
A Compact Representation of Nondeterministic

(Suffix) Automata for the Bit-Parallel Approach

Domenico Cantone, Simone Faro, and Emanuele Giaquinta

Università di Catania, Dipartimento di Matematica e Informatica
Viale Andrea Doria 6, I-95125 Catania, Italy
{cantone | faro | giaquinta}@dmi.unict.it

Abstract. We present a novel technique, suitable for bit-parallelism,
for representing both the nondeterministic automaton and the nonde-
terministic suffix automaton of a given string in a more compact way.
Our approach is based on a particular factorization of strings which on
the average allows to pack in a machine word of w bits automata state
configurations for strings of length greater than w. We adapted the Shift-

And and BNDM algorithms using our encoding and compared them with
the original algorithms. Experimental results show that the new variants
are generally faster for long patterns.

1 Introduction

The string matching problem consists in finding all the occurrences of a pattern P
of length m in a text T of length n, both defined over an alphabet Σ of size σ. The
Knuth-Morris-Pratt (KMP) algorithm was the first linear-time solution (cf. [5]),
whereas the Boyer-Moore (BM) algorithm provided the first sublinear solution
on average [3]. Subsequently, the BDM algorithm reached the O(n logσ(m)/m)
lower bound time complexity on the average (cf. [4]). Both the KMP and the
BDM algorithms are based on finite automata; in particular, they respectively
simulate a deterministic automaton for the language Σ∗P and a deterministic
suffix automaton for the language of the suffixes of P .

The bit-parallelism technique, introduced in [2], has been used to simulate
efficiently the nondeterministic version of the KMP automaton. The resulting
algorithm, named Shift-Or, runs in O(n⌈m/w⌉), where w is the number of bits
in a computer word. Later, a variant of the Shift-Or algorithm, called Shift-And,
and a very fast BDM-like algorithm (BNDM), based on the bit-parallel simulation
of the nondeterministic suffix automaton, were presented in [6].

Bit-parallelism encoding requires one bit per pattern symbol, for a total of
⌈m/w⌉ computer words. Thus, as long as a pattern fits in a computer word, bit-
parallel algorithms are extremely fast, otherwise their performances degrades
considerably as ⌈m/w⌉ grows. Though there are a few techniques to maintain
good performance in the case of long patterns, such limitation is intrinsic.

In this paper we present an alternative technique, still suitable for bit-
parallelism, to encode both the nondeterministic automaton and the nonde-
terministic suffix automaton of a given string in a more compact way. Our en-
coding is based on factorizations of strings in which no character occurs more

than once in any factor. This is the key towards separating the nondeterministic
part from the determinstic one of the corresponding automata. It turns out that
the nondeterministic part can be encoded with k bits, where k is the size of the
factorization. Though in the worst case k = m, on the average k is much smaller
than m, making it possible to encode large automata in a single or few computer
words. As a consequence, bit-parallel algorithms based on such approach tend
to be faster in the case of sufficiently long patterns. We will illustrate this point
by comparing experimentally different implementations of the Shift-And and the
BNDM algorithms.

2 Basic notions and definitions

Given a finite alphabet Σ, we denote by Σm, with m ≥ 0, the collection of strings
of length m over Σ and put Σ∗ =

⋃

m∈N
Σm. We represent a string P ∈ Σm,

also called an m-gram, as an array P [0 .. m − 1] of characters of Σ and write
|P | = m (in particular, for m = 0 we obtain the empty string ε). Thus, P [i] is
the (i + 1)-st character of P , for 0 6 i < m, and P [i .. j] is the substring of P
contained between its (i + 1)-st and the (j + 1)-st characters, for 0 6 i 6 j < m.
Also, we put first(P) = P [0] and last(P) = P [|P | − 1]. For any two strings P
and P ′, we say that P ′ is a suffix of P if P ′ = P [i .. m− 1], for some 0 6 i < m,
and write Suff (P) for the set of all suffixes of P . Similarly, P ′ is a prefix of P
if P ′ = P [0 .. i], for some 0 6 i < m. In addition, we write P.P ′, or more simply
PP ′, for the concatenation of P and P ′, and P r for the reverse of the string P ,
i.e. P r = P [m− 1]P [m− 2] . . . P [0].

