
A Fast Suffix Automata Based Algorithm
for Exact Online String Matching

Simone Faro† and Thierry Lecroq‡

†Università di Catania, Viale A.Doria n.6, 95125 Catania, Italy
‡Université de Rouen, LITIS EA 4108, 76821 Mont-Saint-Aignan Cedex, France

faro@dmi.unict.it, thierry.lecroq@univ-rouen.fr

Abstract. Searching for all occurrences of a pattern in a text is a fun-
damental problem in computer science with applications in many other
fields, like natural language processing, information retrieval and com-
putational biology. Automata play a very important role in the design of
efficient solutions for the exact string matching problem. In this paper we
propose a new very simple solution which turns out to be very efficient in
practical cases. It is based on a suitable factorization of the pattern and
on a straightforward and light encoding of the suffix automaton. It turns
out that on average the new technique leads to longer shift than that
proposed by other known solutions which make use of suffix automata.

1 Introduction

The string matching problem consists in finding all the occurrences of a pattern
P of length m in a text T of length n, both defined over an alphabet Σ of size σ.
Automata play a very important role in the design of efficient string matching
algorithms. For instance, the Knuth-Morris-Pratt algorithm [6] (KMP) was the
first linear-time solution, whereas the Backward-DAWG-Matching algorithm [3]
(BDM) reached the optimal O(n logσ(m)/m) lower bound time complexity on
the average. Both the KMP and the BDM algorithms are based on finite au-
tomata; in particular, they respectively simulate a deterministic automaton for
the language Σ∗P and the deterministic suffix automaton of the reverse of P .

The efficiency of string matching algorithms depends on the underlying au-
tomaton used for recognizing the pattern P and on the encoding used for simu-
lating it. The efficient simulation of nondeterministic automata can be performed
by using the bit parallelism technique [1]. For instance the Shift-Or algorithm,
presented in [1], simulates the nondeterministic version of the KMP automa-
ton while a very fast BDM-like algorithm, (BNDM), based on the bit-parallel
simulation of the nondeterministic suffix automaton, was presented in [8].

Specifically the bit-parallelism technique takes advantage of the intrinsic par-
allelism of the bitwise operations inside a computer word, allowing to cut down
the number of operations that an algorithm performs by a factor up to w, where
w is the number of bits in the computer word. However the correspondent encod-
ing requires one bit per pattern symbol, for a total of dm/ωe computer words.

Thus, as long as a pattern fits in a computer word, bit-parallel algorithms are
extremely fast, otherwise their performances degrades considerably as dm/ωe
grows. Though there are a few techniques [9, 2, 4] to maintain good performance
in the case of long patterns, such limitation is intrinsic.

In this paper we present a new algorithm based on the efficient simulation of
a suffix automaton constructed on a substring of the pattern extracted after a
suitable factorization. The new algorithm is based on a simple encoding of the
underlying automaton and turns out to be very fast in most practical cases, as
we show in our experimental results.

The paper is organized as follows. In Section 2 we briefly introduce the basic
notions which we use along the paper. In Section 3 we review the previous
results known in literature based on the simulation of the suffix automaton of
the searched pattern. Then in Section 4 we present the new algorithm and some
efficient variants of it. In Section 5 we compare the newly presented solutions
with the suffix automata based algorithms known in literature. We draw our
conclusions in Section 6.

2 Basic notions and definitions

Given a finite alphabet Σ, we denote by Σm, with m ≥ 0, the set of strings
of length m over Σ and put Σ∗ =

⋃
m∈NΣ

m. We represent a string P ∈ Σm,
also called an m-gram, as an array P [0 . .m − 1] of characters of Σ and write
|P | = m (in particular, for m = 0 we obtain the empty string ε). Thus, P [i] is
the (i + 1)-st character of P , for 0 6 i < m, and P [i . . j] is the substring of P
contained between its (i+ 1)-st and the (j+ 1)-st characters, for 0 6 i 6 j < m.
For any two strings P and P ′, we say that P ′ is a suffix of P if P ′ = P [i . .m−1],
for some 0 6 i < m, and write Suff (P) for the set of all suffixes of P . Similarly,
P ′ is a prefix of P if P ′ = P [0 . . i], for some 0 6 i < m. In addition, we write
P · P ′, or more simply PP ′, for the concatenation of P and P ′, and P r for the
reverse of the string P , i.e. P r = P [m− 1]P [m− 2] · · ·P [0].

