
Efficient Matching of Biological Sequences
Allowing for Non-Overlapping Inversions ?

Domenico Cantone, Salvatore Cristofaro, and Simone Faro

Università degli Studi di Catania, Dipartimento di Matematica e Informatica
Viale Andrea Doria 6, I-95125, Catania, Italy

{cantone, cristofaro, faro} @dmi.unict.it

Abstract. Inversions are a class of chromosomal mutations, widely re-
garded as one of the major mechanisms for reorganizing the genome.
In this paper we present a new algorithm for the approximate string
matching problem allowing for non-overlapping inversions which runs in
O(nm) worst-case time and O(m2)-space, for a character sequence of size
n and pattern of size m. This improves upon a previous O(nm2)-time
algorithm.

1 Introduction

Retrieving information and teasing out the meaning of biological sequences are
central problems in modern biology. Generally, basic biological information is
stored in strings of nucleic acids (DNA, RNA) or amino acids (proteins). Align-
ing sequences helps in revealing their shared characteristics, while matching se-
quences can infer useful information from them. With the availability of large
amounts of DNA data, matching of nucleotide sequences has become an impor-
tant application and there is an increasing demand for fast computer methods
for data analysis and retrieval.

Approximate string matching is a fundamental problem in text processing.
It consists in finding approximate matches of a pattern in a text. The precision
of a match is measured in terms of the sum of the costs of the edit operations
necessary to convert the string into an exact match.

Most classical models, as for instance the Levenshtein or Damerau edit dis-
tance, assume that changes between strings occur only locally (for an in-depth
survey on approximate string matching, see [7]). However, evidence shows that
large scale changes, like duplications, translocations, and inversions, are com-
mon events in genetic evolution [4]. For instance, chromosomal inversions are
rearrangements in which a segment of a chromosome is reversed end to end.
Notice that inversions do not involve any loss of genetic information, but simply
rearrange the linear gene sequence.

In this paper we are interested in the approximate string matching problem
allowing for non-overlapping inversions. Much work has been made for the closely

? This work has been partly supported by G.N.C.S., Istituto Nazionale di Alta Matem-
atica “Francesco Severi”.

related sequence alignment problem with inversions. Although the latter problem
does not have a known polynomial algorithm in its full generality, when restricted
to non-overlapping inversions it admits polynomial solutions. A first solution was
proposed by Schöniger and Waterman [8]. Their algorithm, based on dynamic
programming, runs in O(n2m2)-time and O(n2m2)-space on input sequences of
length n and m. Later, Gao et al. [2] developed a space-efficient variant which
requires only O(nm)-space (and still O(n2m2)-time). More recently, Vellozo et
al. [9] proposed a O(nm2)-time and O(nm)-space algorithm, within the more
general framework of an edit graph.

Although proposed for the sequence alignment problem, the algorithm by
Vellozo et al. could also be adapted to the approximate string matching problem
with non-overlapping inversions, yielding a O(nm3)-time and O(m2)-space solu-
tion to the latter problem. A more efficient solution, which runs in O(nm2)-time
and O(m2)-space, was presented by Cantone et al. [1]. They actually addressed
a slightly more general problem, allowing also for translocations of equal length
adjacent factors besides non-overlapping inversions. A very recent algorithm by
Grabowski et al. [5] solves the same matching problem, i.e., when translocations
and non-overlapping inversions are allowed, in O(nm2)-time and O(m)-space,
obtaining better performances in practical cases.

In this paper we present an algorithm for the approximate string matching
problem with non-overlapping inversions which runs in O(nm) worst-case time
and O(m2)-space.

The paper is organized as follows. In Section 2 we provide the basic termi-
nology and definitions. Next, in Section 3 we present a general O(nm2)-time
and O(m2)-space algorithm for the approximate matching problem with non-
overlapping inversions, based on the dynamic programming approach. Such algo-
rithm will then be refined in Section 4, yielding a O(nm)-time and O(m2)-space
algorithm which constitutes the main result of the paper. Finally we draw our
conclusions in Section 5.