Given a string P ∈ Σm, we indicate with A(P) = (Q, Σ, δ, q0, F) the nonde-
terministic automaton for the language Σ∗P of all words in Σ∗ ending with an
occurrence of P , where:

– Q = {q0, q1, . . . , qm} (q0 is the initial state)
– the transition function δ : Q×Σ −→P(Q) is defined by:

δ(qi, c) =Def

{q0, q1} if i = 0 and c = P [0]

{q0} if i = 0 and c 6= P [0]

{qi+1} if 1 6 i < m and c = P [i]

∅ otherwise

– F = {qm} (F is the set of final states).

Likewise, for a string P ∈ Σm, we denote by S(P) = (Q, Σ, δ, I, F) the
nondeterministic suffix automaton with ε-transitions for the language Suff (P)
of the suffixes of P , where:

– Q = {I, q0, q1, . . . , qm} (I is the initial state)
– the transition function δ : Q× (Σ ∪ {ε}) −→P(Q) is defined by:

δ(q, c) =Def

{qi+1} if q = qi and c = P [i] (0 6 i < m)

{q0, q1, . . . , qm} if q = I and c = ε

∅ otherwise

– F = {qm} (F is the set of final states).

The valid configurations δ∗(q0, S) reachable by the automata A(P) on input
S ∈ Σ∗ are defined recursively as follows:

δ∗(q0, S) =Def

{

{q} if S = ε,
⋃

q′∈δ(q0,S′) δ∗(q′, c) if S = S′c, for some c ∈ Σ and S′ ∈ Σ∗.

Much the same definition of reachable configurations holds for the automata
S(P), but in this case one has to use δ(I, ε) = {q0, q1, . . . , qm} for the base case.

Finally, we recall the notation of some bitwise infix operators on computer
words, namely the bitwise and “&”, the bitwise or “|”, the left shift “≪”
operator (which shifts to the left its first argument by a number of bits equal to
its second argument), and the unary bitwise not operator “∼”.

3 The bit-parallelism technique

Bit-parallelism is a technique introduced by Baeza-Yates and Gonnet in [2] that
takes advantage of the intrinsic parallelism of the bit operations inside a com-
puter word, allowing to cut down the number of operations that an algorithm
performs by a factor up to w, where w is the number of bits in the computer word.
Bit-parallelism is particularly suitable for the efficient simulation of nondeter-
ministic (suffix) automata; the first algorithms based on it are the well-known
Shift-And [2] and BNDM [6]. The Shift-And algorithm simulates the nondeter-
ministic automaton (NFA, for short) that recognizes the language Σ∗P , for a
given string P of length m. Its bit-parallel representation uses an array B of |Σ|
bit-vectors, each of size m, where the i-th bit of B[c] is set iff δ(qi, c) = qi+1

or equivalently iff P [i] = c, for c ∈ Σ, 0 6 i < m. Automaton configurations
δ∗(q0, S) on input S ∈ Σ∗ are then encoded as a bit-vector D of m bits (the initial
state does not need to be represented, as it is always active), where the i-th bit
of D is set iff state qi+1 is active, i.e. qi+1 ∈ δ∗(q0, S), for i = 0, . . . , m− 1. For a
configuration D of the NFA, a transition on character c can then be implemented
by the bitwise operations

D ← ((D ≪ 1) | 1) & B[c] .

The bitwise or with 1 (represented as 0m−11) is performed to take into ac-
count the self-loop labeled with all the characters in Σ on the initial state. When
a search starts, the initial configuration D is initialized to 0m. Then, while the
text is read from left to right, the automaton configuration is updated for each
text character, as described before.

The nondeterministic suffix automaton for a given string P is an NFA with
ε-transitions that recognizes the language Suff (P). The BNDM algorithm sim-
ulates the suffix automaton for P r with the bit-parallelism technique, using an
encoding similar to the one described before for the Shift-And algorithm. The i-
th bit of D is set iff state qi+1 is active, for i = 0, 1, . . . , m−1, and D is initialized

to 1m, since after the ε-closure of the initial state I all states qi represented in D
are active. The first transition on character c is implemented as D ← (D & B[c]),
while any subsequent transition on character c can be implemented as

D ← ((D ≪ 1) & B[c]) .

