
Fast Multiple String Matching
Using Streaming SIMD Extensions Technology

Simone Faro† and M. Oğuzhan Külekci‡

†Dipartimento di Matematica e Informatica, Università di Catania, Italy
‡TÜBİTAK National Research Institute of Electronics and Cryptology, Turkey

faro@dmi.unict.it, oguzhan.kulekci@tubitak.gov.tr

Abstract. Searching for all occurrences of a given set of patterns in a
text is a fundamental problem in computer science with applications in
many fields, like computational biology and intrusion detection systems.
In the last two decades a general trend has appeared trying to exploit
the power of the word RAM model to speed-up the performances of clas-
sical string matching algorithms. This study introduces a filter based
exact multiple string matching algorithm, which benefits from Intel’s
SSE (streaming SIMD extensions) technology for searching long strings.
Our experimental results on various conditions show that the proposed
algorithm outperforms other solutions, which are known to be among
the fastest in practice.

1 Introduction

In this article we consider the multiple string matching problem which is the
problem of searching for all exact occurrences of a set of r patterns in a text t,
of length n, where the text and patterns are sequences over a finite alphabet Σ.

Multiple string matching is an important problem in many application areas
of computer science. For example, in computational biology, with the availability
of large amounts of DNA data, matching of nucleotide sequences has become an
important application and there is an increasing demand for fast computer meth-
ods for analysis and data retrieval. Similarly, in metagenomics [22], we have a set
of patterns which are the extracted DNA fragments of some species, and would
like to check if they exist in another living organism. Another important usage
of multiple pattern matching algorithms appears in network intrusion detection
systems as well as in anti-virus software, where such systems should check an
increasing number of malicious patterns on disks or high–speed network traffic.
The common properties of systems demanding for multi–pattern matching is
ever increasing size of both the sets and pattern lengths. Hence, searching of
multiple long strings over a sequence is becoming a more significant problem.

In this paper we present a new practical and efficient algorithm for the mul-
tiple exact string matching problem that turns out to be faster than the best
algorithms known in literature in most practical cases. The algorithm, named



Multiple Pattern Streaming SIMD Extensions Filter (MPSSEF), is designed us-
ing specialized word-size packed string matching instructions based on the Intel
streaming SIMD extensions (SSE) technology. To the best of our knowledge,
MPSSEF is the first algorithm that exploits the power of the word RAM model
for the multiple string matching problem. It can be seen as an extension of the
SSEF algorithm [12] that was designed for single pattern matching and has been
evaluated amongst the fastest algorithms in the case of long patterns [10, 8].

The paper is organized as follows. In Section 2, we introduce some notions
and the terminology we adopt along the paper. We survey the most relevant
existing algorithms for the multiple string matching problem in Section 3. We
then present a new algorithm for the multiple string matching problem in Sec-
tion 4 and report experimental results under various conditions in Section 5.
Conclusions and perspectives are given in Section 6.

2 Notions and Terminology

Throughout the paper we will make use of the following notations and termi-
nology. A string p of length ` > 0 is represented as a finite array p[0 . . . `− 1] of
characters from a finite alphabet Σ of size σ. Thus p[i] will denote the (i+ 1)-st
character of p, and p[i . . . j] will denote the factor (or substring) of p contained
between the (i+ 1)-st and the (j + 1)-st characters of p, for 0 ≤ i ≤ j < `.

Given a set of r patterns P = {p0, p1, . . . , pr−1}, we indicate with symbol
mi the length of the pattern pi, for 0 ≤ i < r, while the length of the shortest
pattern in P is denoted by m′, i.e. m′ = min{mi | 0 ≤ i < r}. The length
of P, which consists of the sum of the lengths of the pis is denoted by m, i.e.
m =

∑r−1
i=0 mi.

We indicate with symbol w the number of bits in a computer word and with
symbol γ = dlog σe the number of bits used for encoding a single character of
the alphabet Σ. The number of characters of the alphabet that fit in a single
word is denoted by α = bw/γc. Without loss of generality we will assume along
the paper that γ divides w.

In chunks of α characters, any string p of length ` is represented by an array of
blocks P [0 . . . k−1] of length k = d`/αe. Each block P [i] consists of α characters
of p and in particular P [i] = p[iα . . . iα+α− 1], for 0 ≤ i < k. The last block of
the string P [k − 1] is not complete if (` mod α) 6= 0. In that case we suppose
the rightmost remaining characters of the block are set to zero. Given a set of
patterns P, we define L = dm′/αe − 1 as the zero-based address of the last
α-character block of the shortest pattern in P, whose individual characters are
totally composed of the characters of the pattern without any padding.

Although different values of α and γ are possible, in most cases we assume
that α = 16 and γ = 8, which is the most common setting while working
with characters in ASCII code and in a word RAM model with 128-bit registers,
available in almost all recent commodity processors supporting single instruction
multiple data (SIMD) operations.