2 Basic notions and properties

A string p of length m ≥ 0 is represented as a finite array p[0 ..m− 1]. In such a
case we also write |p| = m. In particular, for m = 0 we obtain the empty string,
denoted by ε. The concatenation of strings p and q is denoted as p.q or, more
simply, as pq. We denote with pR the reversal of p, i.e., string p written in reverse

order. Notice that |p| = |pR| and (pR)
R
= p. Moreover, for any two strings p and

q, we have that (p.q)
R
= (qR.pR).

Given a nonempty string p and an integer i, we denote by p[i] the (i + 1)st
symbol of p from left to right, if 0 ≤ i < |p|, otherwise we consider p[i] as
undefined.1 Likewise, we denote with p[i .. j] the substring of p contained between
the (i+ 1)st and the (j + 1)st symbol of p (both inclusive), for 0 ≤ i ≤ j < |p|.
Moreover, we put pj = p[0 .. j], for 0 ≤ j < |p|.
1 When p[i] is undefined, the condition p[i] = c, for any character symbol c, will be
regarded as false, whereas the condition p[i] 6= c will be regarded as true.

We say that p is a prefix (resp., suffix) of q, and write p v q (resp., p w q), if
there is a string s such that q = p.s (resp., q = s.p). A string p is a border of q if
both p v q and p w q hold. The set of the borders of p is denoted by borders(p).

For a set S of strings, we denote by ‖S‖ the collection of the lengths of the
strings belonging to S, i.e, ‖S‖ = {|p| : p ∈ S}.

For strings p and q, we denote by 〈p, q〉 the set of all suffixes s of p such that
sR is a suffix of q, i.e., 〈p, q〉 = {s : s w p and sR w q} .

The following lemma states useful properties of the set of borders of two
strings.

Lemma 1. For all strings p, q, v, w, and z, and every alphabet symbol c, the
following facts hold:

(a) if v, w ∈ 〈p, q〉, then either v ∈ borders(w) or w ∈ borders(v);
(b) if v, w ∈ 〈p, q〉 and |v| ≥ |w|, then w ∈ borders(v);
(c) if v ∈ 〈p, q〉 and w ∈ borders(v), then w ∈ 〈p, q〉;
(d) if z is the longest string belonging to 〈p, q〉, then 〈p, q〉 = borders(z);
(e) 〈p, q.c〉 = {c.s : s ∈ 〈p, q〉 and c.s w p} ∪ {ε};
(f) ‖〈p, q.c〉‖ = {`+ 1 : ` ∈ ‖〈p, q〉‖ and p[|p| − 1− `] = c} ∪ {0}.

Proof. First of all we notice that (b) and (f) are immediate consequences of (a)
and (e), respectively; similarly, (d) follows plainly from (b) and (c). Thus, we
only need to prove (a), (c), and (e).

We begin with (a). Let v, w ∈ 〈p, q〉. By the very definition of 〈p, q〉 we have

v w p , vR w q , w w p , and wR w q .

Without loss of generality, let us assume that |v| ≤ |w|. Then, from v w p and
w w p we have v w w; likewise, from vR w q and wR w q we have vR w wR. The
latter implies v v w, which, together the previously established relation v w w,
yields v ∈ borders(w), proving (a).

Concerning (c), let v ∈ 〈p, q〉 and w ∈ borders(v). Then we have v w p and
w w v, so that w w p. Likewise, we have vR w q and w v v. The latter is
equivalent to wR w vR, so that wR w q. From w w p and wR w q it follows that
w ∈ 〈p, q〉, proving (c).

Finally, we turn to the proof of (e). Let v ∈ 〈p, q.c〉, where c is a character.
Then v w p and vR w q.c . If v 6= ε, then v = c.s, for a string s such that s v qR.

But then s w (qR)
R
= q, which, together with s w p, implies

〈p, q.c〉 ⊆ {c.s : s ∈ 〈p, q〉 and c.s w p} ∪ {ε} .

To show the converse inclusion, we observe preliminarily that ε ∈ 〈p, q.c〉.
Let s ∈ 〈p, q〉 such that c.s w p. Then sR w q, which implies (c.s)

R
= sR.c w q.c .

