Fast-Search: a New Efficient Variant of the
Boyer-Moore String Matching Algorithm

Domenico Cantone and Simone Faro

Universita di Catania, Dipartimento di Matematica e Informatica
Viale Andrea Doria 6, [-95125 Catania, Italy
{cantone | faro}@dmi.unict.it

Abstract. We present a new variant of the Boyer-Moore string match-
ing algorithm which, though not linear, is very fast in practice.

We compare our algorithm with the Horspool, Quick Search, Tuned
Boyer-Moore, and Reverse Factor algorithms, which are among the fastest
string matching algorithms for practical uses. It turns out that our al-
gorithm achieve very good results in terms of both time efficiency and
number of character inspections, especially in the cases in which the pat-
terns are very short.

Key words: string matching, experimental algorithms, text processing.

1 Introduction

Given a text T and a pattern P over some alphabet X the string matching
problem consists in finding all occurrences of the pattern P in the text 7. It is
a very extensively studied problem in computer science, mainly due to its direct
applications to several areas such as text processing, information retrieval, and
computational biology.

A very comprehensive description of the existing string matching algorithms
and a fairly complete bibliography can be found respectively at the following
URLs

— http://www-igm.univ-mlv.fr/~lecroq/string/
— http:// liinwww.ira.uka.de/bibliography/Theory/tq.html.

We first introduce the notation and terminology used in the paper. We denote
the empty string by €. A string P of length m is represented as an array P[0..m—
1]. Thus, P[] will denote the (i 4+ 1)-st character of P, for ¢ =0,...,m — 1. For
0 < i< j < length(P), we denote by P[i..j] the substring of P contained between
the (¢ + 1)-st and the (j + 1)-st characters of P. Moreover, for any ¢ and j, we

put
Pli.j] = € ifi>j
= P[max(i,0), min(j, length(P) — 1)] otherwise .

If P and P’ are two strings, we write P’ 3 P to indicate that P’ is a suffix
of P, i.e., P = Pli.length(P) — 1], for some 0 < ¢ < length(P). Similarly we

write P/ C P to indicate that P’ is a prefix of P, i.e., P = P[0..i — 1], for some
0 < ¢ < length(P).

Let T be a text of length n and let P be a pattern of length m. If the character
P[0] is aligned with the character T7[s] of the text, so that the character P[] is
aligned with the character T[s+1¢], for i = 0,...,m — 1, we say that the pattern
P has shift s in T. In this case the substring T'[s..s +m — 1] is called the current
window of the text. If T[s..s +m — 1] = P, we say that the shift s is valid.

Most string matching algorithms have the following general structure:

Generic_String Matcher(T, P)
Precompute_Globals(P)
n = length(7")
m = length(P)
s=0
while s <n —m do
s = s + Shift _Increment(s, P,T)

where

— the procedure Precompute_Globals(P) computes useful mappings, in
the form of tables, which may be later accessed by the function
Shift_Increment(s, P, T);

— the function Shift_Increment(s, P,T) checks whether s is a valid shift and
computes a positive shift increment.

Observe that for the correctness of procedure Generic_String_-Matcher,
it 1s plainly necessary that the shift increment As computed by
Shift_Increment (s, P,T) is safe, namely no valid shift can belong to the interval
{s+1,...,s+ As—1}.

In the case of the naive string matching algorithm, for instance, the procedure
Precompute_Globals is just dropped and the function Shift_Increment(s, P,T)
always returns a unitary shift increment, after checking whether the current
shift is valid. The latter can be instantiated as follows:

Naive _Shift _Increment (s, P,T)
for ¢ = 0 to length(P) — 1 do
if P[i] # T'[s + ¢] then
return 1
print(s)
return 1

Therefore, in the worst case, the naive algorithm requires @ (mn) character com-
parisons.

Information gathered during the execution of the Shift_Increment(s, P,T)
function, in combination with the knowledge of P as suitably extracted by pro-
cedure Precompute_Globals(P), can yield shift increments larger than 1 and ulti-
mately lead to more efficient algorithms. Consider for instance the case in which

Shift_Increment (s, P, T) processes P from right to left and finds immediately a
mismatch between P[m — 1] and T[s + m — 1], where additionally the character
T[s+m — 1] does not occur in P in any other position; then the shift can safely
be incremented by m. In the best case, when the above case occurs repeatedly, it
can be verified that the text 7" does not contain any occurrence of P in sublinear
time O(n/m).