2



3 Previous Results

A first trivial solution to the multiple string matching problem consists of ap-
plying an exact string matching algorithm for locating each pattern in P. If
we use the well–known Knuth-Morris-Pratt algorithm [11], which is linear in the
dimension of the text, this solution has an O(m+rn) worst case time complexity.

The optimal average complexity of the problem is O(n logσ(rm′)/m′) [17].
This bound has been achieved by the Set-Backward-DAWG-Matching (SBDM)
algorithm [16, 6] based on the suffix automaton that builds an exact indexing
structure for the reverse strings of P such as a factor automaton or a generalized
suffix tree. Hashing also provides a simple and efficient method, where it has been
used first by Wu and Manber [20] to design an efficient algorithm for multiple
pattern matching with a sub-linear average complexity which uses an index table
for blocks of q characters.

In the last two decades a lot of work has been made in order to exploit
the power of the word RAM model of computation to speed-up string matching
algorithms for a single pattern. In this model, the computer operates on words of
length w, thus blocks of characters are read and processed at once. Most of the
solutions which exploit the word RAM model are based on the bit-parallelism
technique or on the packed string matching technique.

The bit-parallelism technique [2] takes advantage of the intrinsic parallelism
of the bit operations inside a computer word, allowing to cut down the num-
ber of operations that an algorithm performs by a factor up to w. The Shift-Or
[2] and BNDM [14] algorithms, which are the representatives of this genre, can
be easily extended to the multiple patterns case by deriving the corresponding
automata from the maximal trie of the set of patterns [21, 15]. The resulting
algorithms have a O(σdm/we)-space complexity and work in O(ndm/we) and
O(ndm/wem′) worst-case searching time complexity, respectively. Another effi-
cient solution is the MBNDM algorithm [18], which computes a superimposed
pattern from the patterns of the input set when using a condensed alphabet of
q characters, and performs filtering with the standard BNDM.

In the packed string matching technique multiple characters are packed into
one larger word, so that the characters can be compared in bulk rather than
individually. In this context, if the characters of a string are drawn from an
alphabet of size σ, then bw/log σc different characters fit in a single word, using
blog σc bits per characters. The packing factor is α = w/log σ.

The recent study of Ben-Kiki et al. [3] reached the optimal O(n/α + occ)-
time complexity for single string matching in O(1) extra space, where occ is the
number of occurrences of the searched pattern in the text. The authors showed
in their experimental results that their algorithm turns out to be among the
fastest solutions in the case of short patterns. When the length of the searched
pattern increases, the SSEF [12] algorithm that performs filtering via the SIMD
instructions becomes the best solution in many cases [8, 10]. However, to the
best of our knowledge, packed string matching has not been explored before for
multiple pattern matching, and MPSSEF is the initial study of this genre.

3



4 A New Multiple Pattern Matching Algorithm

In this section we present a new multiple string matching algorithm, named
Multiple Patterns Streaming SIMD Extension Filter (MPSSEF), which can be
viewed a generalization of the SSEF algorithm designed for single string match-
ing. The algorithm is based on a filter mechanism. It first searches the text for
candidate occurrences of the patterns using a collection of fingerprint values
computed in a preprocessing phase from the set of patterns P. Then the text is
scanned by extracting fingerprint values at fixed intervals and in case of a match-
ing fingerprint at a specific position, a naive check follows at that position for
all patterns, which resemble the detected fingerprint value. MPSSEF is designed
to be effective on sets of long patterns, where the lower limit for the shortest
pattern of the set is 32 (m′ ≥ 32). Although it is possible to adapt the algorithm
for lesser lengths, the performance gets worse under 32. The MPSSEF algorithm
runs in O(nm) worst case time complexity and use O(rm′+2α) additional space,
where we remember that m′ is the length of the shortest pattern in P.

4.1 The Model

In the design of our algorithm we use specialized word-size packed string match-
ing instructions, based on the Intel streaming SIMD extensions (SSE) technology.
SIMD instructions exist in many recent microprocessors supporting parallel ex-
ecution of some operations on multiple data simultaneously via a set of special
instructions working on limited number of special registers.

In particular our algorithm makes use of the wsfp (word-size fingerprint in-
struction) specialized word-size packed instruction. The instruction wsfp(B, k),
computes an α-bit fingerprint from a w-bit register B handled as a block of α
characters. Assuming B[0 . . . α − 1] is a w-bit integer parameter, wsfp(B, k) re-
turns an α-bit value r[0 . . . α−1], where r[i] = 1 iff the bit at position γ−1−k in
B[i] is set, and r[i] = 0 otherwise. The wsfp(B, k) specialized instruction can be
emulated in constant time by using the following sequence of specialized SIMD
instructions

D ← mm slli epi64(B, k)
r ← mm movemask epi8(D)

Specifically the mm slli epi64(B, k) instruction individually shifts left the two
64-bit blocks of the 128-bit word B of k positions, and set to zero the rightmost
k bits of the first and second halves. Assuming B = a1a2, where a1 and a2 are
the 64-bits long first and second parts of B, this corresponds to the standard
shift instruction (a1 � k) and (a2 � k).