The latter, together with c.s w p, implies c.s ∈ 〈p, q.c〉. Thus

{c.s : s ∈ 〈p, q〉 and c.s w p} ∪ {ε} ⊆ 〈p, q.c〉 ,

which together with the previously established inclusion proves (e). ut

Given two strings p and q of the same length m, an inverted decomposition
of p and q is a sequence (`1, `2, . . . , `k) of lengths such that:

(a) 1 ≤ `i ≤ m, for 1 ≤ i ≤ k;

(b)
∑k

i=1 `i = m;

(c) p[Lj .. Lj+1] = (q[Lj .. Lj+1])
R
, for 0 ≤ j < k, and where Lj =

∑j
i=1 `i (so

that L0 = 0).

When p and q admit an inverted decomposition, we write p ./ q.
Observe that an inverted decomposition (`1, `2, . . . , `k) of p and q induces a

sequence of strings (s1, s2, . . . , sk) such that s1s2 · · · sk = p and sR1s
R
2 · · · sRk =

q, and conversely. Thus, we plainly have that p ./ q iff q ./ p. Additionally, the
following property can be easily proved.

Lemma 2. For all strings p and q, we have that p ./ q holds iff (exactly) one of
the following two conditions holds:

(a) p = q = ε, or
(b) p = v.z and q = w.zR, for a string z 6= ε and strings v and w such that

v ./w. ut

Given a text t of length n, a pattern p of length m is said to match with
non-overlapping inversions (or to have an occurrence with non-overlapping in-
versions) at location i of t if p ./ t[i .. i+m − 1], i.e., if there exists an inverted
decomposition of p and t[i .. i+m− 1].

The approximate matching problem with non-overlapping inversions is to
find all locations i in a given text t at which a given pattern p matches with
non-overlapping inversions.

For the sake of simplicity, in the rest of the paper we will refer to non-
overlapping inversions simply as inversions, since this will generate no confusion.

3 A general dynamic programming approach

In this section we present a general dynamic programming algorithm for the
pattern matching problem with inversions. Our algorithm, which will be named
DPInversionMatcher, is characterized by a O(nm2)-time and a O(m2)-space com-
plexity, where m and n are the length of the pattern and text, respectively. In
the next section we will then show how it can be refined so as to improve its
time complexity to O(nm).

As above, let t be a text of length n and p a pattern of length m. The
algorithm DPInversionMatcher solves the matching problem with inversions by
computing the occurrences of all prefixes of the pattern in continuously increas-
ing prefixes of the text using a dynamic programming approach. That is, during
its (i+ 1)st iteration, for i = 0, 1, . . . , n−m, our algorithm establishes whether
pj ./ t[i .. i + j], for each j = 0, 1, . . . ,m − 1, exploiting information gathered
during previous iterations.

To begin with, we denote by M(j, i) the set of all integral values k, with
0 ≤ k ≤ j, such that the prefix pk has an occurrence with inversions at location
i of the text, or more formally

M(j, i) =

{
{0 ≤ k ≤ j : pk ./ t[i .. i+ k]} ∪ {−1} if i ≥ 0 and j ≥ 0

{−1} otherwise,

for −m ≤ i ≤ n−m and 0 ≤ j < m.
Then notice that pj ./ t[i .. i+j] iff j ∈ M(j, i) and hence p ./ t[i .. i+m−1] iff

m− 1 ∈ M(m− 1, i). Thus the matching problem with inversions can be solved
by computing the sets M(m− 1, i), for increasing values of i.

We also define R(j, i) as the set of the lengths of all strings s such that s w pj
and sR w ti+j , or more formally

R(j, i) =

{
‖〈pj , ti+j〉‖ if 0 ≤ j < m and 0 ≤ i ≤ m− n

{0} otherwise.

By Lemma 2, we obtain the following recursive relation

M(j, i) =

{
M(j − 1, i) ∪ {j} if j − ` ∈ M(j − 1, i), for some ` ∈ R(j, i)

M(j − 1, i) otherwise ,

where 0 ≤ j < m and −m ≤ i ≤ n−m, which allows to reduce the computation
of the set M(j, i) to that of the sets M(j − 1, i) and R(j, i).