1.1 The Boyer-Moore Algorithm

The Boyer-Moore algorithm (cf. [BM77]) is a progenitor of several algorithmic
variants which aim at efficiently computing shift increments close to optimal.
Specifically, the Boyer-Moore algorithm can be characterized by the following
function BM _Shift_Increment(s, P,T) which, as in the previous example, scans
the pattern P from right to left. BM _Shift_Increment (s, P,T) computes the shift
increment as the maximum value suggested by the good suffiz rule and the bad
character rule below, via the functions gsp and bcp respectively, provided that
both of them are applicable.

BM _Shift _Increment(s, P,T)
for i = length(P) — 1 downto 0 do
if P[i] # T[s + ¢] then
return max(gsp (i), ¢ — bep(T[s +1]))
print(s)
return gsp(0)

If a mismatch occurs at position ¢ of the pattern P, while 1t is scanned from
right to left, the good suffix rule suggests to align the substring T[s+i+1...s+
m— 1] = Pli+ 1...m — 1] with its rightmost occurrence in P preceded by
a character different by P[i]. If such an occurrence does not exist, the good
suffix rule suggests a shift increment which allows to match the longest suffix of
Tls+i+1...s+m— 1] with a prefix of P.

More formally, if the first mismatch occurs at position ¢ of the pattern P,
the good suffix rule states that the shift can be safely incremented by gsp(i+1)
positions, where

gsp(j) =p.. min{0 <k <m|P[j—k.m—-k-1]3P
and (k< j—1 - P[j—1]# Pli—1-)} ,

for j = 0,1,...,m. (The situation in which an occurrence of the pattern P is
found can be regarded as a mismatch at position —1.)

The bad character rule states that if ¢ = T[s+1i] # P[i] is the first mismatch-
ing character, while scanning P and 7" from right to left with shift s, then P can
be safely shifted in such a way that its rightmost occurrence of ¢, if present, is
aligned with position (s + ¢) of T. In the case in which ¢ does not occur in P,
then P can be safely shifted just past position (s + ¢) of 7. More formally, the

shift increment suggested by the bad character rule is given by the expression
(i — bep(T[s +14])), where

bep(c) =p., max({0 < k < m|P[k] = c}U{-1}) ,

for ¢ € X, and where we recall that X is the alphabet of the pattern P and text
T'. Notice that there are situations in which the shift increment given by the bad
character rule can be negative.

It turns out that the functions gsp and bep can be computed during the pre-
processing phase in time O(m) and O(m+|X|), respectively, and that the overall
worst-case running time of the Boyer-Moore algorithm, as described above, is
linear (cf. [GO80]).

For the sake of completeness, we notice that originally the Boyer-Moore al-
gorithm made use of a good suffix rule based on the following simpler function

95p(j) =p., min{0 < k < m|P[j —k.m—k—1]23 P} ,

for 5 = 0,1,...,m, which led to a non-linear worst-case running time.

Several variants of the Boyer-Moore algorithm have been proposed over the
years. In particular, we mention Horspool, Quick Search, Tuned Boyer-Moore,
and the Reverse Factor algorithms, which are among the fastest variants in
practice (cf. [Hor80], [Sun90], [HS91], and [CCGT94], respectively). In Sect. 3,

we will compare them with our proposed variant of the Boyer-Moore algorithm.

1.2 The Horspool Algorithm

Horspool suggested a simplification to the original Boyer-Moore algorithm, defin-
ing a new variant which, though quadratic, performed better in practical cases
(cf. [Hor80]). He just dropped the good suffix rule and based the calculation
of the shift increments only on the following variation of the bad character
rule. Specifically, he observed that when the first mismatch between the window
T[s..s + m — 1] and the pattern P occurs at position 0 < ¢ < m and the right-
most occurrence of the character T[s 4] in P is at position j > 4, then the bad
character rule would shift the pattern backwards. Thus, he proposed to compute
the shift advancement in such a way that the rightmost character T[s + m — 1]
is aligned with its rightmost occurrence on P[0..m — 2], if present (notice that
the character P[m— 1] has been left out); otherwise the pattern is advanced just
past the window. This corresponds to advance the shift by hbep(T[s + m — 1])
positions, where

hbep(c) =p., min({l < k< m|Plm—1—kl=c}U{m}) .
It turns out that the resulting algorithm performs well in practice and

can be immediately translated into programming code (see Baeza-Yates and
Régnier [BYR92] for a simple implementation in the C programming language).