The mm movemask epi8(D) instruction gets a 128 bit parameter D, handled
as sixteen 8-bit integers, and creates a 16-bit mask from the most significant bits
of the 16 integers in D, and zero extends the upper bits.

4



Preprocessing(P, r,m′, k)
1. L← dm′/αe − 1
2. for v ← 0 to 2α − 1 do F [v]← ∅
3. for i← 0 to r − 1 do
4. for j ← 0 to αL do
5. a← pi[j . . . j + α− 1]
6. v ← wsfp(a, k)
7. F [v]← F [v] ∪ {(i, j)}
8. return F

MPSSEF(P, r, t, n, k)
1. m′ ← min{mi | 0 ≤ i < r}
2. F ←Preprocessing(P, r,m′, k)
3. N ← dn/αe − 1; L← dm′/αe − 1
4. for s = 0 to N step L do
5. v ← wsfp(T [s], k)
6. for each (i, j) ∈ F [v] do
7. if pi = t[sα− j . . . sα− j +mi − 1] then
8. output (sα− j, i)

Fig. 1. The pseudo-code of the MPSSEF multiple string matching algorithm.

4.2 The Preprocessing Phase

The preprocessing phase of the MPSSEF algorithm, which is depicted in Fig.
1 (on the left), consist in compiling all the possible fingerprint values of the
patterns in the input set P according to all possible alignments with a block of
α characters. Thus a fingerprint value is computed for each block pi[j . . . j+α−1],
for 0 ≤ i < r and 0 ≤ j ≤ αL. The corresponding fingerprint of a block B of α
characters is the α bits register returned by the instruction wsfp(B, k) and formed
by concatenating the leftmost bits of each character after shifting by k bits. To
this purpose a table F of size 2α is computed in order to store, for any possible
fingerprint value v, the set of pairs (i, j) such that wsfp(pi[j . . . j+α−1], k) = v.
More formally we have, for 0 ≤ v < 2α

F [v] =
{

(i, j) | 0 ≤ i < r, 0 ≤ j ≤ αL and wsfp(pi[j . . . j + α− 1], k) = v
}
.

The reason for shifting by k positions is to generate a distinguishing finger-
print value. Such a value must be selected depending on the alphabet size and
characters distribution of the text. For example, when the search is to be per-
formed on an English text, the leftmost bits of bytes are generally 0 as in the
standard ASCII table the printable characters of the language reside in the first
128 values, where the leftmost bits are always 0. If we do not include a shift
operation, then the fingerprint values would be v = 0α in all cases, and while
scanning the text the verification step would be called at each position.

As another example, let’s consider pattern matching on an ASCII coded
plain DNA sequence, where the alphabet is a, c, g and t, having ASCII codes
01100001, 01110100, 01100011, and 01100111, respectively. The first three bits
and the fifth bit are all the same. Since the number of 1s and 0s are equal on
the sixth and seventh positions from the remaining bits, one of them, say 6th,
may be used as the distinguishing bit. Thus k = 5 would be a good choice.

The preprocessing phase of the MPSSEF algorithm requires some additional
space to store the rm′ possible alignments in the 2α locations of the table F .
Thus, the space requirement of the algorithm is O(rm′ + 2α). The first loop of
the preprocessing phase just initializes the table F , while the second for loop is
run Lα times, which makes the time complexity of preprocessing O(Lα) that
approximates to O(m).

5



4.3 The Searching Phase

The basic idea of the searching phase is to compute a fingerprint value for each
block of the text T [zL], where 0 ≤ z < bN/Lc, to explore if it is appropriate
to observe any pattern in P involving an alignment with the block T [zL]. If the
fingerprint value indicates that some of the alignments are possible, then those
fitting ones are naively checked.

The pseudo-code given in Fig. 1 (on the right) depicts the skeleton of the
MPSSEF algorithm. The main loop investigates the blocks of the text T in
steps of L blocks. If the fingerprint v computed on T [s] is not empty, then the
appropriate positions listed in F [v] are verified accordingly.

In particular F [v] contains a linked list of pairs (i, j) marking the pattern
pi and the beginning position of the pattern in the text. While investigating
occurrences on T [s], if F [v] contains the couple (i, j), this indicates the pattern
pi may potentially begin at position (sα−j) of the text. In that case, a complete
verification is to be performed between p and t[sα− j . . . sα− j +mi − 1] via a
symbol-by-symbol inspection.

The total number of filtering operations is exactly N/L. At each attempt,
maximum number of verification requests is αL, since the filter gives informa-
tion about that number of appropriate alignments of the patterns. On the other
hand, if the computed fingerprint points to an empty location in F , then there
is obviously no need for verification. The verification cost for a pattern pi ∈ P
is assumed to be O(mi), with the brute-force checking of the pattern. Hence, in
the worst case the time complexity of the verification is O(Lαm), which hap-
pens when all patterns in P must be verified at any possible beginning position.
From these facts, the best case complexity is O(N/L), and worst case complex-
ity is O((N/L)(Lαm)), which approximately converge to O(n/m′) and O(nm)
respectively.