For a string P ∈ Σm, the suffix automaton of P is an automaton which
recognizes the language Suff (P) of the suffixes of P .

Finally, we recall the notation of some bitwise infix operators on computer
words, namely the bitwise and “&”, the bitwise or “|”, the left shift “�”
operator (which shifts to the left its first argument by a number of bits equal to
its second argument), and the unary bitwise not operator “∼”.

3 Previous Efficient Suffix Automaton Based Solutions

In this section we present the known solutions for the online string matching
problem which make use of the suffix automaton for searching for all occurrences
of the pattern. Most of them are filtering based solutions, thus they use the suffix
automaton for finding candidate occurrences of the pattern and then perform
an additional verification phase based on a naive algorithm.

The Backward DAWG Matching algorithm.

One of the first application of the suffix automaton to get optimal pattern match-
ing algorithms on the average was presented in [3]. The algorithm which makes
use of the suffix automaton of the reverse pattern is called Backward-DAWG-
Matching algorithm (BDM). Such algorithm moves a window of size m on the
text. For each new position of the window, the automaton of the reverse of P
is used to search for a factor of P from the right to the left of the window. The
basic idea of the BDM algorithm is that if the backward search failed on a letter
c after the reading of a word u then cu is not a factor of p and moving the be-
ginning of the window just after c is secure. If a suffix of length m is recognized
then an occurrence of the pattern was found.

The Backward Nondeterministic DAWG Matching algorithm.

The BNDM algorithm [8] simulates the suffix automaton for P r with the bit-
parallelism technique, for a given string P of length m. The bit-parallel repre-
sentation uses an array B of |Σ| bit-vectors, each of size m, where the i-th bit
of B[c] is set iff P [i] = c, for c ∈ Σ, 0 6 i < m. Automaton configurations are
then encoded as a bit-vector D of m bits, where each bit corresponds to a state
of the suffix automaton (the initial state does not need to be represented, as it
is always active). In this context the i-th bit of D is set iff the corresponding
state is active. D is initialized to 1m and the first transition on character c is
implemented as D ← (D & B[c]). Any subsequent transition on character c can
be implemented as D ← ((D � 1) & B[c]) .

The BNDM algorithm works by shifting a window of length m over the text.
Specifically, for each window alignment, it searches the pattern by scanning the
current window backwards and updating the automaton configuration accord-
ingly. Each time a suffix of P r (i.e., a prefix of P) is found, namely when prior
to the left shift the m-th bit of D&B[c] is set, the window position is recorded.
A search ends when either D becomes zero (i.e., when no further prefixes of P
can be found) or the algorithm has performed m iterations (i.e., when a match
has been found). The window is then shifted to the start position of the longest
recognized proper prefix.

When the pattern size m is larger than ω, the configuration bit-vector and
all auxiliary bit-vectors need to be split over dm/ωe multiple words. For this
reason the performance of the BNDM algorithm degrades considerably as dm/ωe
grows. A common approach to overcome this problem consists in constructing
an automaton for a substring of the pattern fitting in a single computer word,
to filter possible candidate occurrences of the pattern. When an occurrence of
the selected substring is found, a subsequent naive verification phase allows to
establish whether this belongs to an occurrence of the whole pattern.

However, besides the costs of the additional verification phase, a drawback of
this approach is that, in the case of the BNDM algorithm, the maximum possible
shift length cannot exceed ω, which could be much smaller than m.

The Long BNDM algorithm.