1.3 The Quick-Search Algorithm

The Quick-Search algorithm, presented in [Sun90], uses a modification of the
original heuristics of the Boyer-Moore algorithm, much along the same lines of
the Horspool algorithm. Specifically, it is based on the following observation:
when a mismatch character is encountered, the pattern is always shifted to the
right by at least one character, but never by more than m characters. Thus, the
character T[s + m] is always involved in testing for the next alignment. So, one
can apply the bad-character rule to T[s + m], rather than to the mismatching
character, obtaining larger shift advancements. This corresponds to advance the
shift by ¢bep(T[s + m]) positions, where

qbep(c) =p., min({0 < k <m|P[m—1]=c}U{m+1}) .

Experimental tests have shown that that the Quick-Search algorithm is very fast
especially for short patterns (cf. [Lec00]).

1.4 The Tuned Boyer-Moore Algorithm

The Tuned Boyer-Moore algorithm (cf. [HS91]) can be seen as an efficient im-
plementation of the Horspool algorithm. Again, let P be a pattern of length
m. Each iteration of the Tuned Boyer-Moore algorithm can be divided into two
phases: last character localization and matching phase. The first phase searches
for a match of P[m — 1], by applying rounds of three blind shifts (based on
the classical bad character rule) until needed. The matching phase tries then to
match the rest of the pattern P[0..m — 2] with the corresponding characters of
the text, proceeding from right to left. At the end of the matching phase, the
shift advancement is computed according to the Horspool bad character rule.
Moreover, in order to compute the last shifts correctly, the algorithm in the first
place adds m copies of P[m — 1] at the end of the text, as a sentinel.

The fact that the blind shifts require no checks is at the heart of the very good
practical behavior of the Tuned Boyer-Moore, despite its quadratic worst-case
time complexity (cf. [Lec00]).

1.5 The Reverse Factor Algorithm

Unlike the variants of the Boyer-Moore algorithm summarized above, the Reverse
Factor algorithm computes shifts which match prefixes of the pattern, rather
than suffixes. This is accomplished by means of the smallest suffix automaton
of the reverse of the pattern, while scanning the text and pattern from right to
left (for a complete description see [CCGT94]).

The Reverse Factor algorithm has a quadratic worst-case time complexity,
but it is very fast in practice (cf. [Lec00]). Moreover, it has been shown that on
the average it inspects O(nlog(m)/m) text characters, reaching the best bound
shown by Yao in 1979 (cf. [Yao79]).

2 Fast-Search: a New Efficient Variant of the Boyer-Moore
Algorithm

We present now a new efficient variant of the Boyer-Moore algorithm, called Fast-
Search, which will use the Fast_Search_Shift_Increment procedure to be given
below as shift increment function. As before, let P be a pattern of length m and
let T" be a text of length n over a finite alphabet X; also, let 0 < s < m — n be
a shift. The main observation upon which our Fast-Search algorithm is based is
the following:

the Horspool bad character rule leads to larger shift increments than
the good suffix rule if and only if a mismatch occurs immediately, while
comparing the pattern P with the window T[s..s +m — 1], namely when
Pim—=1]#T[s+m—1].

The above observation, which will be proved later in Sect. 2.1, suggests at
once that the following shift increment rule should lead to a faster algorithm
than the Horspool one:

to compute the shift increment use the Horspool bad character rule, if
a mismatch occurs during the first character comparison; otherwise use

the good suffix rule.

This translates into the following pseudo-code:

Fast_Search_Shift _Increment(s, P,T)
m = length(P)
for i = m — 1 downto 0 do
if P[i] # T[s + ¢] then
if i = m — 1 then
return hbep (T[s + m — 1])
else
return gsp (i)
print(s)
return gsp(0)

Notice that hbep(a) = bep(a), whenever @ # P[m — 1], so that the term
hbep(T[s +m — 1]) can be substituted by bep(T[s +m — 1]) in the above proce-
dure, as will be done in the efficient implementation of the Fast-Search algorithm
to be given in Sect. 2.2.