Likewise, the sets R(j, i) can be computed by the recursive relation

R(j, i) = {0} ∪ {`+ 1 : ` ∈ R(j, i− 1) and p[j − `] = t[i+ j]} ,

with 0 ≤ j < m and 0 < i ≤ n−m, which follows from Lemma 1(f).
The above considerations translate directly into the algorithm DPInversion-

Matcher in Fig. 1. Sets R(j, i) are maintained by an array R of dimensionm; more
precisely, just after iteration i of the for-loop at line 3, we have that R[j] = R(j, i).
Similarly, sets M(j, i) are maintained by a single set(-variable) M, which is ini-
tialized to {−1} at the beginning of iteration i of the for-loop at line 3 (this
corresponds to the set M(−1, i)). Then, during the execution of the subsequent
for-loop at line 5, the set M is expanded so as to take in sequence the relevant el-
ements M(0, i),M(1, i), . . . ,M(m−1, i); more precisely, just after the execution
of iteration j of the for-loop at line 5 we have that M = M(j, i).

The set M can be implemented as a linear array A of length m+1 of Boolean
values such that

A[j] =

{
true, if j − 1 ∈ M

false, otherwise ,

for 0 ≤ j ≤ m. Likewise, each set R[j] can be implemented as a linked list
(or possibly as an array of length m + 1 of Boolean values, as well). Then it
follows easily that the algorithm DPInversionMatcher in Fig. 1 has a O(m2)-
space complexity and a O(nm2)-time complexity. Indeed, the computation of
the set R[j] at line 6 and the conditional test at line 7 require O(j)-time, for
0 ≤ j < m.

DPInversionMatcher(p,m, t, n)
1. for j := 0 to m− 1 do
2. R[j] := {0}
3. for i := −m+ 1 to n−m do
4. M := {−1}
5. for j = max(−i, 0) to m− 1 do
6. R[j] := {0} ∪ {`+ 1 : ` ∈ R[j] \ {j + 1} and p[j − `] = t[i+ j]}
7. if (∃` ∈ R[j] : j − ` ∈ M) then
8. M := M ∪ {j}
9. if (m− 1 ∈ M) then

10. output(i)

Fig. 1. The algorithm DPInversionMatcher for the matching problem with inver-
sions.

4 The algorithm InversionSampling

In this section we present a refinement of the algorithm DPInversionMatcher pre-
sented before. The new algorithm, named InversionSampling, achieves a O(nm)
worst-case time complexity and, as before, requires O(m2) additional space.

The main idea upon which the new algorithm is based is that we do not need
to maintain explicitly the whole set R(j, i) to evaluate the conditional test at
line 7. In particular we show that by efficiently computing the values in the set
R(j, i), each conditional test at line 7 can be performed in amortized O(1)-time.

Specifically, as will be proved in Lemma 5 below, during each iteration of the
algorithm DPInversionMatcher, just before the execution of the conditional test
at line 7, the following condition holds

either {` ∈ R(j, i) : j − ` ∈ M(j − 1, i)} = ∅ (when the test is false),
or {` ∈ R(j, i) : j − ` ∈ M(j − 1, i)} = R(j, i) \ {0} . (1)

Thus it follows that, for each 0 < j < m and −m ≤ i ≤ n − m, if
max(R(j, i)) ∈ M(j − 1, i) then {` ∈ R(j, i) : j − ` ∈ M(j − 1, i)} = R(j, i) \ {0}.

Since just before the execution of the conditional test at line 7 of the algo-
rithm DPInversionMatcher we have that j /∈ M(j − 1, i), the condition ‘(∃` ∈
R[j] : j− ` ∈ M)’ at line 7 can be replaced by the condition ‘j − e(R[j]) ∈ M’, for
any function e(·) such that e(R[j]) ∈ (R[j] \ {0}) ∪ {max(R[j])} holds, without
affecting the correctness of the algorithm. In particular, we choose e(·) ≡ max(·)
and describe an efficient way to compute the value max(R(j, i)), which allows to
reduce the time complexity of the searching-phase of the algorithm to O(nm).

Recalling that R(j, i) = ‖〈pj , ti+j〉‖, it turns out that the maximum of the
set R(j, i), for −m < i ≤ n − m and 0 ≤ j < m, can be computed from the
maximum of the set R(j, i−1), without any need to compute explicitly the whole

procMPT(p,m)
1. for k := 0 do m− 1 do
2. i := 0
3. j := W[k, k] := −1
4. while (i < (m− k)) do
5. while ((j > −1) and

(p[i+ k] 6= p[j + k])) do
6. j := W[k, k + j]
7. i := i+ 1
8. j := j + 1
9. W[k, k + i] := j

10. return(W)