4.4 Tuning the MPSSEF algorithm

As stated above, the preprocessing time of the MPSSEF algorithm is O(2α+m′r)
that strongly depends on the size of the set of patterns P and on the length m′

of the shortest pattern in P. This leads to an explosion of the preprocessing time
of the algorithm when searching for large sets of long patterns.

Similarly, when the number of pairs stored in the table F increases, the
number of verifications called during the searching phase increases proportion-
ally. Thus when searching for a large set of long patterns most of the time spent
during the searching time is in the verification step, since the number of pairs
stored in F is proportional to r and m′.

An efficient solution to avoid the problems described above, consists in pre-
processing the set of patterns computing the fingerprints for prefixes of fixed
length q ≤ m′ instead of for prefixes of length m′. This allows to reduce the
preprocessing time to O(qr) which depends only on the size of the set P. Thus,
for a fixed length q, the preprocessing phase consists in computing a table F of

6



Set Size Algorithm 32 64 128 256 512

100 MPSSEF 0.08 : 3.14 0.23 : 2.53 0.54 : 2.42 1.16 : 2.35 2.37 : 2.42

MPSSEF64 0.08 : 3.14 0.23 : 2.53 0.24 : 2.53 0.24 : 2.52 0.25 : 2.53

1.000 MPSSEF 0.82 : 4.78 2.33 : 4.85 5.24 : 5.37 11.24 : 5.82 22.34 : 6.78

MPSSEF32 0.82 : 4.78 0.81 : 4.44 0.82 : 4.40 0.91 : 4.52 1.00 : 4.55

10.000 MPSSEF 7.65 : 21.46 22.07 : 42.08 52.09 : 51.36 110.25 : 57.53 228.42 : 63.72

MPSSEF32 7.65 : 21.46 7.81 : 21.10 8.50 : 26.58 9.45 : 27.31 11.12 : 35.17

Table 1. Preprocessing and searching times of the MPSSEF and MPSSEFq algorithms
for searching sets of 100, 1.000 and 10.000 patterns on a genome sequence.

size 2α in order to store, for any possible fingerprint value v, the set of pairs
(i, j) such that pi[j . . . j + α− 1] = v, with 0 ≤ j ≤ q. More formally

F [v] =
{

(i, j) | 0 ≤ i < r, 0 ≤ j ≤ q and wsfp(pi[j . . . j + α− 1], k) = v
}

for 0 ≤ v < 2α, and where we have to choose the parameter q as a multiple of α.
Then the main loop of the searching phase of the algorithm investigates the

blocks of the text T in steps of L = q/α blocks. In most cases this reduces the step
between two investigated blocks of the text, since in general q/α ≤ dm′/αe − 1.
However, the drop in performances caused by the reduction of the step is offset
by the gain in performances due to the reduction of the preprocessing time and
the number of verification calls. We name the resulting tuned version of the
algorithm as MPSSEFq algorithm.

Table 1 shows data extracted from Table 2 and puts stress on the prepro-
cessing and searching times of the original MPSSEF algorithm compared with
those of the MPSSEFq algorithm. The running times have been computed on
a genome sequence of 4Mb. The details of the experimental results are given
in Section 5. In particular the table shows the preprocessing and the searching
times of the two algorithms when used for searching set of 100, 1000, and 10000
patterns of equal length ` ranging from 32 to 512. The MPSSEFq algorithm was
tuned with q = 64 for searching sets of 100 patterns and with q = 32 in the
other case.

We can notice that the preprocessing time of the MPSSEF algorithm linearly
increases with the length of the patterns. A less evident trend can be noticed also
in the case of searching times, especially for large sets of patterns. On the other
hand the preprocessing and the searching times of the MPSSEFq algorithm show
a linear trend in almost all cases.

5 Experimental results

We compared the performances of the newly presented MPSSEF) and its q-
characters filtered version MPSSEFq against the following best algorithms known
in literature for multiple string matching problem: (MBNDM) The Multiple

7



(A) m 32 64 128 256 512 1024

MBNDMq 4.27(5)[0.16] 4.29(5)[0.16] 4.28(5)[0.16] 4.34(5)[0.16] 4.36(5)[0.17] 4.38(5)[0.17]

WMq 4.43(6)[0.40] 3.58(8)[0.41] 3.34(8)[0.43] 3.15(8)[0.43] 2.98(8)[0.43] 2.86(8)[0.47]

MPSSEF 2.98[0.01] 2.38[0.02] 2.27[0.06] 2.15[0.12] 2.13[0.24] 2.31[0.48]

MPSSEF128 2.98[0.01] 2.38[0.02] 2.27[0.06] 2.38[0.06] 2.32[0.06] 2.30[0.06]

(B)

MBNDMq 8.69(5)[0.20] 8.74(5)[0.20] 8.70(5)[0.21] 8.75(5)[0.22] 8.78(5)[0.23] 8.81(5)[0.23]

