
A Space-Efficient Implementation of the

Good-Suffix Heuristic

Domenico Cantone, Salvatore Cristofaro, and Simone Faro

Università di Catania, Dipartimento di Matematica e Informatica
Viale Andrea Doria 6, I-95125 Catania, Italy

{cantone | cristofaro | faro}@dmi.unict.it

Abstract. We present an efficient variation of the good-suffix heuristic, firstly introduced in
the well-known Boyer-Moore algorithm for the exact string matching problem. Our proposed
variant uses only constant space, retaining much the same time efficiency of the original rule,
as shown by extensive experimentation.

Key words: string matching, experimental algorithms, text-processing, good-suffix rule, costant-
space algorithms.

1 Introduction

Given a text T and a pattern P (of length m) over some alphabet Σ, the string

matching problem consists in finding all occurrences of the pattern P in the text
T . It is a very extensively studied problem in computer science, mainly due to its
direct applications to such diverse areas as text, image and signal processing, speech
analysis and recognition, information retrieval, computational biology and chemistry,
etc.

The most practical string matching algorithms show a sublinear behavior in prac-
tice, at the price of using extra memory of non-constant size to maintain auxiliary in-
formation. For instance, the Boyer-Moore algorithm [2] requires additional O(m+|Σ|)-
memory to compute two tables of shifts, which implement the well-known good-suffix
and bad-character heuristics. Other efficient variants of the Boyer-Moore algorithm
use additional O(m)-space [7], or O(|Σ|)-space [14, 18], whereas, interestingly enough,
two of the fastest algorithms require respectively O(|Σ|2)-space [1] and O(m · |Σ|)-
space [5].

The first non-trivial constant-space string matching algorithm is due to Galil and
Seiferas [10]. Their algorithm, though linear in the worst-case, was too complicated
to be of any practical interest. Slightly more efficient constant-space algorithms have
been subsequently reported in the literature (see [3, 8, 9, 11, 12]), and more recently
two new constant-space algorithms have been presented, which have a sublinear av-
erage behavior though they are quadratic in the worst-case [6]. It is to be pointed
out, though, that no constant-space algorithm which is competitive with the most
efficient variants of the Boyer-Moore algorithm is known as yet.

Starting from the observation that most of the accesses to the good-suffix table
are limited to very few locations, in this paper we propose a truncated good-suffix
heuristic which require only constant-space and show by extensive experimentation
that the Boyer-Moore algorithm and two of its more effective variants maintain much
the same running times, when the truncated variant is used in place of the classical
one.

The paper is organized as follows. In Section 2 we give some preliminary notions.
Then, in Section 3 we describe the preprocessing techniques introduced in the Boyer-

Moore algorithm together with some efficient variants which make use of the same
shift heuristics. In Section 4 we estimate the probability that a given entry of a good-
suffix table is accessed and, based on such analysis, we come up with the proposal to
memorize only a constant number of entries. We also show how such entries can be
computed in constant-space. Subsequently, in Section 5 we present the experimental
data obtained by running under various conditions the algorithms reviewed, and their
modified versions. Such results confirm experimentally that by truncating the good-
suffix table much the same running times are maintained. Finally, our conclusions are
given in Section 6.

2 Preliminaries

Before entering into details, we need a bit of notations and terminology. A string
P is represented as a finite array P [0 .. m − 1], with m ≥ 0. In such a case we
say that P has length m and write length(P) = m. In particular, for m = 0 we
obtain the empty string, also denoted by ε. By P [i] we denote the (i+1)-st character
of P , for 0 ≤ i < length(P). Likewise, by P [i .. j] we denote the substring of P
contained between the (i + 1)-st and the (j + 1)-st characters of P , where 0 ≤ i ≤
j < length(P). Moreover, for any i, j ∈ Z, we put P [i .. j] = ε if i > j, and P [i .. j] =
P [max(i, 0) .. min(j, length(P) − 1)] otherwise.

For any two strings P and P ′, we write P ′
⊐ P to indicate that P ′ is a suffix of P ,

i.e., P ′ = P [i .. length(P)−1], for some 0 ≤ i < length(P). Similarly, we write P ′
⊏ P

to indicate that P ′ is a prefix of P , i.e., P ′ = P [0 .. i−1], for some 0 ≤ i ≤ length(P).
In addition, we denote by P R the reverse of the string P .

Let T be a text of length n and let P be a pattern of length m. If the character P [0]
is aligned with the character T [s] of the text, so that P [i] is aligned with T [s + i], for
i = 0, . . . , m−1, we say that the pattern P has shift s in T . In this case the substring
T [s .. s + m− 1] is called the current window of the text. If T [s .. s + m− 1] = P , we
say that the shift s is valid.

