 2)
r ← mm shuffle epi32(h, SHUFFLE)

Such instruction blends two 128-bit integers, a =
a0a1 . . . a7 and b = b0b1 . . . b7, handled as packed 16-bit
integers, according to a third parameter c. In particular
it returns a 128-bit integer r = r0r1 . . . r7 where ri = ai
if ci = 0, and ri = bi otherwise. If we set c = 064164 we
get r = a0a1a2a3b4b5b6b7. The mm blend epi16 instruc-
tion has 0.5-cycle throughput and a 1-cycle latency.
The mm shuffle epi32 instruction shuffles a w-bit pa-
rameter, a = a0a1a2a3, handled as four 32-bit values,
according to the order of the MM SHUFFLE macro. In
this case we get r = a2a3a0a1. The mm shuffle epi32
instruction has 1-cycle throughput and a 1-cycle latency.

wscrc(a) (word-size cyclic redundancy check)
computes the 32-bit cyclic redundancy checksum (CRC)
signature for a w-bit parameter. It is an error-detecting
code commonly used in digital networks and storage
devices to detect accidental changes to raw data and
can also be used as a hash function.

The wscrc(a) instruction can be emulated in con-
stant time by using the mm crc32 u64(a) SIMD spe-
cialized instructions, which computes the 32 bit cyclic
redundancy check of a 64-bit block according to a poly-
nomial. Such instruction has a 1-cycle throughput and
a 3-cycle latency, thus provides a robust and fast way
of computing hash values.

a: 0110. 0010. 0111. 1010. 0010. 1110. 0010.
0100.

0110. 0111. 0100. 0010

0 1 2 3 4 5 6 7 8 9 10 11

b: 0100. 0010. 0000. 0111. 1111. 0010. 0010. 1100. 0110. 0100. 1110. 0010

r: 0010. 0100. 0110. 0111. 0100. 0010. 0100. 0010. 0000. 0111. 1111. 0010

Figure 3: An example of the application of wsmatch(a, b), assuming w = 48, γ = 4 and α = 12

Additional specialized instructions
In addition to the above listed instructions, given an
α-bit register r, in our description we make use of
the symbol {r} to indicate the set of bits in r whose
value is set. More formally, given an α-bit register
r = r0r1r2 . . . rα−1, we have {r} = {i | 0 ≤ i <
α and ri = 1}. Moreover, given a value s ∈ N, we use
for simplicity the expression s+ {r} to indicate the set
of values {s+ i | i ∈ {r}}.

The cardinality of the set {r} can be computed in
constant time by using the SIMD specialized instruc-
tions mm popcnt u32(r) which calculates the number
of bits of the parameter r that are set to 1. Such in-
struction has 1-cycle throughput and a 3-cycle latency.

Differently the list of values in {r} can be efficiently
listed in O(α)-time and O(1)-space, or using a tabula-
tion approach, inO(|{r}|)-time andO(2α)-space. In the
latter case we need a O(α2α)-time preprocessing phase
in order to address the 2α possible registers.

We are now ready to describe the three auxiliary al-
gorithms used in the EPSM algorithm. The pseudocode
of the three algorithms is shown in Fig. 4.

3.2 EPSMa: Searching for Very Short Patterns
The EPSMa algorithm is designed to be extremely fast
in the case of very short patterns and although it could
be adapted to work for longer patterns its performances
degrades as the length of the patterns increase.

The preprocessing of the algorithm (lines 1-4) is
computed on the prefix of the pattern of length m′ =
min{m, α2 }. If m′ = m the whole pattern is prepro-
cessed and searched, otherwise the algorithm works as
a filter, searching for all occurrences of the prefix with
length m′ and, after an occurrence has been found,
naively checking the whole occurrence of the pattern.

Specifically the preprocessing phase consists in con-
structing an array B of m′ different strings of length
α. Each string of the array exactly fits in a word of w
bits. The i-th string in the array B consists of α copies
of the character pi. More formally the string B[i], for
0 ≤ i < m′, is defined as B[i] = (pi)

α. For instance, if

p = ab is a pattern of length m = 2, γ = 8 and w = 128,
then B consists of two strings of length α = 16, de-
fined as B[0] = a16 and B[1] = b16. The preprocessing
phase of the algorithm requires O(min{m, α2 }α)-time
and O(min{m, α2 })-space.