WMq 6.18(8)[0.43] 4.89(8)[0.44] 4.38(8)[0.48] 4.18(8)[0.55] 4.17(8)[0.67] 4.45(8)[0.93]

MPSSEF 3.23[0.08] 2.77[0.23] 2.96[0.54] 3.51[1.16] 4.78[2.37] 7.13[4.73]

MPSSEF64 3.23[0.08] 2.77[0.23] 2.76[0.24] 2.76[0.24] 2.79[0.25] 2.78[0.27]

(C)

MBNDMq 24.78(8)[0.38] 24.38(8)[0.39] 24.97(8)[0.43] 25.32(8)[0.48] 25.47(8)[0.56] 26.41(8)[0.82]

WMq 33.03(8)[0.61] 30.80(8)[0.77] 30.81(8)[1.10] 31.74(8)[1.76] 34.45(8)[3.14] 36.72(8)[5.76]

MPSSEF 5.60[0.82] 7.19[2.33] 10.61[5.24] 17.06[11.24] 29.12[22.34] 54.64[46.61]

MPSSEF32 5.60[0.82] 5.25[0.81] 5.22[0.82] 5.44[0.91] 5.55[1.00] 6.06[1.28]

(D)

MBNDMq 389.5(8)[1.38] 393.0(8)[1.56] 408.5(8)[2.03] 426.9(8)[2.90] 443.1(8)[4.68] 522.7(8)[9.02]

WMq 338.3(8)[2.19] 346.1(8)[3.86] 357.2(8)[7.31] 361.9(8)[13.65] 388.0(8)[26.53] 460.4(8)[52.88]

MPSSEF 29.11[7.65] 64.15[22.07] 103.45[52.09] 167.79[110.25] 292.14[228.42] 581.09[505.90]

MPSSEF32 29.11[7.65] 28.90[7.81] 35.08[8.50] 36.76[9.45] 46.29[11.12] 51.09[13.04]

Table 2. Running times for 10 (A), 100 (B), 1.000 (C) and 10.000 (D) patterns on a
genome sequence.

(A) m 32 64 128 256 512 1024

MBNDMq 3.24(3)[0.16] 3.40(3)[0.17] 3.22(3)[0.16] 3.20(3)[0.16] 3.26(3)[0.17] 3.20(3)[0.16]

WMq 3.81(6)[0.41] 3.26(6)[0.40] 3.14(6)[0.43] 2.96(6)[0.42] 2.88(6)[0.42] 2.77(6)[0.44]

MPSSEF 2.99[0.01] 2.39[0.03] 2.23[0.06] 2.14[0.12] 2.07[0.24] 2.32[0.48]

MPSSEF128 2.99[0.01] 2.39[0.03] 2.23[0.06] 2.40[0.06] 2.36[0.06] 2.31[0.06]

(B)

MBNDMq 4.26(5)[0.25] 4.27(5)[0.25] 4.28(5)[0.25] 4.31(5)[0.26] 4.33(5)[0.26] 4.41(5)[0.28]

WMq 4.42(4)[0.43] 3.71(4)[0.44] 3.41(4)[0.47] 3.30(4)[0.53] 3.36(4)[0.64] 3.45(4)[0.86]

MPSSEF 3.23[0.08] 2.74[0.23] 2.92[0.54] 3.48[1.15] 4.65[2.31] 7.09[4.71]

MPSSEF64 3.23[0.08] 2.74[0.23] 2.80[0.24] 2.84[0.25] 2.83[0.26] 2.87[0.28]

(C)

MBNDMq 7.67(8)[0.52] 7.71(8)[0.53] 7.86(8)[0.56] 8.10(8)[0.62] 8.46(8)[0.69] 9.38(8)[0.96]

WMq 6.09(8)[0.62] 5.16(8)
[0.81] 5.13(8)

[1.18] 5.76(8)[1.90] 7.26(4)[2.67] 9.94(4)[4.90]

MPSSEF 5.57[0.81] 7.22[2.35] 10.59[5.23] 16.46[10.94] 29.29[22.50] 54.48[46.64]

MPSSEF32 5.57[0.81] 5.33[0.82] 5.35[0.84] 5.52[0.93] 5.65[1.00] 6.10[1.27]

(D)

MBNDMq 20.31(8)
[1.59] 20.60(8)

[1.76] 22.19(8)
[2.20] 25.30(8)

[3.07] 31.03(8)
[4.94] 43.94(8)

[8.98]

WMq 21.06(8)[2.42] 22.97(8)[4.26] 27.33(8)[8.17] 36.49(8)[15.30] 55.09(8)[29.56] 89.65(8)[58.70]

MPSSEF 29.78[7.72] 63.88[22.09] 103.30[52.07] 167.73[110.09] 291.27[227.61] 585.85[514.84]

MPSSEF32 29.19[7.76] 30.42[7.91] 32.60[8.21] 38.46[9.34] 44.18[10.70] 52.12[13.18]

Table 3. Running times for 10 (A), 100 (B), 1.000 (C) and 10.000 (D) patterns on a
protein sequence.