InversionSampling(p,m, t, n)
1. W := procMPT(p,m)
2. for j := 0 to m− 1 do
3. K[j] := 0
4. for i = −m+ 1 to n−m do
5. M = {−1}
6. for j := max(−i, 0) to m− 1 do
7. while ((K[j] > 0)

and (p[j − K[j]] 6= t[i+ j])) do
8. K[j] := W[j + 1− K[j], j + 1]
9. if p[j − K[j]] = t[i+ j] then

10. K[j] := K[j] + 1
11. if (j − K[j] ∈ M) then
12. M := M ∪ {j}
13. if (m− 1) ∈ M then
14. output(i)

Fig. 2. (On the left) the procedure for computing the table W, and (on the right)
the variant InversionSampling of the algorithm DPInversionMatcher.

set R(j, i). This can be done by using the following relation:

max(‖〈pj , ti+j〉‖) = max{`+ 1 : ` ∈ 〈pj , ti+j−1〉 and p[j − `] = t[i+ j]} , (2)

which will be proved in Lemma 6 below.
Let ‖〈pj , ti+j−1〉‖ be the set {`1, `2, . . . , `k}, with `i > `i+1, for all 0 < i < k,

and `k = 0. For the computation of the set max(‖〈pj , ti+j〉‖) we start from
the value `1 = max(‖〈pj , ti+j−1〉‖), and examine in sequence the items `1, `2,
. . . , `k until we find a value `i such that p[j − `i] = t[i + m − 1] or we reach
`k = 0. If ` is the value obtained by such scanning process, we check whether
p[j − `] = t[i+ j] and, in this case, we conclude that max(‖〈pj , ti+j〉‖) = `+ 1;
otherwise we conclude that max(‖〈pj , ti+j〉‖) = 0.

The above procedure requires to know in advance the set ‖〈pj , ti+j−1〉‖. To
this purpose let us put

π(pj , h) =

{
max(‖borders(p[h .. j]) \ {p[h .. j]}‖) if 0 ≤ h ≤ j

−1 otherwise.

For i = 1, . . . , k, let us also put vi = p[j+1− `i .. j]. Then, since vi+1 is a border
of vi (by Lemma 1(b)), we have that `i+1 = π(pj , j + 1− `i), for 0 < i < k.

Such values can be precomputed and collected into a table W of dimensions
(m+ 1)× (m+ 1), where W[0, 0] = −1 and W[h, k] = π(pk−1, h), for 0 < k ≤ m
and 0 ≤ h ≤ k (the values of the remaining entries of W are not relevant).

Table W can be computed in O(m2)-time and space by means of the proce-
dure procMPT in Fig. 2, which is a generalization of the procedure used by the

p︷ ︸︸ ︷ qR︷ ︸︸ ︷
z

︸ ︷︷ ︸
p

Case 1: |p| ≤ |q|

p︷ ︸︸ ︷
v w z

qR︷ ︸︸ ︷
v w z︸ ︷︷ ︸

p

Case 2: |q| < |p| ≤ 2|q|

p︷ ︸︸ ︷
v w︸ ︷︷ ︸

p′

z

qR︷ ︸︸ ︷
v w z︸ ︷︷ ︸

p

Case 3: 2|q| < |p|

Fig. 3. The three cases considered in Lemma 3.

Morris-Pratt algorithm [6] for computing the length of the longest proper border
of s[0 .. j], for a given string s with 0 ≤ j < |s| (see also [3], where this function
is called the prefix function of the pattern).

The resulting algorithm, InversionSampling, is presented in Fig. 2. Notice
that the part of the code from line 7 up to line 10 implements the assignment
K[j] := max(R(j, i)).

4.1 Correctness issues

In this section we prove the validity of (1) and (2), upon which the correctness
of the algorithm InversionSampling is based. In particular, they will be direct
consequences of Lemmas 5 and 6, respectively.

We first state and prove two useful properties related to the suffixes of in-
verted strings, which will be used in our main results.

Lemma 3. Let p and q be strings such that p w p.qR. Then there exist two
strings q1 and q2 such that (a) q = q1.q2 and (b) p.qR = qR1 .q

R
2 .p . ut

Proof. Let p w p.qR. To begin with, notice that if |q| = 0, the lemma follows
trivially. So, let us suppose that |q| > 0 and assume inductively that the lemma

holds for any pair p′, q′ of strings such that |p′| < |p| and p′ w p′.q′
R
.