Most string matching algorithms have the following general structure:

Generic String Matcher(T , P)

1. Precompute Globals(P)
2. n := length(T)
3. m := length(P)
4. s := 0
5. while s ≤ n − m do
6. j := Check Shift(s, P, T)
7. s := s + Shift Increment(s, P, T, j)

where

– the procedure Precompute Globals(P) computes useful mappings, in the form of
tables, which later may be accessed by the function Shift Increment(s, P, T);

– the function Check Shift(s, P, T) checks whether s is a valid shift and returns the
position j of the last matched character in the pattern;

2

– the function Shift Increment(s, P, T, j) computes a positive shift increment ac-
cording to the information tabulated by procedure Precompute Globals(P) and to
the position j of the last matched character in the pattern.

Observe that for the correctness of procedure Generic String Matcher , it is plainly
necessary that the shift increment ∆s computed by Shift Increment(s, P, T) be safe,
namely no valid shift may belong to the interval {s + 1, . . . , s + ∆s − 1}.

In the case of the naive string matching algorithm, for instance, the procedure
Precompute Globals is just dropped, procedure Check Shift(s, P, T) checks whether
the current shift is valid by scanning the pattern from left to right, and the function
Shift Increment(s, P, T, j) always returns a unitary shift increment.

3 The good-suffix heuristic for preprocessing

Information gathered during the execution of the Shift Increment(s, P, T, j) func-
tion, in combination with the knowledge of P , as suitably extracted by procedure
Precompute Globals(P), can yield shift increments larger than 1 and ultimately lead
to more efficient algorithms. In this section we focus our attention to the use of the
good-suffix heuristic for preprocessing the pattern, introduced by Boyer and Moore
in their celebrated algorithm [2].

The Boyer-Moore algorithm is the progenitor of several algorithmic variants which
aim at computing close to optimal shift increments very efficiently. Specifically, the
Boyer-Moore algorithm checks whether s is a valid shift, by scanning the pattern
P from right to left and, at the end of the matching phase, it calls procedure
Boyer-Moore Shift Increment (s, P, T, j) to compute the shift increment, where j is
the position of last matched character in the pattern. Such procedure computes the
shift increment as the maximum value suggested by the good-suffix heuristic and the
bad-character heuristic below, using the functions gsP and bcP respectively, provided
that both of them are applicable.

Boyer-Moore Shift Increment(s, P, T, j)

1. if j > 0 then
2. return max(gsP (j), j − bcP (T [s + j − 1]) − 1)
3. return gsP (0)

Let us briefly review the shifting strategy of the good-suffix and the bad-character
heuristics.

If the last matching character occurs at position j of the pattern P , the good-
suffix heuristic suggests to align the substring T [s + j .. s + m − 1] = P [j .. m − 1]
with its rightmost occurrence in P (preceded by a character different from P [j − 1],
provided that j > 0); this case is illustrated in Fig. 1A. If such an occurrence does
not exist, the good-suffix heuristic suggests a shift increment which allows to match
the longest suffix of T [s + j .. s + m − 1] with a prefix of P ; see Fig. 1B.

More formally, if the last matching character occurs at position j of the pattern
P , the good-suffix heuristic states that the shift can be safely incremented by gsP (j)
positions, where

gsP (i) =
Def

min{0 < k ≤ m | P [i − k .. m − k − 1] ⊐ P

and (k ≤ i − 1 → P [i − 1] 6= P [i− 1 − k])} ,

3

Figure 1. The good-suffix heuristic. Assuming that the suffix u = P [i + 1 .. m − 1] of the pattern P

has a match on the text T at shift s and that P [i] 6= T [s + i], then the good-suffix heuristic attempts to
align the substring T [s + i + 1 .. s + m − 1] = P [i + 1 .. m − 1] with its rightmost occurrence in P preceded
by a character different from P [i] (see (A)). If this is not possible, the good-suffix heuristic suggests a shift
increment corresponding to the match between the longest suffix of u with a prefix, v, of P (see (B)).

for i = 0, 1, . . . , m.

The bad-character heuristic states that if c = T [s + j − 1] 6= P [j − 1] is the first
mismatching character, while scanning P and T from right to left with shift s, then
P can be safely shifted in such a way that its rightmost occurrence of c, if present,
is aligned with position (s + j − 1) in T . In the case in which c does not occur in P ,
then P can safely be shifted just past position (s + j − 1) in T . More formally, the
shift increment suggested by the bad-character heuristic is given by the expression
(j − bcP (T [s + j − 1]) − 1), where

bcP (c) =
Def

max({0 ≤ k < m | P [k] = c} ∪ {−1}) ,

for c ∈ Σ, and where we recall that Σ is the alphabet of the pattern P and text
T . Notice that in some situations the shift increment proposed by the bad-character
heuristic may be negative.