Peltola and Tarhio presented in [9] an efficient approach for simulating the suffix
automaton using bit-parallelism in the case of long patterns. Specifically the al-
gorithm (called LBNDM) works by partitioning the pattern in bm/kc consecutive
substrings, each consisting in k = b(m− 1)/ωc+ 1 characters. The m− kbm/kc
remaining characters are left to either end of the pattern. Then the algorithm
constructs a superimposed pattern P ′ of length bm/kc, where P ′[i] is a class of
characters including all characters in the i-th substring, for 0 ≤ i < bm/kc.

The idea is to search first the superimposed pattern in the text, so that only
every k-th character of the text is examined. This filtration phase is done with
the standard BNDM algorithm, where only the k-th characters of the text are
inspected. When an occurrence of the superimposed pattern is found the occur-
rence of the original pattern must be verified. The time for its verification phase
grows proportionally to m/ω, so there is a threshold after which the performance
of the algorithm degrades significantly.

The BNDM algorithm with Extended Shift.

Durian et al. presented in [4] another efficient algorithm for simulating the suffix
automaton in the case of long patterns. The algorithm is called BNDM with
eXtended Shift (BXS). The idea is to cut the pattern into dm/ωe consecutive
substrings of length w except for the rightmost piece which may be shorter.
Then the substrings are superimposed getting a superimposed pattern of length
ω. In each position of the superimposed pattern a character from any piece
(in corresponding position) is accepted. Then a modified version of BNDM is
used for searching consecutive occurrences of the superimposed pattern using
bit vectors of length ω but still shifting the pattern by up to m positions. The
main modification in the automaton simulation consists in moving the rightmost
bit, when set, to the first position of the bit array, thus simulating a circular
automaton. Like in the case of the LBNDM, algorithm the BXS algorithm works
as a filter algorithm, thus an additional verification phase is needed when a
candidate occurrence has been located.

The Factorized BNDM algorithm.

Cantone et al. presented in [2] an alternative technique, still suitable for bit-
parallelism, to encode the nondeterministic suffix automaton of a given string
in a more compact way. Their encoding is based on factorizations of strings in
which no character occurs more than once in any factor. It turns out that the
nondeterministic automaton can be encoded with k bits, where k is the size of
the factorization. Though in the worst case k = m, on the average k is much
smaller than m, making it possible to encode large automata in a single or
few computer words. As a consequence, their bit-parallel variant of the BNDM,
called Factorized BNDM algorithm (F-BNDM) based on such approach tends
to be faster in the case of sufficiently long patterns.

4 A New Fast Suffix Automaton Based Algorithm

The efficiency of suffix automata based algorithms for the exact string matching
problem resides in two main features of the underlying automaton: the efficiency
of the adopted encoding and the size of the automaton itself.

Regarding the first point it turns out that automata admitting simpler en-
coding turns out to be more efficient in practice. This is the case, for instance,
of the automata which admit a bit parallel encoding. Moreover longer automata
lead to larger shifts during the searching phase when a backward scan of the
window is performed.

In this section we present a new algorithm for the online exact string match-
ing problem based on the simulation of a suffix automaton constructed on the
pattern P . The basic idea behind the new algorithm is straightforward but ef-
ficient. It consists in constructing the suffix automaton of a substring of the
pattern in which each character is repeated at most once. This leads to a simple
encoding and, by convenient alphabet transformations, to quite long automata.

The resulting algorithm is named Backward-SNR-DAWG-Matching (BSDM),
where snr is the acronym of substring with no repetitions. In what follows we
describe separately the preprocessing and the searching phase of the algorithm.

The Preprocessing Phase

Given a pattern P , of length m, over an alphabet Σ of size σ, we say that
a substring S = P [i . . j] of P is a substring with no repetitions (snr) if any
character c ∈ Σ appears at most once in S. It turns out trivially that |S| ≤
min{σ,m}. Moreover an snr admits a suffix automaton where do not exist two
states having incoming transitions labeled with the same character.

The preprocessing phase of the BSDM algorithm consists in finding the max-
imal snr of the pattern, i.e. an snr with the maximal length. In particular it
finds a pair of integers value (s, `), where 0 ≤ s < m is the starting position of
the maximal snr of P , and 1 ≤ ` ≤ m− s is the length of such a substring.