Experimental data which will be presented in Sect. 3 confirm that the Fast-
Search algorithm is faster than the Horspool algorithm. In fact, we will see that,
though not linear, Fast-Search compares well with the fastest string matching
algorithms, especially in the case of short patterns. We also notice that the
functions hbcp and gsp can be precomputed in time O(m) and O(m + |X]),
respectively, by Precompute_Globals(P).

2.1 The Horspool Bad Character Rule versus the Good Suffix Rule

We will show in Proposition 1 that the Horspool bad character rule wins against
the good suffix rule only when a mismatch is found during the first character
comparison. To this purpose we first prove the following technical lemma.

Lemma 1. Let P be a pattern of length m > 1 over an alphabet 3. Then the
following inequalities hold:

(a) gsp(m) < hbep(c), for c € Y\{P[m—1]};
(b) gsp(j) > hbep(Pim—1)), for j =0,1,...,m— 1.

Proof. Concerning (a), let ¢ € X'\ {P[m — 1]} and let k = hbep(c). If k = m,
then gsp(m) < hbep(c) follows at once. On the other hand, if k < m, then we
have P[m — 1 — k] = ¢, so that P[m — 1 — k] # P[m — 1], since by assumption
P[m — 1] # ¢ holds. Therefore gsp(m) < k = hbep(c), proving (a).

Next, let 0 < 7 < m and let 0 < k£ < m be such that

— Pl[j—k.m—k—12P, and
— P[j—1]# P[j — 1 — k], provided that k < j — 1,

If k¥ < m, then Pl[m — k — 1] = P[m — 1], and there-
< k. On the other hand, if & = m, then we plainly have
Thus, in any case, gsp(j) > hbep(P[m — 1]), proving (b).

|

so that gsp(j) < k.
fore hbep (P [— 1)
hbep(P[m —1]) < k.

Then we have:

Proposition 1. Let P and T be two nonempty strings over an alphabet X and
let m = |P|. Let us also assume that we are comparing P with the window
T[s..s+m— 1] of T with shift s, scanning P from right to left. Then

(a) if the first mismatch occurs at position (m — 1) of the pattern P, then
gsp(m) < hbep(T[s +m —1]);
(b) if the first mismatch occurs at position 0 < i < m — 1 of the pattern P, then
gsp(i+1) > hbep(T[s +m —1]);
(¢) if no mismatch occurs, then
gsp(0) > hbep(T[s+m —1]).

Proof. Let us first assume that P[m — 1] # T[s+ m — 1], i.e., the first mismatch
occurs at position (m—1) of the pattern P, while comparing P with T'[s..s+m—1]
from right to left. Then by Lemma 1(a) we have gsp(m) < hbep(T[s +m —1]),
yielding (a).

On the other hand, if P[m—1] = T[s+m— 1], i.e., the first mismatch occurs
at position 0 < ¢ < m — 1 or no mismatch occurs, then Lemma 1(b) implies
immediately (b) and (c). O

Fast-Search(P, T)

1. n = length(7T)

2. m = length(P)

3. T =T.P

4. bcp = precompute-bad-character(P)

5. gsp = precompute-good-suffix(P)

7. s=0

8. while bep(T'[s+m —1]) > 0do s = s+ bep(T'[s + m — 1])
9. while s < n —m do

10. j=m—2

11. while > 0 and P[j]=T"[s+ j]do j =5 —1

12. if 7 < 0 then print(s)

13. s=s+gsp(j+1)

14. while bep(T'[s+m —1]) > 0do s = s+ bep(T'[s + m — 1])

Fig. 1. The Fast-Search algorithm.

2.2 An Efficient Implementation

A more effective implementation of the Fast-Search algorithm can be obtained
much along the same lines of the Tuned Boyer-Moore algorithm. The main idea
consists in iterating the bad character rule until the last character P[m — 1] of
the pattern is matched correctly against the text, and then applying the good
suffix rule, at the end of the matching phase. More precisely, starting from a
shift position s, if we denote by j; the total shift advancement after the i-th
iteration of the bad character rule, then we have the following recurrence:

Ji=Jic1+bep(T[s+jici+m—1]) .

Therefore, starting from a given shift s, the bad character rule is applied k times
in row, where k = min{i | T[s + j; + m — 1] = P[m — 1]}, with a resulting shift
advancement of jg. At this point it is known that T'[s 4 jg +m — 1] = P[m — 1],
so that the subsequent matching phase can start with the (m — 2)-nd character
of the pattern.