The searching phase of the algorithm (lines 5-14)
processes the text t in chunks of α characters. Let
N = n

α − 1 and let T = T0T1 . . . TN be the string t
represented in chunks of characters. Each block of the
text, Ti, is compared with the strings in the array B
using the instruction wscmp.

Let sj = b0b1 . . . bα−1 be the α-bit register returned
by the instruction wscmp(Ti, B[j]), for 0 ≤ j < m′. It
can be easily proved that bk = 1 if and only if the k-th
character of the block Ti is equal to pj , i.e. if and only
if Ti[k] = pj (remember that B[j] = (pj)

α). Finally let
r = r0r1 . . . rα−1 be the α-bit register defined as r =
s0 & (s1 � 1) & (s2 � 2) & · · · & (sm′−1 � (m′− 1)).

It is easy to prove that p[0 . .m′ − 1] has an occur-
rence beginning at position j of Ti if and only if rj = 1.
In fact rj = 1 only if sk[j + k] = 1, for k = 0 . . .m′ − 1,
which implies that Ti[j + k] = pk, for k = 0 . . .m′ − 1.
Then, if m = m′ the algorithm reports the occurrences
of the pattern at positions iα + {r}, if any. Otherwise
we know that occurrences of the prefix of the pattern
with length α/2 begin at positions iα + {r}. Thus the
algorithm checks the occurrences beginning at those po-
sitions.

If we maintain, for each value r, with 0 ≤ r < 2α, a
list of the values in the set {r}, the naive check of the
occurrences can be done in O(|{r}|m)-time. When m =
m′ the occurrences can be reported in O(|{r}|)-time.
Finally, observe that the m′ − 1 possible occurrences
crossing the blocks Ti and Ti+1 are naively checked by
the algorithm (lines 13-14).

The overall time complexity of the EPSMa algo-
rithm is O(nm), because in the worst case a naive check
is required for each position of the text. However, when
m ≤ α

2 the EPSMa algorithm achieves a O(n+occ) time
complexity, where occ is the number of occurrences of
the pattern p in the text t.

EPSMa (p,m, t, n)
1. m′ ← min{m,α/2}
2. for i← 0 to (m′ − 1) do
3. for j ← 0 to α− 1 do
4. Bi[j]← p[i]
5. for i← 0 to (n/α)− 1 do
6. r ← 1α

7. for j ← 0 to m′ − 1 do
8. sj ← wscmp(Ti, Bj)
9. r ← r & (sj � j)

10. if m = m′

11. then report occurrences at iα+ {r}
12. else check positions iα+ {r}
13. for j ← 0 to m− 2 do
14. check position (i+ 1)α− j

EPSMb (p,m, t, n)
1. m′ ← min{m,α/2}
2. p′ ← p[0 . .m′ − 1]
3. for i← 0 to (n/α)− 1 do
4. r ← wsmatch(Ti, p

′)
5. if r 6= 0α then
6. if m = m′

7. then report occurrences at iα+ {r}
8. else check positions iα+ {r}
9. S ← wsblend(Ti, Ti+1)

10. r ← wsmatch(S, p′)
11. if r 6= 0α then
12. if m = m′

13. then report occurrences at iα+ α
2

+ {r}
14. else check positions iα+ α

2
+ {r}

EPSMc (p,m, t, n)

1. mask ← 0α−k1k

2. for i← 1 to m− α do
3. v ← wscrc(p[i..i+ α− 1])
4. v ← v & mask
5. L[v]← L[v] ∪ {i}
6. sh← (bm/αc − 1) · α
7. for i← 0 to (n/α)− 1 do
8. v ← wscrc(Ti)
9. v ← v & mask

10. for all j ∈ L[v] do
11. if 0 ≤ i− j < n−m
12. then check position i− j
13. i← i+ sh

Figure 4: The EPSMa (on the top), the EPSMb (in
the middle) and the EPSMc (on the bottom) auxiliary
algorithms.