For instance, given the pattern P = abcabdcbabd, we have that abc, abdc,
cba are all snr of P . The substring abdc, of length 4, is a maximal snr of P .

In many practical cases the length of the maximal snr is not large enough
if compared with the size of the pattern. This happens especially for patterns
over small alphabets, as in the case of genome sequences, or for patterns with
characters occurring many times, as in the case of a natural language text.

In order to allow longer snr it is convenient to use a condensed alphabet
whose characters are obtained by combining groups of q characters, for a fixed
value q. A hash function hash : Σq ← {0, . . . ,max − 1} can be used for com-
bining the group of characters, for a fixed constant value max. Thus a new
condensed pattern Pq of length m− q + 1, over the alphabet {0, . . . ,max− 1},
is obtained from P . Specifically we have Pq[i . . j] = hash(P [i] · · ·P [i + q −
1]) · · ·hash(P [j] · · ·P [j + q− 1]) for 0 ≤ i, j ≤ m− q, where Pq = Pq[0 . .m− q].
The maximal snr is then computed on Pq to get a longer suffix automaton.

q/m 2 4 8 16 32 64 128 256 512 1024 2048 4096

1 1.72 2.62 3.20 3.64 3.89 3.99 4.00 4.00 4.00 4.00 4.00 4.00
2 1.00 2.86 5.45 7.61 9.19 10.41 11.23 11.97 12.64 13.09 13.21 13.27
4 - 1.00 4.94 12.33 22.91 32.75 39.89 45.12 50.84 54.29 57.17 59.82
6 - - 3.00 10.81 24.56 42.19 55.69 66.31 74.35 82.48 88.50 97.82
8 - - 1.00 8.98 24.50 51.55 88.03 116.33 140.82 163.20 175.24 183.42

q/m 2 4 8 16 32 64 128 256 512 1024 2048 4096

1 1.91 3.46 5.43 6.98 8.20 9.27 10.08 10.95 11.70 12.27 12.91 13.69
2 1.00 2.96 6.53 12.03 17.28 21.04 24.24 27.32 30.02 32.30 34.84 36.61
4 - 1.00 4.99 12.84 27.29 49.85 71.44 88.44 99.13 111.73 125.03 132.34
6 - - 2.99 10.85 25.03 45.34 62.62 73.88 82.87 90.78 99.09 106.52
8 - - 1.00 8.99 24.62 53.25 92.54 126.52 152.86 172.15 195.92 217.41

q/m 2 4 8 16 32 64 128 256 512 1024 2048 4096

1 1.99 3.81 6.25 7.83 8.96 9.83 10.46 11.07 11.51 12.18 12.91 14.42
2 1.00 2.99 6.84 12.98 19.01 23.30 26.77 29.68 32.79 35.38 37.80 40.03
4 - 1.00 5.00 12.94 26.86 43.01 55.50 64.67 72.94 79.03 87.22 97.85
6 - - 3.00 10.99 26.42 50.79 73.93 92.90 104.13 115.86 132.07 148.79
8 - - 1.00 9.00 24.83 53.98 96.14 128.96 152.85 175.50 189.52 203.14

Table 1. The average length of the maximal snr in patterns randomly extracted
from a genome sequence (on top), a protein sequence (in the middle) and a natural
language text (on bottom). The snr have been computed using condensed alphabets
on q characters, where q ranges from 1 to 8.

For instance if q = 3 the pattern P = abcabdcb is condensed in a new pattern
P3 = hash(abc) · hash(bca) · hash(cab) · hash(abd) · hash(bdc) · hash(dcb).