The BNDM algorithm works by shifting a window of length m over the text.
Specifically, for each window alignment, it searches the pattern by scanning the
current window backwards and updating the automaton configuration accord-
ingly. Each time a suffix of P r (i.e., a prefix of P) is found, namely when prior
to the left shift the m-th bit of D&B[c] is set, the window position is recorded.
A search ends when either D becomes zero (i.e., when no further prefixes of P
can be found) or the algorithm has performed m iterations (i.e., when a match
has been found). The window is then shifted to the start position of the longest
recognized proper prefix.

When the pattern size m is larger than w, the configuration bit-vector and all
auxiliary bit-vectors need to be splitted over ⌈m/w⌉ multiple words. For this rea-
son the performance of the Shift-And and BNDM algorithms, and of bit-parallel
algorithms more in general, degrades considerably as ⌈m/w⌉ grows. A common
approach to overcome this problem consists in constructing an automaton for a
substring of the pattern fitting in a single computer word, to filter possible can-
didate occurrences of the pattern. When an occurrence of the selected substring
is found, a subsequent naive verification phase allows to establish whether this
belongs to an occurrence of the whole pattern. However, besides the costs of the
additional verification phase, a drawback of this approach is that, in the case
of the BNDM algorithm, the maximum possible shift length cannot exceed w,
which could be much smaller than m.

In the next section we illustrate an alternative encoding for automata config-
urations, which in general requires less than one bit per pattern character and
still is suitable for bit-parallelism.

4 Tighter packing for bit-parallelism

We present a new encoding of the configurations of the nondeterministic (suffix)
automaton for a given pattern P of length m, which on the average requires
less than m bits and is still suitable to be used within the bit-parallel frame-
work. The effect is that bit-parallel string matching algorithms based on such
encoding scale much better as m grows, at the price of a larger space complexity.
We will illustrate such point experimentally with the Shift-And and the BNDM

algorithms, but our proposed encoding can also be applied to other variants of
the BNDM algorithm as well.

Our encoding will have the form (D, a), where D is a k-bit vector, with k 6 m
(on the average k is much smaller than m), and a is an alphabet symbol (the
last text character read) which will be used as a parameter in the bit-parallel
simulation with the vector D.

The encoding (D, a) is obtained by suitably factorizing the simple bit-vector
encoding for NFA configurations presented in the previous section. More specif-
ically, it is based on the following pattern factorization.

Definition (1-factorization). Let P ∈ Σm. A 1-factorization of size k of P is a
sequence 〈u1, u2, . . . , uk〉 of nonempty substrings of P such that:

(a) P = u1u2 . . . uk ;
(b) each factor uj contains at most one occurrence for any of the characters in

the alphabet Σ, for j = 1, . . . , k .

A 1-factorization of P is minimal if such is its size.

Remark. It can easily be checked that a 1-factorization 〈u1, u2, . . . , uk〉 of P is
minimal if first(ui+1) occurs in ui, for i = 1, . . . , k − 1.

Observe, also, that ⌈m
σ
⌉ 6 k 6 m holds, for any 1-factorization of size k of a

string P ∈ Σm, where σ = |Σ|. The worst case occurs when P = am, in which
case P has only the 1-factorization of size m whose factors are all equal to the
single character string a.

A 1-factorization 〈u1, u2, . . . , uk〉 of a given pattern P ∈ Σ∗ induces naturally
a partition {Q1, . . . , Qk} of the set Q\{q0} of nonstarting states of the canonical
automaton A(P) = (Q, Σ, δ, q0, F) for the language Σ∗P , where

Qi =Def

{

qPi−1

j=1
|uj |+1, . . . , q

P

i
j=1
|uj |

}

, for i = 1, . . . , k .