As in the case of the Tuned Boyer-Moore algorithm, the Fast-Search algorithm
benefits from the introduction of an external sentinel, which allows to compute
correctly the last shifts with no extra checks. For this purpose, we have chosen
to add a copy of the pattern P at the end of the text 7', obtaining a new text
T'" = T.P. Plainly, all the valid shifts of P in 1" are the valid shifts s of P in 7"
such that s < n — m, where, as usual, n and m denote respectively the lengths
of T"and P.

The code of the Fast-Search algorithm is presented in Fig. 1.

3 Experimental Results

In this section we present experimental data which allow to compare the running
times and number of character inspections of the following string matching algo-

rithms in various conditions: Fast-Search (FS), Horspool (HOR), Quick-Search
(QS), Tuned Boyer-Moore (TBM), and Reverse Factor(RF).

All five algorithms have been implemented in the C programming language
and were used to search for the same strings in large fixed text buffers on a PC
with AMD Athlon processor of 1.19GHz. In particular, the algorithms have been
tested on three Rando problems, for ¢ = 2, 8,20, and on a natural language text

buffer.

A Rando problem consisted in searching a set of 200 random patterns over
an alphabet X of size o, for each assigned value of the pattern length, in a
20Mb random text over the same alphabet X'. We have performed our tests with
patterns of length 2,4,6,8,10,20,40,80, and 160.

The tests on a natural language text buffer have been performed on a 3.13Mb
file obtained from the WinEdt spelling dictionary by discarding non-alphabetic
characters. All words in the text buffer have been searched for.

In the following tables, running times are expressed in hundredths of seconds.
Concerning the number of character inspections, these have been obtained by
taking the average of the total number of times a text character is accessed,
either to perform a comparison with a pattern character, or to perform a shift,
or to compute a transition in an automaton, and dividing it by the total number
of characters in the text buffer.

Experimental results show that the Fast-Search algorithm obtains the best
runtime performances in most cases and, sporadically, it 1s second only to the
Tuned Boyer-Moore algorithm.

Concerning the number of text character inspections, it turns out that the
Fast-Search algorithm is quite close to the Reverse Factor algorithm, which gen-
erally shows the best behaviour. We notice, though, that in the case of very
short patterns the Fast-Search algorithm reaches the lowest number of character
accesses.

o=2 2 4 6 8 10 20 40 80 160
HOR| 46.05 44.75 44.77 45.12 44.83 42.10 41.23 40.83 42.13
QS [38.13 40.59 42.11 41.27 41.13 38.97 38.09 37.04 37.54
TBM|36.27 36.26 38.42 38.87 38.69 37.75 37.81 37.36 38.44
RF |268.38 197.88 149.83 120.14 100.02 60.37 37.91 28.40 22.63
FS |38.38 32.96 30.19 27.35 25.40 21.04 18.90 18.16 17.39

Running times for a Rand2 problem.

o=2 2 4 6 &8 10 20 40 80 160
HOR|1.83 1.72 1.66 1.66 1.64 1.59 1.64 1.61 1.68
QS [1.54 1.65 1.69 1.64 1.63 1.64 1.67 1.60 1.63
TBM|1.23 1.35 1.42 1.45 1.45 1.42 1.46 2.43 2.49
RF |1.43 1.06 .78 .62 .51 .29 .16 .09 .05
FS |1.00 .92 80 .70 .63 45 .34 .26 .22

Number of text character inspections for a Rand2 problem.

o=8 2 4 6 8 10 20 40 80 160
HOR|30.22 21.99 21.85 18.62 18.04 17.27 17.24 17.11 17.38
QS [22.41 20.43 19.48 17.63 17.41 16.93 16.86 16.82 16.94
TBM|23.14 19.51 18.95 17.34 17.07 16.79 16.78 16.73 16.97
RF |120.5 74.29 63.99 48.61 42.84 29.16 22.23 19.71 16.48
FS |22.06 19.51 18.77 17.11 16.96 16.65 16.64 16.54 16.47

Running times for a Rand8 problem.

o=38| 2 4 6 8 10 20 40 80 160
HOR|1.191 .680 .507 .422 .374 .294 .282 .275 .281
QS |.842 .575 .456 .393 .358 .291 .282 .278 .285
TBM| .663 .386 .291 .245 .218 .174 .168 .164 .167
RF | .674 .381 .278 .225 .191 .112 .063 .360 .020
FS 1.600 .348 .260 .217 .193 .150 .137 .126 .120