The size max of the new condensed alphabet depends on the available mem-
ory and on the size of the original alphabet Σ. An efficient method for computing
a condensed alphabet was introduced by Wu and Manber [10], and then adopted
also in [7]. It computes the shift value by using a shift-and-addition procedure
and in particular hash(c1, c2, . . . , cq) =

(∑q
i=1(ci � shq−i)

)
mod max where

ci ∈ Σ for i = 1, . . . , q. The value of the shift sh depends on max and q.
Table 1 shows the average length of the maximal snr in patterns randomly

extracted from a genome sequence, a protein sequence and a natural language
text, for different values of q and m, and with max = 216. When 1 ≤ q ≤ 4 we
use the value sh = 2 for computing the hash value, while we use sh = 1 when
q > 4. It turns out that the length of the maximal snr, though quite less than m
in most cases, is quite larger than the size of a computer word (which typically
is 32 or 64). This leads to larger shift in a suffix automata based algorithm.

The procedure which computes the maximal snr of P using a condensed
alphabet is shown in Fig. 1. The procedure iterates two indices, i and j along
the pattern, starting from the leftmost character. At each iteration the value
of i is incremented by one position, and the value of j is incremented in order
to make the substring Pq[j . . i] an snr of Pq. At the end of each iteration, if
the substring Pq[j . . i] is longer than the temporary maximal snr found in the
previous iterations, then the values of s and ` are updated accordingly.

The time complexity of the resulting procedure is O(m) while the space
required is O(max).

Hash(P, i, q, b)
1. c← P [i]
2. for j ← i+ 1 to i+ q − 1 do
3. c← (c� b) + P [j]
4. return c

MaxSnr(P,m, q, b)
1. for c← 0 to Max− 1 do δ(c)← False
2. s← `← 0
3. j ← 0
4. for i← 0 to m− q do
5. c← Hash(P, i, q, b)
6. if δ(c) then
7. d← Hash(P, j, q, b)
8. while d 6= c do
9. δ(d)← False

10. j ← j + 1
11. d← Hash(P, j, q, b)
12. δ(d)← False
13. j ← j + 1
14. δ(c)← True
15. if ` < i− j + 1 then
16. `← i− j + 1
17. s← j
18. return (s, `)

Positions(P, s, `, q, b)
1. for c← 0 to Max− 1 do pos(c) = −1
2. for i← 0 to `− 1 do
3. c← Hash(P, s+ i, q, b)
4. pos(c)← i
5. return pos

BSDM(P,m, T, n, q, b)
1. (s, l)← MaxSnr(P,m, q, b)
2. pos← Positions(P, s, `, q, b)
3. j ← `− 1
4. r ← s+ `
5. while j < n do
6. c← Hash(T, j, q, b)
7. i← pos(c)
8. if i ≥ 0 then
9. k ← 1

10. while k ≤ i and P [s+ i− k] = T [j − k] do
11. k ← k + 1
12. if k > i then
13. if k = ` then
14. if P = T [j − r + 1 . . j − r +m]
15. then output (j − s− `+ 1)
16. else j ← j − k
17. j ← j + `

Fig. 1. The pseudocode of the algorithm BSDM and its auxiliary procedures. The input
parameters q and b represent, respectively, the size of the group of characters used in
the condensed alphabet and the value sh used for computing the hash function.

The Searching Phase

Let P be a pattern of length m over an alphabet Σ of size σ, and let Pq be the
corresponding pattern, of length m−q+1, obtained from P by using a condensed
alphabet. Let s and ` be, respectively, the starting position and the length of
the maximal snr in the Pq. During the searching phase the BSDM algorithm
works using a filtering method. Specifically it first searches for all occurrences
of the substring Pq[s . . s + ` − 1] in the text. For this purpose the text is also
scanned by using a condensed alphabet. When an occurrence is found, ending
at position j of the text, the algorithm naively checks for the whole occurrence
of the pattern, i.e. if P = T [j − s− `+ 1 . . j − s− `+m].

A function pos : {0, . . . ,max−1} → {0, . . . , `−1} is defined for all characters
in the condensed alphabet. In particular for each 0 6 c < max the value of pos(c)
is defined as the relative position in Pq[s . . s+`−1] where the character c appears,
if such position exists. Otherwise pos(c) is set to −1. More formally pos(c) = i
if there exists i < ` such that Pq[s+ i] = c and −1 otherwise, for 0 6 c < max.
Observe that if position i exists such that i < ` and Pq[s + i] = c, then it is
unique, since the substring Pq[s . . s + ` − 1] has no repetitions of characters.
The function pos is computed in O(m) time and O(max) space by using the
procedure Position shown in Fig. 1.