Notice that the labels of the arrows entering the states

qPi−1

j=1
|uj |+1, . . . , q

P

i
j=1
|uj |

,

in that order, form exactly the factor ui, for i = 1, . . . , k. Hence, if for any
alphabet symbol a we denote by Qi,a the collection of states in Qi with an
incoming arrow labeled a, it follows that |Qi,a| 6 1, since by condition (b) of
the above definition of 1-factorization no two states in Qi can have an incoming
transition labeled by a same character. When Qi,a is nonempty, we write qi,a

to indicate the unique state q of A(P) for which q ∈ Qi,a, otherwise qi,a is
undefined. On using qi,a in any expression, we will also implicitly assert that qi,a

is defined.
For any valid configuration δ∗(q0, Sa) of the automaton A(P) on some in-

put of the form Sa ∈ Σ∗, we have that q ∈ δ∗(q0, Sa) only if the state q has
an incoming transition labeled a. Therefore, Qi ∩ δ∗(q0, Sa) ⊆ Qi,a and, conse-
quently, |Qi ∩ δ∗(q0, Sa)| 6 1, for each i = 1, . . . , k. The configuration δ∗(q0, Sa)
can then be encoded by the pair (D, a), where D is the bit-vector of size k
such that D[i] is set iff Qi contains an active state, i.e., Qi ∩ δ∗(q0, Sa) 6= ∅, iff
qi,a ∈ δ∗(q0, Sa). Indeed, if i1, i2, . . . , il are all the indices i for which D[i] is set,
we have that δ∗(q0, Sa) = {qi1,a, qi2,a, . . . , qil,a} holds, showing that the above
encoding (D, a) can be inverted.

F-PREPROCESS (P, m)

for c ∈ Σ do S[c]← L[c]← 0
for c, c′ ∈ Σ do B[c][c′]← 0
b← 0, e← 0, k← 0
while e < m do

while e < m and S[P [e]] = 0 do
S[P [e]]← 1, e← e + 1

for i← b to e− 1 do S[P [i]]← 0
for i← b + 1 to e− 1 do

B[P [i− 1]][P [i]]← B[P [i− 1]][P [i]] | (1≪ k)
L[P [e− 1]]← L[P [e− 1]] | (1≪ k)
if e < m then

B[P [e− 1]][P [e]]← B[P [e− 1]][P [e]] | (1≪ k)
b← e
k← k + 1

M ← (1≪ (k − 1))
return (B, L, M, k)

Fig. 1. Preprocessing procedure for the construction of the arrays B and L relative to
a minimal 1-factorization of the pattern.

To show how to compute D′ in a transition (D, a)
A
−→ (D′, c) on character c

using bit-parallelism, it is convenient to give some further definitions.

For i = 1, . . . , k−1, we put ui = ui.first(ui+1). We also put uk = uk and call
each set ui the closure of ui.

Plainly, any 2-gram can occur at most once in the closure ui of any factor of
our 1-factorization 〈u1, u2, . . . , uk〉 of P . We can therefore encode the 2-grams
present in the closure of the factors ui by a |Σ| × |Σ| matrix B of k-bit vectors,
where the i-th bit of B[c1][c2] is set iff the 2-gram c1c2 is present in ui or,
equivalently, iff

(last(ui) 6= c1 ∧ qi,c2
∈ δ(qi,c1

, c2))∨
(i < k ∧ last(ui) = c1 ∧ qi+1,c2

∈ δ(qi,c1
, c2)) ,

(1)

for every 2-gram c1c2 ∈ Σ2 and i = 1, . . . , k.

To properly take care of transitions from the last state in Qi to the first state
in Qi+1, it is also useful to have an array L, of size |Σ|, of k-bit vectors encoding
for each character c ∈ Σ the collection of factors ending with c. More precisely,
the i-th bit of L[c] is set iff last(ui) = c, for i = 1, . . . , k.

We show next that the matrix B and the array L, which in total require

(|Σ|2 + |Σ|)k bits, are all is needed to compute the transition (D, a)
A
−→ (D′, c)

on character c. To this purpose, we first state the following basic property, which
can easily be proved by induction.

Transition Lemma. Let (D, a)
A
−→ (D′, c), where (D, a) is the encoding of the

configuration δ∗(q0, Sa) for some string S ∈ Σ∗, so that (D′, c) is the encoding
of the configuration δ∗(q0, Sac).