We distinguish the following three cases (see Fig. 3 for a pictorial illustration).

Case 1: |p| ≤ |q|. From p w p.qR and |p| ≤ |q|, it follows that p w qR, so
that qR = z.p, for some string z. Putting q1 = pR and q2 = zR, we have then

q1.q2 = pR.zR = (z.p)
R
= (qR)

R
= q, and p.qR = p.z.p = (pR)

R
.(zR)

R
.p = qR1 .q

R
2 .p

and therefore (a) and (b) are both satisfied in the present case.

Case 2: |q| < |p| ≤ 2|q|. Let z be the suffix of p such that |z| = |p| − |q| ≤ |q|.
Observe that 2|z| ≤ |z| + |q| = |p|, so that |z| ≤ b|p|/2c. Therefore p can be
decomposed as p = v.w.z, with |v| = |z| and |w.z| = |q|. But since p w p.qR,
we have v = z and qR = w.z. If we put q1 = zR and q2 = wR, so that z = qR1
and w = qR2 , we have q = (qR)

R
= (w.z)

R
= (qR2 .q

R
1)

R
= (qR1)

R
.(qR2)

R
= q1.q2 and

p.qR = (z.w.z).(w.z) = (z.w).(z.w.z) = z.w.p = qR1 .q
R
2 .p, proving (a) and (b) in

the present case.

p︷ ︸︸ ︷
s1 s2

z︷ ︸︸ ︷
︸ ︷︷ ︸

w

sR1 sR2︸ ︷︷ ︸
q

︸ ︷︷ ︸
zR

Case 1: |z| ≤ |w|

p︷ ︸︸ ︷ z︷ ︸︸ ︷
s1 s2 w

︸ ︷︷ ︸
q

sR1 sR2 w︸ ︷︷ ︸
zR

Case 2: |w| < |z|

Fig. 4. The two cases considered in Lemma 4.

Case 3: 2|q| < |p|. Let v and z be, respectively, the prefix and the suffix of
p such that |v| = |z| = |q|. Plainly, z = qR, as p w p.qR. In addition, since
|v| + |z| = 2|q| < |p|, it follows that p = v.w.z, for a nonempty string w. Let
us put p′ = v.w, so that p = p′.z. Observe that |p′| = |p| − |q| < |p|, since
|q| > 0. We have also p′ w p′.z, so by induction zR = q1.q2 (i.e., q = q1.q2)
and p′.z = qR1 .q

R
2 .p

′, for some strings q1 and q2. Hence, p.qR = (v.w.z).qR =
(p′.z).qR = (qR1 .q

R
2 .p

′).qR = qR1 .q
R
2 .(p

′.qR) = qR1 .q
R
2 .(p

′.z) = qR1 .q
R
2 .p, so that (a)

and (b) hold in this last case too, completing the proof of the lemma. ut

Lemma 4. Let p and q be strings of the same length. Then we have p.z ./ q.zR

if and only if p ./ q, for every string z.

Proof. To begin with, notice that if p ./ q then, plainly, p.z ./ q.zR. Thus, it is
enough to prove the converse implication, namely that p.z ./ q.zR implies p ./ q.
So, let p, q, and z be nonempty strings such that p.z ./ q.zR and assume induc-
tively that the lemma is true for all triplets p′, q′, z′, with |z′| < |z|, such that

p′.z′ ./ q′.z′
R
. By Lemma 2, there are strings u, v, and w 6= ε such that u ./ v,

p.z = u.w, and q.zR = v.wR.
We consider first the case in which |z| ≤ |w| (this is illustrated in Fig. 4, on

the left). Since z w u.w and zR w v.wR, we have that z w w and zR w wR. Let

s be the string such that w = s.z . Then, zR w wR = (s.z)
R
= zR.sR and hence,

by Lemma 3, there are strings s1 and s2 such that s1.s2 = s (which implies that
w = s1.s2.z) and zR.sR = sR1 .s