The pos function defined above is then used during the searching phase for
simulating the suffix automaton of the maximal snr of the pattern. Observe that,

since there is no repetition of characters, at most a single state could be active
at any time. Thus the configuration of the suffix automaton can be encoded by
using a single integer value of dlog `e bits, which simply indicates the active state
of the automaton, if any. Otherwise it is set to −1.

The algorithm works by sliding a window on length `+ q− 1 along the text.
At each attempt a condensed character c is computed from the rightmost q char-
acters of the window. If c is not present in the maximal snr of the pattern, i.e.
if pos(c) = −1, then the window is advanced ` positions to the right. Otherwise
(if pos(c) > 0) the position i where character c appears in the maximal snr is
computed by setting i = pos(c). Then the text and the pattern are compared,
character by character, from positions s+ i and j − s− `+ i, respectively, until
a mismatch occurs or until position s in the pattern is passed.

If a mismatch occurs, no prefix of the substring has been recognized and the
window is simply advanced ` positions to the right.

Otherwise, if position s in the pattern is passed, then a prefix of the substring
has been recognized. If we read exactly ` characters in T then an occurrence of
the substring has been found and a naive verification follows in order to check the
occurrence of the whole pattern. If we read less than ` characters we recognized a
prefix of the substring and the window is advanced in order to align he character
of position s in the pattern with the starting position of the recognized prefix
in the text. The searching phase of the algorithm is shown in Fig. 1. It has a
O(nm) worst case time complexity and requires O(max) space.

5 Experimental results

In this section we briefly present experimental evaluations in order to under-
stand the performances of the newly presented algorithm and to compare it
against the best on suffix (factor) automata based string matching algorithms. In
particular we tested the following algorithms: the Backward-DAWG-Matching
algorithm [3] (BDM); the Backward-Nondeterministic-DAWG-Matching algo-
rithm [8] (BNDM); the Simplified version of the BNDM algorithm [9] (SBNDM);
the BNDM for algorithm long patterns [9] (LBNDM); the Factorized BNDM al-
gorithm [2] (F-BNDM); the BNDM algorithm with Extended Shift [4] (BXS);
and the new Backward-SNR-DAWG-Matching algorithm using condensed alpha-
bets with groups of q characters, with 1 ≤ q ≤ 8 (BSDMq)

All the algorithms listed above could be enhanced by using fast loops, q-grams
and other efficient techniques. However this type of code tuning goes beyond the
scope of this paper. Thus we tested only the original versions of the algorithms.

All algorithms have been implemented in the C programming language and
have been tested using the Smart tool [5]. The experiments were executed locally
on an MacBook Pro with 4 Cores, a 2 GHz Intel Core i7 processor, 4 GB RAM
1333 MHz DDR3, 256 KB of L2 Cache and 6 MB of Cache L3. Algorithms have
been compared in terms of running times, including any preprocessing time.

For the evaluation we use a genome sequence, a protein sequence and a
natural language text (English language), all sequences of 4MB. The sequences

Experimental results on a genome sequence
m 2 4 8 16 32 64 128 256 512 1024 2048 4096

BDM 21.04 14.66 9.90 7.40 5.94 5.15 4.79 4.68 4.90 5.42 7.22 10.59
BNDM 19.52 12.56 8.92 6.72 5.50 5.55 5.51 5.47 5.58 5.49 5.50 5.49
SBNDM 12.25 9.13 7.66 6.27 5.14 5.14 5.12 5.13 5.12 5.13 5.13 5.14
BXS 19.57 13.88 9.27 6.88 5.47 5.15 4.99 5.52 523.2 - - -
F-BNDM 15.49 10.74 8.71 7.09 5.78 5.10 5.03 5.03 5.02 5.03 5.05 5.05
LBNDM 27.62 15.24 9.79 7.28 5.80 5.38 5.36 8.45 26.93 25.28 22.50 20.67
BSDM 20.94 17.49 14.42 13.05 11.99 11.52 11.55 11.39 11.42 11.38 11.46 11.50