8



Backward DAWG Matching algorithm [23, 18], (WM) The Wu-Manber algo-
rithm [20]. The MBNDM and WM algorithms have been run with different
q-grams ranging from 3 to 8, and best times are reported with the regarding q.

All algorithms have been implemented in the C programming language and
have been compiled with the GNU C Compiler, using the optimization options
-O3. The experiments were executed locally on an MacBook Pro with 4 Cores,
a 2 GHz Intel Core i7 processor, 4 GB RAM 1333 MHz DDR3, 256 KB of
L2 Cache and 6 MB of Cache L3. Algorithms have been compared in terms
of running times, including any preprocessing time, measured with a hardware
cycle counter, available on modern CPUs.

For the evaluation, we use a genome sequence, a protein sequence and a nat-
ural language text (English language), all sequences of 4MB. The sequences are
provided by the Smart research tool [9] and are available online for download.
We have generated sets of 10, 100, 1000 and 1000 patterns of fixed length ` for
the tests. In all cases the patterns were randomly extracted from the text and
the value ` was made ranging over the values 32, 64, 128, 256, 512, and 1024.
For each case we reported the mean over the running times of 200 runs. The
MPSSEFq algorithm was tuned with q values 128, 64, 32 and 32 for searching
sets of 10, 100, 1000, and 10000 patterns respectively. Tables 2, 3, and 4 lists the
timings achieved on genome, protein, and english texts respectively. Running
times are expressed in thousands of seconds. We report the mean of the over-
all running times and (just below) the means of the preprocessing and searching
times. Best times have been boldfaced and underlined. Best searching times have
been simply boldfaced. The q values presenting the length of the q–gram giving
the best timing during the tests by WM and MBNDM algorithms are indicated
as apices. The ESBOM algorithm is not included in the results since its running
times are not competitive with the others.

Careful readers will notice that the MPSSEF algorithm gives better results
than MPSSEFq algorithm on sets of size 10 patterns, and might think that this
contradicts with the motivation of MPSSEFq. However, this is because the shift
value in case of MPSSEFq is (q−16), where it is (m/16) for MPSSEF. This fact
becomes apparent when the number of patterns in the set is small. Though the
MPSSEFq uses less time in preprocessing as the number of patterns in the set
is small, having a larger shift in MPSSEF dominates this advantage.

The size of the hash table F can be computed by the formula 64K · 8 +
(sublen − 15) · (8 + 4 + 4) bytes, assuming an integer occupies 4 bytes and a
pointer takes 8 bytes in practical situations. We have 64K pointers initially set to
point empty lists at the beginning, and we need to reserve space for (sublen−15)
list nodes each of which has a next pointer, a pattern id, and the position on
the regarding pattern. Notice that sublen is the length of the pattern in case of
MPSSEF and q in case of MPSSEFq (q > 32). In practice maximum memory
requirement is measured to be less than 1MB on both.

On genome and natural language text the newly proposed algorithms outper-
forms in all cases the other solutions, which are known to be the fastest options.
On protein sequences MPSSEF/MPSSEFq performs better than the others up

9



(A) m 32 64 128 256 512 1024

MBNDMq 4.26(5)[0.16] 4.35(5)[0.17] 4.58(5)[0.18] 4.35(5)[0.17] 4.35(5)[0.17] 4.35(5)[0.17]

WMq 4.11(6)[0.43] 3.59(6)[0.43] 3.20(6)[0.41] 3.10(8)[0.42] 2.83(8)[0.43] 2.77(8)[0.48]

MPSSEF 2.91[0.01] 2.39[0.02] 2.28[0.06] 2.16[0.12] 2.15[0.23] 2.39[0.48]

MPSSEF128 2.91[0.01] 2.39[0.02] 2.28[0.06] 2.38[0.06] 2.30[0.06] 2.38[0.06]

(B)

MBNDMq 7.65(8)[0.29] 7.31(8)[0.27] 7.39(8)[0.27] 7.74(8)[0.30] 7.63(8)[0.30] 7.81(8)[0.32]

WMq 5.28(8)[0.44] 4.28(8)[0.45] 3.92(8)[0.50] 3.51(8)[0.56] 3.67(8)[0.71] 3.88(8)[0.99]

MPSSEF 3.37[0.08] 2.98[0.23] 3.22[0.53] 3.98[1.13] 5.09[2.27] 7.42[4.63]

MPSSEF64 3.37[0.08] 2.98[0.23] 3.22[0.25] 3.28[0.26] 3.32[0.27] 3.27[0.29]

(C)

MBNDMq 16.87(5)[0.39] 16.65(5)[0.40] 17.34(5)[0.44] 17.29(5)[0.49] 18.06(5)[0.58] 18.16(5)[0.82]

WMq 13.35(8)[0.64] 10.53(8)[0.80] 9.66(8)[1.17] 9.42(8)[1.85] 10.52(8)[3.22] 13.42(8)[6.05]