It turns out that the functions gsP and bcP can be computed during the prepro-
cessing phase in time O(m) and O(m + |Σ|) and space O(m) and O(|Σ|), respec-
tively, and that the overall worst-case running time of the Boyer-Moore algorithm, as
described above, is linear (cf. [13]).

Due to the simplicity and ease of implementation of the bad-character heuristic,
some variants of the Boyer-Moore algorithm have focused just around it and dropped
the good-suffix heuristic. This is the case, for instance, of the Horspool algorithm [14],
which computes shift advancements by aligning the rightmost character T [s+m− 1]
with its rightmost occurrence on P [0 .. m−2], if present; otherwise it shifts the pattern
just past the current window.

Similarly the Quick-Search algorithm [18] uses a modification of the original
heuristics of the Boyer-Moore algorithm, much along the same lines of the Horspool
algorithm. Specifically, it is based on the observation that the character T [s + m] is
always involved in testing for the next alignment, so that one can apply the bad-
character heuristic to T [s + m], rather than to the mismatching character, obtaining
larger shift advancements.

A further example is given by the Berry-Ravindran algorithm [1], which extends
the Quick-Search algorithm by using in the bad-character heuristic also the character
T [s+m+1] in addition to T [s+m]. In this case, the table used by the bad-character
heuristic requires O(|Σ|2)-space and O(m + |Σ|2)-time complexity.

4

Experimental results show that the Berry-Ravindran algorithm is fast in practice
and performs a low number of text/pattern character comparisons and that the Quick-
Search algorithm is very fast especially for short patterns (cf. [16]).

The role of the good-suffix heuristic in practical string matching algorithms has
recently been reappraised, also in consideration of the fact that often it is as effective
as the bad-character heuristic, especially in the case of non-periodic patterns.

This is the case of the Fast-Search algorithm [4], a very simple, yet efficient, variant
of the Boyer-Moore algorithm. The Fast-Search algorithm computes its shift increments
by applying the bad-character heuristic if and only if a mismatch occurs during the
first character comparison, namely, while comparing characters P [m − 1] and T [s +
m−1], where s is the current shift. In all other cases it uses the good-suffix heuristic.
This translates in the following pseudo-code:

Fast-Search Shift Increment(s, P, T, j)

1. m := length(P)
2. if j = m − 1 then
3. return bcP (T [s + m − 1])
4. else
5. return gsP (j)

A more effective implementation of the Fast-Search algorithm is obtained by iter-
ating the bad-character heuristic until the last character P [m − 1] of the pattern is
matched correctly against the text, at which point it is known that T [s + m − 1] =
P [m− 1], so that the subsequent matching phase can start with the (m− 2)-nd char-
acter of the pattern. At the end of the matching phase the good-suffix heuristic is
applied to compute the shift increment.

Another example is the Forward-Fast-Search algorithm [5], which maintains the
same structure of the Fast-Search algorithm, but is based upon a modified version
of the good-suffix heuristic, called forward good-suffix heuristic, which uses a look-
ahead character to determine larger shift advancements. More precisely, if the last
matching character occurs at position j ≤ m− 1 of the pattern P , the forward good-
suffix heuristic suggests to align the substring T [s + j .. s + m− 1] with its rightmost
occurrence in P preceded by a character different from P [j−1]. If such an occurrence
does not exist, the forward good-suffix heuristic proposes a shift increment which
allows to match the longest suffix of T [s + j .. s + m − 1] with a prefix of P . This
corresponds to advance the shift s by −→gsP (j, T [s + m]) positions, where

−→gsP (i, c) =
Def

min({0 < k ≤ m | P [i − k .. m − k − 1] ⊐ P

and (k ≤ i − 1 → P [i − 1] 6= P [i − 1 − k])

and P [m − k] = c} ∪ {m + 1}) ,

for i = 0, 1, . . . , m and c ∈ Σ.

The forward good-suffix heuristic requires a table of size m · |Σ| which can be
constructed in time O(m · max(m, |Σ|)).

Experimental results show that both the Fast-Search and the Forward-Fast-Search

algorithms, though not linear, achieve very good results especially in the case of very
short patterns or small alphabets.

5

4 Truncating the Good-Suffix Tables

Let us assume that we run the Boyer-Moore algorithm on a pattern P and a text
T . Then, at the end of each matching phase, the Boyer-Moore algorithm accesses
the entry at position j > 0 in the good-suffix table if and only if the last matched
character in the pattern occurs at position j of the pattern, i.e. if P [j .. m − 1] =
T [s + j .. s + m − 1] and P [j − 1] 6= T [s + j − 1], where s is the current shift.
Likewise, the Boyer-Moore algorithm accesses the entry at position j = 0 if and only
if P [0 .. m− 1] = T [s .. s + m − 1], i.e. if and only if s is a valid shift.