Then, for each i = 1, . . . , k, qi,c ∈ δ∗(q0, Sac) if and only if either

(i) last(ui) 6= a, qi,a ∈ δ∗(q0, Sa), and qi,c ∈ δ(qi,a, c), or
(ii) i > 1, last(ui−1) = a, qi−1,a ∈ δ∗(q0, Sa), and qi,c ∈ δ(qi−1,a, c). �

Now observe that, by definition, the i-th bit of D′ is set iff qi,c ∈ δ∗(q0, Sac)
or, equivalently by the Transition Lemma and (1), iff (for i = 1, . . . , k)

(D[i] = 1 ∧B[a][c][i] = 1 ∧ ∼L[a][i] = 1)∨
(i > 1 ∧D[i− 1] = 1 ∧B[a][c][i− 1] = 1 ∧ L[a][i− 1] = 1) iff

((D & B[a][c] & ∼L[a])[i] = 1 ∨ (i > 1 ∧ (D & B[a][c] & L[a])[i− 1] = 1)) iff

((D & B[a][c] & ∼L[a])[i] = 1 ∨ ((D & B[a][c] & L[a])≪ 1)[i] = 1) iff

((D & B[a][c] & ∼L[a]) | ((D & B[a][c] & L[a])≪ 1))[i] = 1 .

Hence D′ = (D & B[a][c] & ∼L[a]) | ((D & B[a][c] & L[a]) ≪ 1) , so that D′

can be computed by the following bitwise operations:

D ← D & B[a][c]
H ← D & L[a]
D ← (D & ∼H)|(H ≪ 1) .

To check whether the final state qm belongs to a configuration encoded as
(D, a), we have only to verify that qk,a = qm. This test can be broken into two
steps: first, one checks if any of the states in Qk is active, i.e. D[k] = 1; then, one
verifies that the last character read is the last character of uk, i.e. L[a][k] = 1. The
whole test can then be implemented with the bitwise test D & M & L[a] 6= 0k ,
where M = (1≪ (k − 1)).

The same considerations also hold for the suffix automaton S(P). The only
difference is in the handling of the initial state. In the case of the automaton
A(P), state q0 is always active, so we have to activate state q1 when the current
text symbol is equal to P [0]. To do so it is enough to perform a bitwise or of
D with 0k−11 when a = P [0], as q1 ∈ Q1. Instead, in the case of the suffix
automaton S(P), as the initial state has an ε-transition to each state, all the
bits in D must be set, as in the BNDM algorithm.

The preprocessing procedure which builds the arrays B and L described
above and relative to a minimal 1-factorization of the given pattern P ∈ Σm is
reported in Figure 1. Its time complexity is O(|Σ|2 + m). The variants of the
Shift-And and BNDM algorithms based on our encoding of the configurations of
the automata A(P) and S(P) are reported in Figure 2 (algorithms F-Shift-And

and F-BNDM, respectively). Their worst-case time complexities are O(n⌈k/w⌉)
and O(nm⌈k/w⌉), respectively, while their space complexity is O(|Σ|2⌈k/w⌉),
where k is the size of a minimal 1-factorization of the pattern.

5 Experimental results

In this section we present and comment the experimental results relative to
an extensive comparison of the BNDM and the F-BNDM algorithms and the

F-Shift-And (P, m, T, n)

(B, L, M, k)← F-PREPROCESS(P, m)

D ← 0
k

a← T [0]
for j ← 1 to n− 1

if a = P [0] then D ← D | 0k−1
1

if (D & M & L[a]) 6= 0
k

then Output(j − 1)
D ← D & B[a][T [j]]
H ← D & L[a]
D ← (D & ∼H) | (H ≪ 1)
a← T [j]

F-BNDM (P, m, T, n)

(B, L, M, k)← F-PREPROCESS(P r, m)
j ← m− 1
while j < n do

k← 1, l ← 0

D← ∼ 0
k, a← T [j]

while D 6= 0
k do

if (D & M & L[a]) 6= 0
k then

if k < m then
l← k

else Output(j)
D ← D & B[a][T [j − k]]
H ← D & L[a]
D ← (D & ∼H) | (H ≪ 1)
a← T [j − k]
k← k + 1

j ← j + m− l

(a) (b)

Fig. 2. Variants of Shift-And and BNDM based on the 1-factorization encoding.