3.3 EPSMb: Searching for Short Patterns The
EPSMb searches for the whole pattern when its length
is less or equal to α/2 and works as a filter algorithm
for longer patterns. However, it is based on a more

efficient filtering technique and turns out to be faster in
the second case.

Let m′ be the minimum between α/2 and m.
Moreover let p′ be the prefix of p of length m′. The
searching phase of the algorithm (lines 3-14) processes
the text t in chunks of α characters. Let N = n

α −1 and
let T = T0T1 . . . TN be the string t represented in chunks
of characters. Each block of the text, Ti, is searched
one by one for occurrences of the string p′ using the
instruction wsmatch.

Specifically, let r = r0r1 . . . rα−1 be the α-bit
register returned by the instruction wsmatch(Ti, p

′), for
0 ≤ j < m′. We have that rj = 1 if and only if an
occurrence of p′ begins at positions j of the block Ti,
for 0 ≤ j < α/2. Then, if m′ = m (and hence p = p′)
the algorithm simply returns positions iα+ j, such that
rj = 1. Otherwise, if m′ < m, the algorithm naively
checks for the whole occurrences of the pattern starting
at positions iα+ j, such that rj = 1.

Notice that generally packed string matching in-
structions allow to read only blocks Ti of α charac-
ters (128 bits in the case of SSE instructions), where
Ti = t[iα..(i+ 1)α− 1]. Occurrences of the pattern be-
ginning in the second half of the block Ti are checked
separately. In particular a new block, S, obtained by
applying the instruction wsblend(Ti, Ti+1), is processed
in a similar way as block Ti. In this case we report
all occurrences of the pattern beginning at positions
iα + α/2 + j, with 0 ≤ j < α/2. One may argue that
why blending is used instead of simply shifting the win-
dow. The reason is the SSE instructions used in this
context require the operands to be 16-byte aligned in
memory, where the performance degrades significantly
otherwise. Thus, blending is more advantageous.

The resulting algorithm has an O(nm) worst case
time complexity and require O(1) additional space.
When m ≤ α/2 the algorithm reaches the optimal
O(n/α+ occ) worst case time complexity.

3.4 EPSMc: Searching for Medium Length
Patterns The EPSMc algorithm is designed to be
faster for medium length patterns. It is based on a
simple filtering method and uses a hash function for
computing fingerprint values on blocks of α characters
in a similar way as in Rabin-Karp algorithm [21]. The
fingerprint values are computed by using a hash function
h : Σα → {0, 1, . . . , 2k − 1}, for a constant parameter k
(in practice we chose k = 11).

The function h is computed in a very fast way by
using the wscrc specialized instruction, and in particular
h(a) = wscrc(a) & 0α−k1k, for each A ∈ Σα.

During the preprocessing phase (lines 1-6) a finger-
print value of k bits is computed for all substrings of

the pattern of length α. Then a table L of size 2k is
computed in order to store starting positions of all sub-
strings of the pattern, indexed by their fingerprint val-
ues. In particular we have L[v] = {i | h(p[i..i+α−1]) =
v}, for all 0 ≤ v < 2k.

The preprocessing phase of the EPSMc algorithm
takes O(m+ 2k)-time.

Let N = n
α − 1 and let T = T0T1 . . . TN be the

string t represented in chunks of characters. During
the searching phase (lines 7-13) the EPSMc algorithm
inspects the blocks of the text in steps of (bm/αc−1) ·α
positions. For each inspected block Ti the fingerprint
value h(Ti) is computed and all positions in the set
{iα−j | j ∈ L[h(Ti)]} are naively checked. The EPSMc
algorithm has a O(nm) worst case time complexity but
turns out to be very effective in practical cases.