Therefore, it is intuitively expected that the probability to access an entry at
position j of the good-suffix table becomes higher as the value of j increases. In other
words, it is expected that entries on the right-hand side of the good-suffix table have
(much) higher probability to be accessed than entries on the left end side.

The above considerations, which will be formalized below under suitable simpli-
fying hypotheses, suggest that the initial segment of the good-suffix tables can be
dropped, without affecting very much the performance of the algorithm. In fact, we
will see that in most cases, it is enough to maintain just a few entries of the good-suffix
tables.

For the sake of simplicity, in the following analysis we will assume that the text
T and pattern P are strings over a common alphabet Σ of size σ, randomly selected
relatively to a uniform distribution.

Thus, for a shift 0 ≤ s ≤ n − m in T and a position 0 ≤ j < m in P , the
probability that P [j] = T [s + j] is 1/σ, whereas the probability that P [j] 6= T [s + j]
is (σ − 1)/σ.

Therefore, the probability pj that j is the position of the last matched character
in the pattern P , relatively to a shift s of the text, is given by

pj =

σ − 1

σm−j+1
if 0 < j ≤ m

1

σm
if j = 0 .

Plainly, pj is also the probability that location j of the good-suffix table is accessed.
As experimental evidence of the above analysis, we report in Fig. 2 the plots of

the accesses to each entry of the good-suffix table, for different sizes of the alphabet,
when running the Fast-Search algorithm with a set of 200 patterns of length 40 and
a 20Mb text buffer as input. More precisely, for each function f in Fig. 2, f(j) is the
percentage of accesses to the entry at position m− j in the good-suffix table. We can
observe that, in general, only a very small number of entries is really used during a
computation and, in particular, when the alphabet size is greater than or equal to 16
about 98% of the accesses are limited to the last three entries of the table.

We can readily evaluate the number Kσ,β of entries of the good-suffix table which
are accessed with probability greater than a fixed threshold 0 < β < 1, for an alphabet
of size σ. To begin with, notice that if pj > β, then σ−1

σm−j+1 > β, so that

j > m + 1 −

⌈

logσ

σ − 1

β

⌉

. and mσ,β ≤

⌈

logσ

σ − 1

β

⌉

− 1 .

Observe that for β̄ = 10−4, we have Kσ,β̄ ≤ 12. Additionally, we have Kσ,β̄ ≤ 3,
for 14 ≤ σ ≤ 39, and Kσ,β̄ ≤ 2, for σ ≥ 40. In other words, for alphabets of at

6

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

Pe
rc

en
ta

ge
 o

f
ac

ce
ss

es

Inverted addressing of entries

Accesses at Good-Suffix Rule

Alphabet size = 2
4
8

16
32
64

128

Figure 2. The percentage of accesses for each entry of the good-suffix heuristic, for different sizes of the
alphabet. The values have been computed by running the Fast-Search algorithm with a set of 200 pattern, of
length 40, and a 20Mb text buffer as input. The values in each curve f are relative to the inverted addressing
of the entries, i.e. f(j) is the percentage of accesses to the entry at position m − j.

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50

N
um

be
r

of
 e

nt
ri

es

Alphabet size

value of the bound = 1E-03
1E-04
1E-05
1E-06
1E-07
1E-08
1E-09
1E-10

Figure 3. The function logσ
σ−1

β
−1, for different values of the bound β. Note that if the bound β is greater

or equal to 10−4, then the number of entries accessed with probability greater than β is always no greater
than 12 and in most cases no greater than 3.

least 14 characters, at most the last three entries of the good-suffix table are accessed
with probability at least 10−4 (under the assumption of uniform distribution). Fig. 3
shows the shape of the function logσ

σ−1

β
− 1 for the following values of the bound

β = 10−3, 10−4, . . . , 10−10. Note that if the bound β is greater or equal to 10−4, then
the number of entries accessed with probability greater than β is always no greater
than 12 and in most cases no greater than 3.

7

4.1 The Bounded-Good-Suffix Heuristic

The above considerations justify the following bounded good-suffix heuristic. Let β > 0

be a fixed bound1 and let K =
⌈

logσ
σ−1

β

⌉

− 1, where, as usual, σ denotes the size of

the alphabet. Then the bounded good-suffix heuristic works as follows.

During a matching phase, if the first mismatch occurs at position i of the
pattern P and i ≥ m − K, the bounded good-suffix heuristic suggests that
the pattern is shifted gsP (i + 1) positions to the right. Otherwise, if the first
mismatch occurs at position i of the pattern P , with i < m − K, or if the
pattern P matches the current window in the text, then the bounded good-
suffix heuristic suggests that the pattern is shifted one position to the right.