MPSSEF 8.38[0.80] 9.50[2.33] 12.79[5.28] 18.86[10.76] 33.77[22.06] 60.06[45.86]

MPSSEF32 8.38[0.80] 8.28[0.84] 8.10[0.85] 8.13[0.89] 8.54[1.01] 9.26[1.38]

(D)

MBNDMq 118.2(5)[1.53] 118.2(5)[1.70] 120.8(5)[2.13] 129.3(5)[3.28] 136.7(5)[5.02] 156.9(5)[8.92]

WMq 114.6(5)[2.28] 110.2(5)[4.06] 108.4(5)[7.41] 115.1(5)[14.05] 129.6(5)[27.20] 166.3(5)[54.04]

MPSSEF 52.32[7.64] 97.08[21.83] 162.1[51.76] 241.3[109.3] 376.3[224.0] 657.3[480.3]

MPSSEF32 52.32[7.64] 51.26[7.75] 56.44[8.23] 60.32[8.99] 70.13[10.37] 82.27[12.84]

Table 4. Running times for 10 (A), 100 (B), 1.000 (C) and 10.000 (D) patterns on a
natural language text.

to pattern set sizes of 10000. However, on larger sets MBNDMq becomes faster.
This is most probably due to fact that in the case of genome and natural lan-
guage texts the shift heuristics of the MBNDM and WM algorithms lead to short
shifts advancements on average because of the repetitive structure of the texts.
It is important to note that on large sets of longer patterns the preprocessing
time of MPSSEF algorithm dominates the searching time. Hence, for those cases,
using the MPSSEFq variant seems a better choice.

(A) m 32 64 128 256 512 1024

genome 1.57 1.50 1.47 1.46 1.39 1.23

protein 1.08 1.36 1.40 1.38 1.39 1.19

nat.lang. 1.41 1.50 1.40 1.43 1.31 1.16

(B) m 32 64 128 256 512 1024

genome 1.91 1.76 1.58 1.51 1.49 1.60

protein 1.31 1.35 1.21 1.16 1.18 1.20

nat.lang. 1.56 1.43 1.21 1.07 1.10 1.18

(C) m 32 64 128 256 512 1024

genome 4.42 4.64 4.78 4.65 4.58 4.35

protein 1.09 0.96 0.95 1.04 1.28 1.53

nat.lang. 1.59 1.27 1.19 1.15 1.23 1.44

(D) m 32 64 128 256 512 1024

genome 11.62 11.97 10.18 9.84 8.38 9.01

protein 0.69 0.67 0.68 0.65 0.70 0.84

nat.lang. 2.19 2.14 1.92 1.90 1.84 1.90

Table 5. The speed ups obtained via MPSSEF/MPSSEFq algorithms during the ex-
periments. Dividing the best timing achieved by MPSSEF or MPSSEFq by the best of
the competing algorithms (WM, MBNDM, and ESBOM) gives the ratios listed herein.
Results on sets of 10 (A), 100 (B), 1.000 (C) and 10.000 (D) patterns.

10



(A) m 32 64 128 256 512 1024

genome 2.23 1.69 1.48 1.42 1.50 1.46

protein 2.05 1.60 1.24 1.21 1.32 1.35

nat.lang. 2.15 1.52 1.37 1.36 1.39 1.34

(B) m 32 64 128 256 512 1024

genome 3.43 2.87 2.90 2.89 2.89 2.97

protein 2.09 1.55 1.54 1.61 1.57 1.55

nat.lang. 2.88 2.24 2.22 2.19 2.20 2.28

(C) m 32 64 128 256 512 1024

genome 8.30 8.44 8.80 8.54 8.60 8.06

protein 2.19 2.18 2.22 2.19 2.18 2.11

nat.lang. 4.13 4.09 4.28 4.36 4.22 4.03

(D) m 32 64 128 256 512 1024

genome 19.05 19.12 16.91 16.54 14.94 15.90

protein 2.01 1.94 1.92 1.81 1.78 1.83

nat.lang. 7.55 7.43 7.21 7.26 7.19 7.38

Table 6. The speed ups obtained via MPSSEFq algorithms compared with the non
SSE implementation of the same algorithm. Results on sets of 10 (A), 100 (B), 1.000
(C) and 10.000 (D) patterns.

Table 5 summarizes the speed up ratios achieved via the new algorithms
(larger the ratio, better the result). As can be viewed from that table, the newly
proposed solutions are in general faster then the competitors in orders of mag-
nitude. Notice that the gain in speed becomes more and more significant with
the increasing size of the patterns sets.

To observe the gain we obtain by using the SSE instructions, we have also
implemented the MPSSEFq algorithm without using the SSE intrinsics. The
comparisons of the SSE implementation versus non-SSE version is given in Table
6. The table shows that the gain obtained by vectorization decreases with the
length of the patterns and increases with the size of the pattern sets. Hence, on
larger sequences vectorization becomes more influential.