4 Experimental Results

In this section we present experimental results in order
to compare the performances of our newly presented
algorithms against the best solutions known in litera-
ture in the case of short patterns. We consider all the
fastest algorithms in the case of short patterns as listed
in a recent experimental evaluation by Faro and Lecroq
[17, 15]. In particular we compared EPSM with the
following algorithms:

- the Hash algorithm using groups of q characters [25]
(HASHq);
- the Extended Backward Oracle Matching algorithm
[12, 13] (EBOM);
- the TVSBS algorithm [29] (TVSBS);
- the Shift-Or algorithm [1] (SO);
- the Shift-Or algorithm with q-grams [9] (UFNDMq);
- the Fast-Average-Optimal-Shift-Or algorithm [19]
(FAOSOq);
- the Backward DAWG Matching algorithm using
q-grams [9] (BNDMq);
- the Simplified BNDMq algorithm [9] (SBNDMq);
- the Forward BNDMq algorithm [12, 13, 27]
(FBNDMq);
- the Crochemore-Perrin algorithm using SSE instruc-
tions [3] (SSECP);

We remember that the EPSM algorithm consists of
the EPSMa algorithm, when m < 4, of the EPSMb
algorithm when 4 ≤ m ≤ 16, and of the EPSMc
algorithm when m > 16..

In the case of algorithms making use of q grams,
the value of q ranges in the set {2, 4, 6}. All algorithms
have been implemented in the C programming language
and have been tested using the Smart tool [16] for exact
string matching. The experiments were executed locally

on a machine running Ubuntu 11.10 (oneiric) with Intel
i7-2600 processor with 16GB memory. Algorithms have
been compared in terms of running times, including
any preprocessing time. For the evaluation we used
a genome sequence, a protein sequence and a natural
language text (English language), all sequences of 4MB.
The sequences are provided by the Smart research tool.
For each input file, we have searched sets of 1000
patterns of fixed length m randomly extracted from the
text, for m ranging from 2 to 32 (short patterns). Then,
the mean of the running times has been reported.

Table 1, Table 2 and Table 3 show the experimen-
tal results obtained for a gnome sequence, a protein se-
quence and a natural language text, respectively.

In the case of algorithms using q-grams we have
reported only the best result obtained by its variants.
The values of q which obtained the best running times
are reported as apices. Running times are expressed in
hundredths of seconds, best results have been boldfaced
and underlined.

From experimental results it turns out that the
EPSM algorithm has mostly the best performances for
short patterns. When searching on a genome sequence it
is second only to the BNDMq algorithm for 12 ≤ m ≤ 14
and to the SSECP algorithm when m = 6. Observe
however that the EPSM algorithm is (up to 2 times)
faster than the SSECP algorithm in most cases.

When searching on a natural language text the
EPSM algorithm obtains in most cases the best results,
and is second to BNDM based algorithms only for
20 ≤ m ≤ 22.

For increasing lengths of the pattern the perfor-
mances of the EPSM algorithm remain stable, under-
lining a linear trend on average. However, the perfor-
mances of other algorithms based on shift heuristics,
slightly increases. This is more evident when searching
on a protein sequence, where the algorithms based on
bit-parallelism and q grams turn out to be the faster
solutions for longer patterns. However, in this latter
cases the EPSM algorithm is always very close the best
solutions.

It is interesting to observe that the EPSM algorithm
is faster than the SSECP algorithm in almost all cases,
and the gap is more evident in the case of longer
patterns. In fact, despite its optimal worst case time
complexity, the SSECP algorithm shows an increasing
trend on average, while the EPSM algorithm shows a
linear behavior.

5 Conclusions

We presented a new packed exact string matching
algorithm based on the Intel streaming SIMD extensions
technology. The presented algorithm, named EPSM, is

m 2 4 6 8 10 12 14 16 20 24 28 32

HASHq - 14.7(3) 11.5(3) 10.7(3) 9.88(3) 8.78(3) 8.00(3) 7.45(3) 6.70(3) 6.15(5) 5.75(5) 5.47(5)

EBOM 11.73 10.60 10.61 10.57 10.55 10.83 10.27 9.79 8.94 8.33 7.88 7.50

TVSBS 16.17 13.78 12.60 11.93 11.45 11.29 11.00 10.90 10.74 10.61 10.56 10.45

SO 10.76 10.99 10.62 10.93 10.83 10.86 10.78 10.67 10.89 10.83 10.77 10.73

FAOSOq - 13.0(2) 10.7(2) 8.69(2) 8.00(2) 7.83(2) 7.79(2) 6.56(4) 5.90(4) 5.76(4) 5.66(4) 5.58(4)