More formally, if the first mismatch occurs at position i of the pattern P , the
bounded good-suffix heuristic suggests that the shift s can be safely advanced βgsP (i−
m + K) positions to the right, where, for j = K − m − 1, . . . , K − 1, we have

βgsP (j) =
Def

{

gsP (j + m − K + 1) if j ≥ 0
1 otherwise .

Likewise, the bounded forward good-suffix heuristic suggests that when the first
mismatch occurs at position i of the pattern P , then the shift s is advanced by
−−→
βgsP (i−m+k, T [s+m]) positions to the right, where, for j = K −m−1, . . . , K −1
and c ∈ Σ, we have

−−→
βgsP (j, c) =

Def

{−→
gsP (j + m − K + 1, c) if j ≥ 0
1 otherwise .

By way of example, when the bounded good-suffix heuristic is adopted in place of
the good-suffix heuristic, the Shift Increment procedure of the Boyer-Moore algorithm
becomes:

βBoyer-Moore Shift Increment(s, P, T, j, σ, β)

1. m := length(P)

2. K :=
l

logσ
σ−1

β

m

− 1

3. if j ≥ m − K − 1 then
4. if j > 0 then
5. return max(βgsP (j − m + K − 1), j − bcP (T [s + j − 1]))
6. else return βgsP (0)
7. else if j > 0 then
8. return max(1, j − bcP (T [s + j − 1]))
9. else return 1

Next we discuss how the bounded good-suffix function βgsP can be constructed
(analogous remarks apply for the bounded forward good-suffix function). A first very
natural way to compute the function βgsP consists in computing a slightly modified
version of the standard good-suffix function gsP , and then keeping only the last K
entries of the function. However such procedure, based on the one firstly given in [2]
and later corrected in [17], has O(m)-time and space complexity.

An alternative way to compute the bounded good-suffix function using only con-
stant space, but still in O(m) worst-case time, is given by procedure Precompute βgs ,
whose pseudo-code is presented below:

1 A good practical choice is β = 10−4, as shown in Section 5.

8

Precompute βgs(P , σ, β)
1. m := length(P)

2. K :=
l

logσ
σ−1

β

m

− 1

3. for ℓ := 0 to K − 1 do
4. j := m − 2
5. repeat
6. q := j − occur (P R

m−ℓ..m−1, P
R
0..j)

7. j := q − 1
8. until q < ℓ or P [m − ℓ − 1] 6= P [q − ℓ]
9. βgsP (K − ℓ − 1) := m − q − 1

10. return βgsP

First of all, we give the specification of the function occur , which is called by
procedure Precompute βgs. Given two strings X and Y , occur(X, Y) computes the
leftmost occurrence of X in Y , i.e.,

occur(X, Y) =
Def

min{p ≥ 0 | Y [p .. p + |X| − 1] = X} ∪ {|Y |} .

Observe that the function occur(X, Y) can be computed by means of a linear-time
string matching algorithm such as the Knuth-Morris-Pratt algorithm [15], thus requir-
ing O(|X| + |Y |)-time and O(|X|) additional space.

We are now ready to explain how the procedure Precompute βgs works.

For ℓ = 0, 1, . . . , K − 1, the ℓ-th iteration of the for-loop in line 3 finds the
rightmost occurrence, P [q − ℓ + 1 .. q], in P of its suffix of length ℓ preceded by a
character different from P [m − ℓ − 1]. If such an occurrence does not exist, the ℓ-
th iteration finds the rightmost position q < ℓ in the pattern such that P [0 .. q] =
P [m− q− 1 .. m− 1]. More precisely, the search is performed within the repeat-loop
in line 5, by means of repeated calls of type occur((P [m − ℓ .. m − 1])R, (P [0 .. j])R),
each of which looks for the leftmost occurrence of the reverse of P [m − ℓ .. m − 1]
in the reverse of P [0 .. j]. When such an occurrence is found at position q, so that
P [q − ℓ + 1 .. q] is a suffix of P , it is checked whether q < ℓ holds or whether the
character P [m− ℓ− 1] is different from P [q− ℓ]. If any of such conditions is true, the
repeat-loop stops, whereas if both conditions are false, another iteration is performed
with j = q − 1.

The value q, discovered during the ℓ-th iteration of the for-loop in line 3, is then
used in line 9 to set the (K − ℓ − 1)-th entry of the βgsP function to m − q − 1.

Concerning the time and space analysis of the procedure Precompute βgs , notice
that each iteration of the for-loop, for ℓ = 0, 1, . . . , K−1, takes O(K+m)-time, using
only O(K)-space. Indeed, each call occur(P R

m−ℓ..m−1
, P R

0..j) in the repeat-loop takes
time proportional to j−r, where r = occur(P R

m−ℓ..m−1
, P R

0..j), and uses O(ℓ) (reusable)
space. Additionally, after each such call, the value of j is decreased by r + 1. Hence,
the overall running time of all calls to the function occur made in the repeat-loop is
bounded by O(K + m), for each iteration of the for-loop.