BSDM2 11.43 9.26 8.66 8.31 7.82 7.44 7.15 6.89 6.60 6.51 6.37 6.24
BSDM3 - 7.44 5.92 5.57 5.43 5.38 5.33 5.31 5.28 5.30 5.28 5.28
BSDM4 - 9.67 5.61 4.99 4.79 4.73 4.66 4.64 4.63 4.63 4.66 4.66
BSDM5 - - 5.99 5.00 4.77 4.66 4.61 4.58 4.57 4.56 4.58 4.58
BSDM6 - - 6.86 5.09 4.69 4.58 4.53 4.49 4.50 4.47 4.50 4.50
BSDM7 - - 8.81 5.25 4.71 4.55 4.51 4.47 4.45 4.47 4.47 4.49
BSDM8 - - 14.88 5.57 4.80 4.56 4.51 4.50 4.48 4.48 4.49 4.50

Experimental results on a protein sequence
m 2 4 8 16 32 64 128 256 512 1024 2048 4096

BDM 9.82 8.20 7.05 5.80 4.91 4.59 4.53 4.57 4.73 5.30 7.14 10.60
BNDM 9.27 7.67 6.74 5.61 4.81 4.83 4.80 4.80 4.81 4.80 4.82 4.83
SBNDM 9.25 5.93 4.96 4.59 4.41 4.57 4.57 4.57 4.58 4.57 4.62 4.58
BXS 8.41 7.19 6.41 5.45 4.69 4.53 4.39 4.29 4.27 4.17 4.28 105.3
F-BNDM 11.94 8.06 6.22 5.32 4.91 4.79 4.63 4.64 4.62 4.65 4.64 4.65
LBNDM 19.66 12.60 8.84 6.51 5.79 4.88 4.54 4.40 4.34 4.46 6.20 10.44
BSDM 8.37 7.58 7.15 6.89 6.63 6.37 6.14 5.92 5.71 5.56 5.47 5.37

BSDM2 8.29 6.04 5.44 5.15 5.07 4.99 4.99 4.97 4.95 4.93 4.94 4.95
BSDM3 - 6.58 5.25 4.85 4.71 4.64 4.62 4.59 4.59 4.58 4.60 4.60
BSDM4 - 9.71 5.49 4.89 4.68 4.59 4.56 4.53 4.52 4.52 4.50 4.53
BSDM5 - - 6.04 5.07 4.79 4.68 4.65 4.61 4.61 4.61 4.62 4.64
BSDM6 - - 7.02 5.19 4.79 4.64 4.60 4.58 4.59 4.57 4.58 4.61
BSDM7 - - 9.02 5.38 4.82 4.64 4.62 4.58 4.58 4.60 4.58 4.59
BSDM8 - - 15.11 5.68 4.94 4.70 4.64 4.63 4.62 4.61 4.59 4.58

Experimental results on a natural language text
m 2 4 8 16 32 64 128 256 512 1024 2048 4096

BDM 10.50 9.27 7.89 6.29 5.33 4.93 4.73 4.99 4.98 5.51 7.34 10.82
BNDM 10.02 8.74 7.50 6.06 5.20 5.25 5.23 5.25 5.23 5.25 5.25 5.26
SBNDM 9.68 6.39 5.47 5.01 4.76 4.99 4.99 4.99 4.99 4.97 4.98 4.98
BXS 9.12 8.25 7.20 5.91 5.06 4.76 4.50 4.35 4.27 4.09 3.92 3.90
F-BNDM 12.36 8.45 6.64 5.75 5.30 5.04 4.72 4.67 4.66 4.67 4.67 4.67
LBNDM 20.36 13.38 9.38 6.83 5.56 4.99 4.63 4.44 4.35 4.38 4.62 5.69
BSDM 8.90 8.35 7.72 7.15 6.71 6.43 6.16 6.01 5.85 5.79 5.69 5.61