UFNDMq 12.0(2) 9.53(4) 7.84(4) 6.94(4) 6.37(4) 5.97(6) 5.62(6) 5.39(6) 5.03(6) 4.81(6) 4.61(6) 4.61(6)

BNDMq 12.8(2) 11.3(2) 9.23(4) 7.24(4) 6.36(4) 5.90(4) 5.58(4) 5.36(4) 5.09(4) 4.78(6) 4.61(6) 4.46(6)

SBNDMq 12.7(1) 11.2(2) 9.62(4) 7.55(4) 6.61(4) 6.12(4) 5.77(4) 5.54(4) 5.15(6) 4.83(6) 4.62(6) 4.50(6)

FBNDMq 16.8 (1) 10.9(4) 8.86(4) 7.24(4) 6.53(4) 6.03(4) 5.70(4) 5.48(4) 5.17(6) 4.87(6) 4.66(6) 4.57(6)

SSECP 5.31 5.59 5.98 6.50 9.62 9.32 9.16 9.03 8.73 8.53 8.45 8.37

EPSM 4.45 4.86 6.18 6.12 6.17 6.16 6.17 4.69 4.77 4.31 4.38 4.22

Table 1: Experimental results for searching 1000 patterns on a genome sequence.

m 2 4 6 8 10 12 14 16 20 24 28 32

HASHq - 14.1(3) 11.3(3) 11.2(3) 9.41(3) 8.28(3) 7.42(3) 6.98(3) 6.29(3) 5.81(3) 5.51(3) 5.27(3)

EBOM 10.00 6.25 5.50 5.14 4.96 4.84 4.75 4.69 4.60 4.58 4.53 4.51

TVSBS 11.71 10.52 10.45 9.20 8.31 7.68 7.17 6.83 6.29 5.93 5.66 5.30

SO 10.68 10.68 10.67 10.62 10.60 10.67 10.73 10.76 10.70 10.51 10.69 10.21

FAOSOq - 8.54(2) 7.82(2) 6.42(4) 6.42(4) 5.70(4) 5.38(4) 5.67(4) 5.15(6) 5.12(6) 5.10(6) 5.09(6)

UFNDMq 11.0(2) 7.69(2) 6.44(2) 5.80(2) 5.43(2) 5.18(2) 5.00(2) 4.85(2) 4.62(4) 4.46(4) 4.33(4) 4.22(4)

BNDMq 10.6(2) 7.16(2) 5.95(2) 5.42(2) 5.13(2) 4.93(2) 4.78(2) 4.68(2) 4.45(4) 4.30(4) 4.18(4) 4.12(4)

SBNDMq 10.4(2) 7.01(2) 5.86(2) 5.37(2) 4.96(2) 4.89(2) 4.75(2) 4.65(2) 4.48(4) 4.33(4) 4.21(4) 4.12(4)

FBNDMq 10.5(1) 8.64(1) 6.85(2) 6.37(4) 5.67(4) 5.21(4) 4.51(4) 4.76(4) 4.50(4) 4.34(4) 4.23(4) 4.19(4)

SSECP 5.31 5.58 5.96 6.49 6.81 6.68 6.59 6.45 6.33 6.24 6.19 6.15

EPSM 4.47 4.83 4.65 4.65 4.65 4.64 4.64 4.65 4.73 4.28 4.31 4.18

Table 2: Experimental results for searching 1000 patterns on a protein sequence.

m 2 4 6 8 10 12 14 16 20 24 28 32

HASHq - 14.2(3) 11.2(3) 11.1(3) 9.41(3) 8.29(3) 7.50(3) 6.99(3) 6.26(3) 5.83(3) 5.50(3) 5.27(3)