Since the number of iterations in the for-loop is K, the overall running time of
the procedure Precompute βgs is O(K2 + Km).

Notice that if we fix the value of β = 10−4, then we have K ≤ 12, as observed
just before Section 4.1. Therefore, in such a case, the time and space complexity of
the procedure Precompute βgs are O(1) and O(m), respectively.2

2 As will be shown in Section 5, the choice β = 10−4 has very good practical results.

9

5 Experimental Results

To evaluate experimentally the impact of the bounded good-suffix heuristic, we have
chosen to test it with the Boyer-Moore algorithm (in short, BM) and with two of its
fastest variants in practice, namely the Fast-Search (FS) and the Forward-Fast-Search

(FFS) algorithms. Their modified versions, obtained by using the bounded good-suffix
heuristic in place of the good-suffix heuristic (in the case of the Boyer-Moore and the
Fast-Search algorithms) and the bounded forward good-suffix heuristic in place of the
forward good-suffix heuristic (in the case of the Forward-Fast-Search algorithm), are
respectively denoted in short by βBM, βFS, and βFFS.

All algorithms have been implemented in the C programming language and
were used to search for the same strings in large fixed text buffers on a PC with
AMD Athlon processor of 1.19GHz. In particular, all algorithms have been tested
on seven Randσ problems, for σ = 2, 4, 8, 16, 32, 64, 128, with patterns of length
m = 2, 4, 8, 10, 20, 40, 80 and 160, and on two real data problems.

Each Randσ problem consists in searching a set of 200 random patterns of a given
length in a 20Mb random text over a common alphabet of size σ.

The tests on the real data problems have been performed on a 180Kb natural
language text file, containing the “Hamlet” by William Shakespeare (NL), and on a
2.4Mb file containing a protein sequence from the human genome. In both cases, the
patterns to be searched for have been constructed by selecting 200 random substrings
of length m from the files, for each m = 2, 4, 8, 10, 20, 40, 80 and 160.

For the implementation of the bounded versions of the (forward) good-suffix
heuristic we have used the bound β = 10−4.

With the exception of the last two tables in which running times are expressed in
thousandths of seconds, all other running times in the remaining tables are expressed
in hundredths of seconds.

σ = 2 2 4 6 8 10 20 40 80 160

BM 46.82 39.77 31.51 25.89 21.23 19.93 19.56 17.56 15.64
βBM 47.34 40.33 31.94 26.10 21.64 20.24 19.82 17.95 15.93

FS 35.62 31.28 25.80 21.93 19.28 18.33 17.91 16.48 14.96
βFS 36.32 32.34 26.36 22.46 19.37 18.35 17.94 16.71 14.95

FFS 31.02 28.39 23.46 19.76 17.83 16.97 16.64 15.03 13.78
βFFS 37.27 32.44 25.83 21.71 19.30 18.53 18.18 16.33 14.95

Running times in hundredths of seconds for a Rand2 problem

σ = 4 2 4 6 8 10 20 40 80 160

BM 38.84 28.41 23.23 21.04 20.15 19.30 18.95 17.70 16.42
βBM 39.09 28.58 23.35 21.29 20.30 19.54 19.10 17.87 16.52

FS 26.08 21.15 18.95 18.14 17.64 17.07 16.70 15.91 14.84
βFS 26.56 21.49 19.17 18.30 17.65 17.12 16.72 16.02 14.93

FFS 25.14 20.58 18.58 17.34 16.52 16.11 15.90 14.32 13.29
βFFS 26.61 21.18 18.68 17.66 16.70 16.30 16.02 14.55 13.35

Running times in hundredths of seconds for a Rand4 problem

σ = 8 2 4 6 8 10 20 40 80 160

BM 33.24 23.16 18.97 17.86 17.36 17.12 17.00 16.42 15.83
βBM 33.01 23.09 19.14 17.93 17.36 17.14 17.09 16.47 15.91

FS 21.02 18.26 16.43 16.04 15.93 15.81 15.82 15.29 14.88
βFS 21.32 18.34 16.46 16.10 15.96 15.88 15.75 15.39 14.91

FFS 20.84 18.23 16.39 16.05 15.78 15.64 15.26 13.96 13.18
βFFS 21.12 18.36 16.43 16.05 15.82 15.67 15.31 14.00 13.02

Running times in hundredths of seconds for a Rand8 problem

10

σ = 16 2 4 6 8 10 20 40 80 160

BM 31.09 21.37 18.18 16.39 16.04 15.92 15.86 15.64 15.39
βBM 30.45 21.31 18.41 16.42 16.04 15.85 15.84 15.60 15.32