6 Conclusions

This study introduced a filter based algorithm for the multiple string matching
problem, designed for long patterns, and which benefits from computers intrinsic
SIMD instructions. The best and worst case time complexities of the algorithm
are O(n/m) and O(nm), respectively.

Considering the orders of magnitude performance gain reported with the
experimental benchmarks, the presented algorithm becomes a strong alternative
for multiple exact matching of long patterns The gain obtained in speed via
MPSSEF becomes much more significant with the increasing set sizes. Hence,
considering the fact that the number of malicious patterns in intrusion detection
systems or anti-virus software is ever growing as well as the reads produced by
next-generation sequencing platforms, proposed algorithm is supposed to serve a
good basis for massive multiple long pattern search applications on these areas.

The gain obtained via using the SSE technology might be more influential in
parallel to the advancement of the single-instruction-multiple-data instructions.
Although we have not tested MPSSEF on AVX technology, where there exists
registers of size 256 bits, it is expected to have a similar speed-up on patterns
larger than 64 symbols with the same algorithms.

11



References

1. A. V. Aho and M. J. Corasick. Efficient string matching: an aid to bibliographic
search. Commun. ACM, 18(6):333–340, 1975.

2. R. Baeza-Yates and G.H. Gonnet. A new approach to text searching. Communi-
cations of the ACM, 35(10):74–82, 1992.

3. O. Ben-Kiki, P. Bille, D. Breslauer, L. Gasieniec, R. Grossi, and O. Weimann.
Optimal packed string matching. In IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS 2011), vol. 13,
423–432, 2011.

4. D. Cantone, S. Faro, and E. Giaquinta. A Compact Representation of Nondeter-
ministic (Suffix) Automata for the Bit-Parallel Approach. Combinatorial Pattern
Matching, 288–298, 2010.

5. D. Cantone, S. Faro, and E. Giaquinta. On the bit-parallel simulation of the
nondeterministic aho-corasick and suffix automata for a set of patterns. J. Discrete
Algorithms, 11:25–36, 2012.

6. M. Crochemore and W. Rytter. Text algorithms. Oxford University Press, 1994.
7. S. Faro and T. Lecroq. Efficient variants of the backward-oracle-matching algo-

rithm. Int. J. Found. Comput. Sci., 20(6):967–984, 2009.
8. S. Faro and T. Lecroq. The exact string matching problem: a comprehensive

experimental evaluation. Arxiv preprint arXiv:1012.2547, 2010.
9. S. Faro and T. Lecroq. Smart: a string matching algorithm research tool. Univ. of

Catania and Univ. of Rouen, 2011. http://www.dmi.unict.it/~faro/smart/.
10. S. Faro and T. Lecroq. The exact online string matching problem: a review of the

most recent results. ACM Computing Surveys, to appear.
11. D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt. Fast pattern matching in strings.

SIAM J. Comput., 6(1):323–350, 1977.
12. M.O. Külekci. Filter based fast matching of long patterns by using SIMD instruc-

tions. In Proc. of the Prague Stringology Conference, pages 118–128, 2009.
13. M.O. Külekci. Blim: A new bit-parallel pattern matching algorithm overcoming

computer word size limitation. Mathematics in Comp. Science, 3(4):407–420, 2010.
14. G. Navarro and M. Raffinot. A bit-parallel approach to suffix automata: Fast

extended string matching. In Comb. Pattern Matching, pages 14–33. 1998.
15. G. Navarro and M. Raffinot. Fast and flexible string matching by combining bit-

parallelism and suffix automata. ACM J. Experimental Algorithmics, 5:4, 2000.
16. G. Navarro and M. Raffinot. Flexible pattern matching in strings - practical on-line

search algorithms for texts and biological sequences. Cambridge Univ. Press, 2002.
17. Gonzalo Navarro and Kimmo Fredriksson. Average complexity of exact and ap-

proximate multiple string matching. Theor. Comput. Sci., 321(2-3):283–290, 2004.
18. E. Rivals, L. Salmela, P. Kiiskinen, P. Kalsi, and J. Tarhio. Mpscan: Fast locali-

sation of multiple reads in genomes. In Proc. of WABI, pages 246–260, 2009.
19. S. Wu and U. Manber. Agrep – a fast approximate pattern-matching tool. In Proc.

of USENIX Winter 1992 Technical Conference, pages 153–162,1992.
20. S. Wu and U. Manber. A fast algorithm for multi-pattern searching. Report

TR-94-17, Dep. of Computer Science, University of Arizona, Tucson, AZ, 1994.
21. Sun Wu and Udi Manber. Fast text searching: allowing errors. Commun. ACM,

35(10):83–91, 1992.
22. S. Gog, K. Karhu, J. Krkkinen, V. Mkinen and N. Vlimki. Multi-Pattern Matching

with Bidirectional Indexes. to appear in Proceedings of COCOON’12.
23. L. Salmela, J. Tarhio, J. Kyotojoki. Multi–pattern string matching with q–grams.

ACM J. Experimental Algorithmics, 11, 2006.

12