EBOM 10.26 7.24 6.51 6.14 6.02 5.82 5.71 5.67 5.55 5.53 5.42 5.37

TVSBS 12.02 10.74 10.25 9.58 8.82 8.14 7.68 7.24 6.67 6.34 6.01 5.76

SO 10.87 10.80 10.63 10.72 10.70 10.72 10.84 10.79 10.59 10.71 10.66 10.72

FAOSOq - 9.22(2) 8.01(2) 6.89(4) 6.94(4) 5.77(4) 5.77(4) 5.66(4) 5.20(6) 5.10(6) 5.11(6) 5.10(6)

UFNDMq 10.6(2) 8.33(2) 7.20(2) 6.35(4) 5.85(4) 5.48(4) 5.22(4) 5.02(4) 4.77(4) 4.62(4) 4.47(4) 4.39(4)

BNDMq 10.6(2) 8.19(2) 7.09(2) 6.49(2) 5.96(4) 5.46(4) 5.17(4) 4.96(4) 4.69(4) 4.55(4) 4.41(4) 4.33(4)

SBNDMq 10.8(2) 8.02(2) 6.99(2) 6.44(2) 6.12(4) 5.60(4) 5.27(4) 5.07(4) 4.78(4) 4.64(4) 4.48(4) 4.39(4)

FBNDMq 10.5(1) 9.13(1) 8.07(4) 6.65(4) 5.92(4) 5.51(4) 5.22(4) 5.02(4) 4.74(4) 4.61(4) 4.45(4) 4.43(4)

SSECP 5.33 5.60 5.98 6.51 7.67 7.37 7.01 7.03 6.83 6.69 6.62 6.61

EPSM 4.48 4.85 5.15 5.13 5.13 5.04 5.01 4.72 4.75 4.31 4.35 4.21

Table 3: Experimental results for searching 1000 patterns on a natural language text.

based on three auxiliary algorithms which are used when
0 < m < 4, m ≥ 4, and m ≥ 16, respectively. Despite
the O(nm)-worst case time complexity the resulting
algorithm turns out to be very fast in the case of very
short patterns. From our experimental results it turns

out that the EPSM algorithm is in general the best
solutions when m ≤ 32. It could be interesting to
investigate the possibility to improve the performances
of packed string matching algorithms by introducing
shift heuristics.

References

[1] R. Baeza-Yates and G.H. Gonnet. A new approach
to text searching. Comm. of the ACM, 35(10):74–82,
1992.

[2] D. Belazzougui. Worst case efficient single and multiple
string matching in the RAM model. In Proceedings
of the 21st International Workshop On Combinatorial
Algorithms (IWOCA), pages 90–102, 2010.

[3] O. Ben-Kiki, P. Bille, D. Breslauer, L. Gasieniec,
R. Grossi, and O. Weimann. Optimal packed string
matching. In IARCS Annual Conf. on Found. of Soft-
ware Technology and Theoretical Computer Science,
pages 423–432, 2011.

[4] P. Bille. Fast searching in packed strings. Journal of
Discrete Algorithms, 9(1):49–56, 2011.

[5] D. Cantone, S. Faro, and E. Giaquinta. A compact
representation of nondeterministic (suffix) automata
for the bit-parallel approach. In Combinatorial Pattern
Matching, volume 6129 of Lecture Notes in Computer
Science, pages 288–298. Springer Berlin, 2010.

[6] D. Cantone, S. Faro, and E. Giaquinta. A compact rep-
resentation of nondeterministic (suffix) automata for
the bit-parallel approach. Information and Computa-
tion, Vol. 213, pages 3–12, 2012.

[7] C. Charras and T. Lecroq. Handbook of exact string
matching algorithms. King’s College, 2004.

[8] M. Crochemore, A. Czumaj, L. Gasieniec,
S. Jarominek, T. Lecroq, W. Plandowski, and W. Ryt-
ter. Speeding up two string-matching algorithms.
Algorithmica, 12(4):247–267, 1994.

[9] B. Durian, J. Holub, H. Peltola, and J. Tarhio. Tuning
bndm with q-grams. Proceedings of the Workshop on
Algorithm Engineering and Experiments (ALENEX),
pages 29–37, 2009.

[10] B. Durian, H. Peltola, L. Salmela, and J. Tarhio. Bit-
parallel search algorithms for long patterns. In Intern.
Symp. on Experimental Algorithms, pp. 129–140, 2010.