FS 19.14 16.77 15.94 15.66 15.40 15.32 15.28 15.12 14.91
βFS 19.29 16.89 16.05 15.61 15.45 15.39 15.25 15.09 14.92

FFS 19.19 16.84 15.90 15.65 15.44 15.35 15.11 13.98 13.26
βFFS 19.22 16.88 16.00 15.60 15.36 15.29 15.00 13.84 13.09

Running times in hundredths of seconds for a Rand16 problem

σ = 32 2 4 6 8 10 20 40 80 160

BM 29.96 20.38 17.49 16.03 15.78 15.47 15.25 15.15 15.02
βBM 29.44 19.97 17.63 16.12 15.79 15.47 15.19 15.11 15.03

FS 18.78 16.38 15.86 15.52 15.12 15.13 14.75 14.70 14.61
βFS 18.87 16.38 15.84 15.54 15.13 15.12 14.78 14.70 14.66

FFS 18.89 16.47 15.87 15.56 15.15 15.15 14.79 14.21 13.54
βFFS 18.84 16.32 15.89 15.52 15.12 15.10 14.65 14.05 13.35

Running times in hundredths of seconds for a Rand32 problem

σ = 64 2 4 6 8 10 20 40 80 160

BM 29.50 19.39 17.31 15.96 15.63 15.39 14.39 13.65 13.51
βBM 29.00 19.51 17.53 15.97 15.66 15.27 14.54 13.65 13.51

FS 18.60 16.24 15.75 15.61 14.96 15.06 14.22 13.63 13.32
βFS 18.71 16.35 15.81 15.51 14.94 15.10 14.20 13.63 13.47

FFS 18.63 16.30 15.78 15.50 14.98 15.16 14.29 13.51 13.44
βFFS 18.73 16.33 15.82 15.55 14.97 15.14 14.24 13.36 13.04

Running times in hundredths of seconds for a Rand64 problem

σ = 128 2 4 6 8 10 20 40 80 160

BM 29.36 19.29 17.13 15.96 15.59 15.27 14.00 12.42 11.90
βBM 28.84 19.40 17.40 15.95 15.64 15.24 13.93 12.38 11.96

FS 18.59 16.32 15.78 15.57 14.90 15.32 13.84 12.37 11.93
βFS 18.58 16.38 15.83 15.61 14.88 15.30 13.87 12.35 12.07

FFS 18.59 16.29 15.83 15.59 14.96 15.34 13.96 12.51 12.42
βFFS 18.56 16.28 15.90 15.60 14.95 15.37 13.86 12.34 11.87

Running times in hundredths of seconds for a Rand128 problem

NL 2 4 8 16 32 64 128 256 512

BM 5.56 3.35 3.46 2.75 2.65 2.70 2.30 1.45 2.30
βBM 5.57 3.11 2.56 2.25 2.41 2.60 2.35 1.30 2.05

FS 2.65 2.60 2.60 2.46 2.45 2.25 1.70 1.40 1.65
βFS 3.56 2.71 2.87 2.50 2.30 2.81 1.15 1.35 1.76

FFS 3.55 2.85 2.40 2.90 2.85 2.65 2.42 2.21 1.91
βFFS 2.45 2.75 2.30 2.46 2.41 2.55 1.40 1.25 1.26

Running times in thousandths of seconds for a natural language problem

Prot 2 4 8 16 32 64 128 256 512

BM 73.16 49.87 43.46 38.75 38.46 37.19 37.26 34.95 34.55
βBM 71.94 49.08 43.49 38.76 37.59 37.77 36.74 35.53 34.39

FS 45.81 40.01 38.06 36.85 35.97 36.34 35.66 33.77 33.34
βFS 45.38 39.65 37.91 36.99 36.41 36.10 35.24 33.79 33.86

FFS 45.26 39.71 37.61 37.50 37.43 36.45 36.21 33.90 36.40
βFFS 45.82 40.01 38.01 37.20 35.80 36.55 34.95 32.45 31.65

Running-times in thousandths of seconds for a protein sequence problem

The above experimental results show that the algorithms βBM, βFS, and βFFS

have much the same running times of the algorithms BM, FS, and FFS. Only when the
size of the alphabet is 2 the “bounded” versions have a slightly worse performance
than their counterparts, especially for short patterns. On the other hand, as the
size of the alphabet and pattern increases, often the “bounded” versions moderately

11

outperform their counterpart. In particular, this behavior is more noticeable in the
case of the Forward-Fast-Search algorithm and in the cases of the real data problems.
The latter remark shows that our simplifying hypotheses in the analysis put forward
in Section 4 do not lead to unrealistic results.