BSDM2 8.41 6.24 5.62 5.37 5.27 5.23 5.18 5.14 5.11 5.09 5.08 5.08
BSDM3 - 6.76 5.40 5.00 4.85 4.79 4.74 4.71 4.69 4.67 4.70 4.71
BSDM4 - 9.88 5.62 4.95 4.76 4.65 4.62 4.61 4.61 4.56 4.57 4.62
BSDM5 - - 6.02 5.00 4.75 4.65 4.62 4.59 4.59 4.55 4.60 4.63
BSDM6 - - 7.05 5.16 4.78 4.64 4.59 4.57 4.58 4.54 4.58 4.60
BSDM7 - - 9.26 5.41 4.84 4.66 4.60 4.56 4.59 4.56 4.57 4.58
BSDM8 - - 16.07 5.80 4.96 4.72 4.67 4.62 4.60 4.54 4.53 4.55

Table 2. Experimental results on a genome sequence (on top), a protein sequence (in
the middle) and natural language text (on bottom).

are provided by the Smart research tool. In all cases the patterns were randomly
extracted from the text and the value m was made ranging from 2 to 4096. For
each case we reported the mean over the running times of 500 runs.

Table 2 shows experimental results on the three different sequences. Running
times are expressed in thousands of seconds. Best times have been boldfaced and
underlined. It turns out that the BSDM algorithm is really competitive against
the most efficient algorithms which make use of suffix automata. The versions
based on condensed characters obtain in many cases the best results, especially
in the case of the genome sequence and of the natural language text. Otherwise
SBNDM and BXS obtain the best times for short and long patterns, respectively.

6 Conclusions and Future Works

We presented a new simple and efficient algorithm, named Backward-SNR-
DAWG-Matching, based on suffix automata. It uses a very simple encoding of
the automaton, consisting in a single integer value, but obtains larger shift on
average than that obtained by algorithms based on the bit parallel encoding.

In our future works we intend to tune the algorithm in order to make it
competitive with the most efficient algorithms in practical cases. This includes
the use of fast loops, q-grams and most efficient hash functions for implementing
the condensed alphabets. We would also investigate the possibility of tuning the
hash function in order to reflect only the size of the set of characters appearing
in the pattern. Another possible line for enhancing the performances of the
algorithm is to make it recognize factors instead of suffixes.

References

1. R. Baeza-Yates and G. H. Gonnet. A new approach to text searching. Commun.
ACM, 35(10):74–82, 1992.

2. D. Cantone, S. Faro, and E. Giaquinta. A compact representation of nondetermin-
istic (suffix) automata for the bit-parallel approach. In CPM, LNCS 6129, pages
288–298, 2010.

3. M. Crochemore and W. Rytter. Text algorithms. Oxford University Press, 1994.
4. B. Durian, H. Peltola, L. Salmela, and J. Tarhio. Bit-parallel search algorithms

for long patterns. In SEA, LNCS 6049, pages 129–140, 2010.
5. S. Faro and T. Lecroq. Smart: a string matching algorithm research tool. Univ. of

Catania and Univ. of Rouen, 2011. http://www.dmi.unict.it/~faro/smart/.
6. D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt. Fast pattern matching in strings.

SIAM J. Comput., 6(1):323–350, 1977.
7. T. Lecroq. Fast exact string matching algorithms. Inf. Process. Lett., 102(6):229–

235, 2007.
8. G. Navarro and M. Raffinot. A bit-parallel approach to suffix automata: Fast

extended string matching. In CPM, LNCS 1448, pages 14–33, 1998.
9. H. Peltola and J. Tarhio. Alternative algorithms for bit-parallel string matching.

In SPIRE, LNCS 2857, pages 80–94, 2003.
10. S. Wu and U. Manber. A fast algorithm for multi-pattern searching. Report

TR-94-17, Depart. of Computer Science, University of Arizona, Tucson, AZ, 1994.