[11] S. Faro and M. O. Külekci. Fast multiple string
matching using streaming simd extensions technology.
In Proceedings of the 19th International Symposium on
String Processing and Information Retrieval, volume
7608 of Lecture Notes in Computer Science, pages 217–
228. Springer Berlin, 2012.

[12] S. Faro and T. Lecroq. Efficient variants of the
backward-oracle-matching algorithm. In Proc. of the
Prague Stringology Conference, pages 146–160, Czech
Technical University in Prague, Czech Republic, 2008.

[13] S. Faro and T. Lecroq. Efficient variants of the
backward-oracle-matching algorithm. Int. Journal of
Found. of Computer Science, 20(6):967–984, 2009.

[14] S. Faro and T. Lecroq. An efficient matching algo-
rithm for encoded DNA sequences and binary strings.
In Proceedings of the 20th Annual Symposium on Com-
binatorial Pattern Matching, CPM ’09, pages 106–115,
Berlin, Heidelberg, 2009. Springer-Verlag.

[15] S. Faro and T. Lecroq. The exact string matching

problem: a comprehensive experimental evaluation.
Arxiv preprint arXiv:1012.2547, 2010.

[16] S. Faro and T. Lecroq. Smart: a string matching al-
gorithm research tool. University of Catania and Uni-
versity of Rouen, http://www.dmi.unict.it/~faro/

smart/, 2011.
[17] S. Faro and T. Lecroq. The exact online string

matching problem: a review of the most recent results.
ACM Computing Surveys, 45(2), 2013, to appear.

[18] K. Fredriksson. Faster string matching with super-
alphabets. In String Processing and Information Re-
trieval, pages 207–214. Springer, 2002.

[19] K. Fredriksson and S. Grabowski. Practical and
optimal string matching. In M. P. Consens and
G. Navarro, editors, SPIRE, volume 3772 of Lecture
Notes in Computer Science, pages 376–387. Springer-
Verlag, Berlin, 2005.

[20] Intel. Intel (R) 64 and IA-32 Architectures Optimiza-
tion Reference Manual. Intel Corporation, 2011

[21] R. M. Karp, and M. O. Rabin Efficient random-
ized pattern-matching algorithms. IBM Journal of Re-
search and Development - Mathematics and computing
, 31(2), pages 249–260, 1987.

[22] D.E. Knuth, J.H. Morris Jr, and V.R. Pratt. Fast pat-
tern matching in strings. SIAM journal on computing,
6:323, 1977.

[23] M.O. Külekci. Filter based fast matching of long
patterns by using SIMD instructions. In Proc. of the
Prague Stringology Conference, pages 118–128, 2009.

[24] M.O. Külekci. Blim: A new bit-parallel pattern
matching algorithm overcoming computer word size
limitation. Mathem. in Computer Science, 3(4):407–
420, 2010.

[25] T. Lecroq. Fast exact string matching algorithms.
Information Processing Letters, 102(6):229–235, 2007.

[26] G. Navarro and M. Raffinot. A bit-parallel approach
to suffix automata: Fast extended string matching. In
Combinatorial Pattern Matching, pages 14–33, 1998.

[27] H. Peltola and J. Tarhio. Variations of forward-
SBNDM. In Jan Holub and Jan Žďárek, editors,
Proceedings of the Prague Stringology Conference 2011,
pages 3–14, Czech Technical University in Prague,
Czech Republic, 2011.

[28] J. Rautio, J. Tanninen, and J. Tarhio. String matching
with stopper encoding and code splitting. In Proceed-
ings of the 13th Annual Symposium on Combinatorial
Pattern Matching, CPM ’02, pages 42–52, London, UK,
UK, 2002. Springer-Verlag.

[29] R. Thathoo, A. Virmani, S. Sai Lakshmi, N. Balakr-
ishnan, and K. Sekar. TVSBS: A fast exact pattern
matching algorithm for biological sequences. J. Indian
Acad. Sci., Current Sci., 91(1):47–53, 2006.

[30] A.C. Yao. The complexity of pattern matching for a
random string. SIAM J. Comput., 8(3):368–387, 1979.