6 Conclusions

Space and time economy are essential features of any practical algorithm. However,
they are often sacrificed in favor of asymptotic efficiency. This is the case of the most
practical string matching algorithms which show in practice a sublinear behavior at
the price of using extra memory of non-constant size to maintain auxiliary informa-
tion. The Boyer-Moore algorithm, for instance, requires additional O(m) and O(|Σ|)-
space to compute the tables relative to the good-suffix and to the bad-character
heuristics, respectively.

In this paper we have presented a practical modification of the good-suffix heuris-
tic, called bounded good-suffix heuristic, which uses only constant space and can be
computed in O(m)-time and constant space.

Through an extensive collection of experimental tests on the Boyer-Moore algo-
rithm and two of its most efficient variants (namely the algorithms Fast-Search and
Forward-Fast-Search) we have shown that the “bounded” versions are comparable with
their counterparts, which are often outperformed by them.

We are currently investigating the problem of finding an effective string matching
algorithm which requires only extra constant space. To this purpose, we expect that
the bad-character heuristic (which needs O(|Σ|)-space) needs to be dropped and
substituted by a heuristic of a different kind.

References

1. T. Berry and S. Ravindran. A fast string matching algorithm and experimental results. In J. Holub
and M. Šimánek, editors, Proceedings of the Prague Stringology Conference ’99, pages 16–28, Czech
Technical University, Prague, Czech Republic, 1999. Collaborative Report DC–99–05.

2. R. S. Boyer and J. S. Moore. A fast string searching algorithm. Commun. ACM, 20(10):762–772, 1977.
3. D. Breslauer. Saving comparisons in the Crochemore-Perrin string matching algorithm. Theoretical

Computer Science, 158:177–192, 1996.
4. D. Cantone and S. Faro. Fast-Search: a new variant of the Boyer-Moore string matching algorithm. In

K. Jansen, M. Margraf, M. Mastrolilli, and J.D.P. Rolim, editors, Proceedings of Second International
Workshop on Experimental and Efficient Algorithms (WEA 2003), volume 2647 of Lecture Notes in
Computer Science, pages 47–58. Springer-Verlag, 2003.

5. D. Cantone and S. Faro. Forward-Fast-Search: another fast variant of the Boyer-Moore string matching
algorithm. In M. Šimánek, editor, Proceedings of the Prague Stringology Conference ’03, pages 10–24,
Czech Technical University, Prague, Czech Republic, 2003.

6. D. Cantone and S. Faro. Searching for a substring with constant extra-space complexity. In P. Ferragina
and R. Grossi, editors, Proceedings of Third International Conference on FUN with Algorithms (FUN
2004), pages 118–131. Edizioni Plus, Università di Pisa, 2004.

7. M. Crochemore, A. Czumaj, L. Ga̧sieniec, S. Jarominek, T. Lecroq, W. Plandowski, and W. Rytter.
Speeding up two string matching algorithms. Algorithmica, 12(4/5):247–267, 1994.

8. M. Crochemore, L. Ga̧sieniec, and W. Rytter. Constant-space string-matching in sublinear average time.
Theor. Comput. Sci., 218(1):197–203, 1999.

9. M. Crochemore and D. Perrin. Two-way string-matching. Journal of the ACM, 38(3):651–675, 1991.
10. Z. Galil and J. Seiferas. Saving space in fast string-matching. SIAM J. Comput., 9(2):417– 438, 1980.
11. L. Ga̧sieniec, W. Plandowski, and W. Rytter. Constant-space string matching with smaller number of

comparisons: sequential sampling. In Z. Galil and E. Ukkonen, editors, Proc. 6th Symp. Combinatorial
Pattern Matching, volume 937 of Lecture Notes in Computer Science, pages 78–89. Springer-Verlag,
1995.

12

12. L. Ga̧sieniec, W. Plandowski, and W. Rytter. The zooming method: a recursive approach to time-space
efficient string-matching. Theor. Comput. Sci., 147(1–2):19–30, 1995.

13. L. J. Guibas and A. M. Odiyzko. A new proof of the linearity of the Boyer-Moore string searching
algorithm. SIAM J. Comput., 9(4):672–682, 1980.

14. R. N. Horspool. Practical fast searching in strings. Softw. Pract. Exp., 10(6):501–506, 1980.
15. D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt. Fast pattern matching in strings. SIAM J. Comput.,

6(1):323–350, 1977.
16. T. Lecroq. New experimental results on exact string-matching. Rapport LIFAR 2000.03, Université de

Rouen, France, 2000.
17. W. Rytter. A correct preprocessing algorithm for Boyer-Moore string searching. SIAM J. Comput.,

9:509–512, 1980.
18. D. M. Sunday. A very fast substring search algorithm. Commun. ACM, 33(8):132–142, 1990.

13