R
2 .z

R, i.e., wR = sR1 .s
R
2 .z

R . Therefore, we have that
p.z = u.s1.s2.z and q.zR = v.sR1 .s

R
2 .z

R . These equalities imply, respectively, that
p = u.s1.s2 and q = v.sR1 .s

R
2 , and hence, as u ./ v, by a double application of

Lemma 2, we get p ./ q.
Let us consider next the case in which |w| < |z| (this is illustrated in Fig. 4,

on the right). Since w w p.z and wR w q.zR, in this case we have that w w z

and wR w zR. Let s be the string such that z = s.w. Then, wR w zR = (s.w)
R
=

wR.sR, and hence, by Lemma 3, there are strings s1 and s2 such that s1.s2 = s
(which implies that z = s1.s2.w) and wR.sR = sR1 .s

R
2 .w

R, i.e., zR = sR1 .s
R
2 .w

R.
Therefore, we have that p.z = p.s1.s2.w and q.zR = q.sR1 .s

R
2 .w

R , which imply,
respectively, that u.w = p.s1.s2.w and v.wR = q.sR1 .s

R
2 .w

R , so that u = p.s1.s2
and v = q.sR1 .s

R
2 . Since |s2| < |z|, by induction we deduce p.s1 ./ q.s

R
1 from

p.s1.s2 = u ./ v = q.sR1 .s
R
2 . Likewise, since |s1| < |z|, again by induction we

deduce p ./ q from p.s1 ./ q.s
R
1 . Thus, p ./ q holds even when |w| < |z|, concluding

the proof of the lemma. ut

Correctness of (1) is a direct consequence of the following lemma.

Lemma 5. Let D(j, i) = {` ∈ R(j, i) : j − ` ∈ M(j − 1, i)}, for 0 < j < m and
−m ≤ i ≤ n−m. Then we have either D(j, i) = ∅ or D(j, i) = R(j, i) \ {0}.

Proof. First of all, note that if D(j, i) 6= ∅ then j ∈ M(j, i), i.e., pj ./ t[i .. i+ j],
so that by Lemma 4, we must have pj−k ./ t[i .. i+ j− k] for all k ∈ R(j, i) \ {0}.
But pj−k ./ t[i .. i + j − k], with k 6= 0, implies that j − k ∈ M(j − 1, i), and
thus R(j, i)\{0} ⊆ D(j, i). The converse implication, i.e., D(j, i) ⊆ R(j, i)\{0},
holds trivially, since j /∈ M(j − 1, i). ut

Finally, relation (2), which allows to compute the maximum of the set R(j, i)
from the maximum of the set R(j, i− 1), is established in the following lemma.

Lemma 6. Given two strings p and q, with |p| = m, and a character c, we have

max(‖〈p, q.c〉‖) = max{|v|+ 1 : v ∈ 〈p, q〉 and p[m− 1− |v|] = c} .

Proof. Let z be the longest string belonging to 〈p, q〉, so that |z| = max(‖〈p, q〉‖),
and let v1, v2, . . . , vk be the borders of z, ordered by their decreasing lengths.
Observe that if v, w ∈ 〈p, q〉, then v w p and w w p, so that if v and w have
the same length they must coincide. Hence, the set 〈p, q〉 cannot contain any
two distinct strings of the same length. It also follows that the longest string
belonging to 〈p, q〉 is well (and uniquely) defined. Also, note that a string z
cannot have two distinct borders of the same length. Thus we have

|v1| > |v2| > · · · > |vk| ,

with v1 = z and vk = ε. Then, from Lemma 1(d) it follows that 〈p, q〉 =
{v1, v2, . . . , vk} which, by Lemma 1(d), yields

‖〈p, q.c〉‖ = {|v|+ 1 : v ∈ {v1, . . . , vk} and p[m− 1− |v|] = c} ∪ {0} ,

completing the proof of the lemma. ut

4.2 Worst-case time analysis

We show now that the worst-case time complexity T (n,m) of the algorithm
InversionSampling reported in Fig. 2 is O(nm), for an input text t of length n
and pattern p of length m.