Number of text character inspections for a Rand8 problem.

o=20 2 4 6 8 10 20 40 80 160
HOR |24.51 18.56 17.03 16.39 16.01 15.19 14.78 14.84 14.98
QS |[19.16 17.16 16.19 15.77 15.51 14.93 14.70 14.67 14.69
TBM |19.12 16.68 15.80 15.48 15.25 14.79 14.64 14.57 14.79
RF (96.16 56.63 43.32 36.69 32.29 23.43 19.46 17.83 14.62
FS 119.11 16.67 15.78 15.43 15.26 14.74 14.58 14.55 14.51

Running times for a Rand20 problem.

o=20] 2 4 6 8 10 20 40 80 160
HOR [1.075 .566 .395 .311 .259 .161 .119 .106 .103
QS |.735 .463 .346 .282 .241 .156 .118 .107 .103
TBM | .563 .297 .208 .164 .137 .086 .064 .057 .055
RF |.565 .302 .214 .171 .143 .084 .049 .027 .014
FS].538 .284 .198 .156 .131 .082 .060 .054 .051

Number of text character inspections for a Rand20 problem.

NL 2 4 6 8 10 20 40 80 160
HOR|3.56 2.71 2.48 2.39 2.32 2.18 2.17 2.15 2.01
QS |2.77 2.48 2.38 2.33 2.23 2.19 2.16 2.14 1.99
TBM|2.81 2.47 2.32 2.27 2.23 2.21 2.15 2.19 1.91
RF |14.44 8.69 6.67 5.69 4.97 3.47 2.84 2.77 541
FS |2.85 2.39 2.27 2.27 2.20 2.15 2.13 2.12 1.93

Running times for a natural language problem.

NL 2 4 6 8 10 20 40 80 160
HOR|1.094 .590 .418 .337 .282 .172 .111 .077 .059
QS |.759 489 .375 .309 .261 .175 .125 .086 .069
TBM| .584 .318 .226 .182 .153 .096 .062 .044 .034
RF |.588 .321 .231 .185 .153 .084 .045 .024 .013
FS |.550 .299 .211 .171 .143 .087 .055 .038 .028

Number of text character inspections for a natural language problem.

4 Conclusion

We have presented a new efficient variant of the Boyer-Moore string matching
algorithm, named Fast-Search, based on the classical bad character and good
suffix rules to compute shift advancements, as other variations of the Boyer-
Moore algorithm.

Rather than computing the shift advancement as the larger of the values
suggested by the bad character and good suffix rules, our algorithm applies re-
peatedly the bad character rule until the last character of the pattern is matched
correctly, and then, at the end of each matching phase, it executes one applica-
tion of the good suffix rule.

It turns out that, though quadratic in the worst-case, the Fast-Search algo-
rithm is very fast in practice and compares well with other fast variants of the
Boyer-Moore algorithm, as the Horspool, Quick Search, Tuned Boyer-Moore,
and Reverse Factor algorithms, in terms of both running time and number of
character inspections.

References

[BM77] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Commun.
ACM, 20(10):762-772, 1977.

[BYR92] R. A. Baeza-Yates and M. Régnier. Average running time of the Boyer-
Moore-Horspool algorithm. Theor. Comput. Seci., 92(1):19-31, 1992.

[CCGT94] M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq,
W. Plandowski, and W. Rytter. Speeding up two string matching algo-
rithms. Algorithmica, 12(4/5):247-267, 1994.

[GO80] L. J. Guibas and A. M. Odiyzko. A new proof of the linearity of the Boyer-
Moore string searching algorithm. SIAM J. Comput., 9(4):672-682, 1980.

[Hor80] R. N. Horspool. Practical fast searching in strings. Softw. Pract. Ezp.,
10(6):501-506, 1980.

[HS91] A. Hume and D. M. Sunday. Fast string searching. Softw. Pract. Ezp.,
21(11):1221-1248, 1991.

[Lec00] T. Lecroq. New experimental results on exact string-matching. Rapport
LIFAR 2000.03, Université de Rouen, France, 2000.

[Sun90] D. M. Sunday. A very fast substring search algorithm. Commun. ACM,
33(8):132-142, 1990.

[Yao79] A. C. Yao. The complexity of pattern matching for a random string. STAM
J. Comput., 8(3):368-387, 1979.