To begin with, we observe that the preprocessing phase of the algorithm
requires O(m2)-time (and space), due to the computation of the table W and
the initialization at line 2. Next we evaluate the complexity of the searching
phase, namely of the for-loop at line 4. Let us denote by A the set of pairs

{−m + 1, . . . , n −m} × {0 . . . ,m − 1}. For each pair (i, j) ∈ A, we let C1(i, j)
be the number of times that the while-loop at line 7 is executed during iteration
i of the for-loop at line 4, and we let K(i, j) be the value contained in K[j] just
after the termination of such iteration; in addition, we put C2(i, j) = 1, if the
assignment instruction at line 10 is executed during iteration i, otherwise we put
C2(i, j) = 0. Plainly, we have that

T (n,m) = O

 n−m∑
i=−m+1

m−1∑
j=0

(
C1(i, j) + 1

) , (3)

and therefore it is enough to prove that the double summation in (3) is asymp-
totically bounded above by the product nm.

Since C2(i, j) ≤ 1 for each (i, j) ∈ A, we have that, for 0 ≤ j < m,

n−m∑
i=−m+1

C2(i, j) ≤ n . (4)

On the other hand, we have also that

K(i+ 1, j)− C2(i+ 1, j) ≤ K(i, j)− C1(i+ 1, j) , (5)

for all (i, j) ∈ A such that i < n − m. Indeed, during iteration i, the value
contained in K[j] just after the execution of the while-loop at line 7 (i.e., K(i+
1, j)− C2(i+ 1, j)) can never exceed the value contained in K[j] just before this
execution minus the number of times that the while-loop iterates (i.e., K(i, j)−
C1(i+1, j)), since K[j] is decremented at least by one unit during each iteration
of the while-loop at line 7. Thus it follows that

0 ≤ K(h, j) ≤
h∑

i=−m+1

C2(i, j)−
h∑

i=−m+1

C1(i, j) , (6)

for all (h, j) ∈ A, as can be verified by induction on h, using (5). From (6) it
follows that

m−1∑
j=0

n−m∑
i=−m+1

(
C1(i, j) + 1

)
≤

m−1∑
j=0

n−m∑
i=−m+1

(
C2(i, j) + 1

)
,

and thus, using (4), we finally obtain that

m−1∑
j=0

n−m∑
i=−m+1

(
C1(i, j) + 1

)
≤ (n+ 1)m,

which in turn, by (3), yields T (n,m) = O(nm).

5 Conclusions and future work

In this paper we have presented an algorithm to solve the pattern matching
problem under a string distance which allows inversions of non-overlapping fac-
tors. The algorithm, named InversionSampling, has worst case O(nm)-time and
O(m2)-space complexity, where m and n are the length of the pattern and the
length of the text, respectively. We are currently working on an efficient variant
of the present algorithm with a linear average time complexity.

Acknowledgements

We thank the anonymous reviewers for their helpful comments.

References

1. D. Cantone, S. Faro, and E. Giaquinta. Approximate string matching allowing for
inversions and translocations. In Jan Holub and Jan Zdárek, editors, Proceedings of
the Prague Stringology Conference 2010, pages 37–51, Czech Technical University,
Prague, Czech Republic, 2010.

2. Z. Chen, Y. Gao, G. Lin, R. Niewiadomski, Y. Wang, and J. Wu. A space-efficient
algorithm for sequence alignment with inversions and reversals. Theor. Comput.
Sci., 325(3):361–372, 2004.

3. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, second edition, 2001.

4. Katrien M. Devos, M. D. Atkinson, C. N. Chinoy, H. A. Francis, R. L. Harcourt,
R. M. D. Koebner, C. J. Liu, P. Masoj, D. X. Xie, and M. D. Gale. Chromosomal
rearrangements in the rye genome relative to that of wheat. TAG Theoretical and
Applied Genetics, 85:673–680, 1993.

5. Szymon Grabowski, Simone Faro, and Emanuele Giaquinta. String matching with
inversions and translocations in linear average time (most of the time). Information
Processing Letters, 111(11):516 – 520, 2011.

6. J. H. Morris, Jr and V. R. Pratt. A linear pattern-matching algorithm. Report 40,
University of California, Berkeley, 1970.

7. G. Navarro. A guided tour to approximate string matching. ACM Comput. Surv.,
33(1):31–88, 2001.

8. M. Schniger and M. Waterman. A local algorithm for dna sequence alignment with
inversions. Bulletin of Mathematical Biology, 54:521–536, 1992.

9. A. F. Vellozo, C. E. R. Alves, and A. Pereira do Lago. Alignment with non-
overlapping inversions in o(n3)-time. In WABI, pages 186–196, 2006.