Shift-And and F-Shift-And algorithms. In particular, in the BNDM case we have
implemented two variants for each algorithm, named single word and multiple
words, respectively. Single word variants are based on the automaton for a suit-
able substring of the pattern whose configurations can fit in a computer word;
a naive check is then used to verify whether any occurrence of the subpattern
can be extended to an occurrence of the complete pattern: specifically, in the
case of the BNDM algorithm, the prefix pattern of length min(m, w) is chosen,
while in the case of the F-BNDM algorithm the longest substring of the pattern
which is a concatenation of at most w consecutive factors is selected. Multiple
words variants are based on the automaton for the complete pattern whose con-
figurations are splitted, if needed, over multiple machine words. The resulting
implementations are referred to in the tables below as BNDM∗ and F-BNDM∗.

We have also included in our tests the LBNDM algorithm [8]. When the
alphabet is considerably large and the pattern length is at least two times the
word size, the LBNDM algorithm achieves larger shift lengths. However, the time
for its verification phase grows proportionally to m/w, so there is a treshold after
which its performance degrades significantly.

For the Shift-And case, only test results relative to the multiple words variant
have been included in the tables below, since the overhead due to a more complex
bit-parallel simulation in the single word case is not paid off by the reduction of
the number of calls to the verification phase.

The main two factors on which the efficiency of BNDM-like algorithms de-
pends are the maximum shift length and the number of words needed for repre-
senting automata configurations. For the variants of the first case, the shift length
can be at most the length of the longest substring of the pattern that fits in a
computer word. This, for the BNDM algorithm, is plainly equal to min(w, m),
so the word size is an upper bound for the shift length, whereas in the case of

the F-BNDM algorithm it is generally possible to achieve shifts of length larger
than w, as our encoding allows to pack more state configurations per bit on the
average as shown in a table below. In the multi-word variants, the shift lengths
for both algorithms, denoted BNDM∗ and F-BNDM∗, are always the same, as
they use the very same automaton; however, the 1-factorization based encoding
involves a smaller number of words on the average, especially for long patterns,
thus providing a considerable speedup.

All algorithms have been implemented in the C programming language and
have been compiled with the GNU C Compiler, using the optimization options
-O2 -fno-guess-branch-probability. All tests have been performed on a 2
GHz Intel Core 2 Duo and running times have been measured with a hardware
cycle counter, available on modern CPUs. We used the following input files: (i)
the English King James version of the “Bible” (with σ = 63); (ii) a protein
sequence from the Saccharomyces cerevisiae genome (with σ = 20); and (iii) a
genome sequence of 4, 638, 690 base pairs of Escherichia coli (with σ = 4).

Files (i) and (iii) are from the Canterbury Corpus [1], while file (ii) is from the
Protein Corpus [7]. For each input file, we have generated sets of 200 patterns of
fixed length m randomly extracted from the text, for m ranging over the values
32, 64, 128, 256, 512, 1024, 1536, 2048, 4096. For each set of patterns we reported
the mean over the running times of the 200 runs.

m Shift-And
∗

F-Shift-And
∗

LBNDM BNDM BNDM
∗

F-BNDM F-BNDM
∗

32 8.85 22.20 2.95 2.81 2.92 2.92 2.99
64 51.45 22.20 1.83 2.82 3.31 2.00 1.97

128 98.42 22.21 1.82 2.83 3.58 2.35 2.23
256 142.27 92.58 1.38 2.82 2.79 1.91 2.14
512 264.21 147.79 1.09 2.84 2.47 1.81 1.75

1024 508.71 213.70 1.04 2.84 2.67 1.77 1.72
1536 753.02 283.57 1.40 2.84 2.95 1.77 1.73
2048 997.19 354.32 2.24 2.84 3.45 1.75 1.90
4096 1976.09 662.06 10.53 2.83 6.27 1.72 2.92

Experimental results on the King James version of the Bible (σ = 63)

m Shift-And
∗

F-Shift-And
∗

LBNDM BNDM BNDM
∗

F-BNDM F-BNDM
∗

32 6.33 15.72 1.50 1.58 1.64 1.43 1.56
64 38.41 15.70 0.99 1.57 1.70 0.89 0.96

128 70.59 40.75 0.70 1.57 1.42 0.64 1.01
256 104.42 73.59 0.52 1.57 1.39 0.59 1.01
512 189.16 108.33 0.41 1.57 1.29 0.56 0.88

1024 362.83 170.52 0.54 1.58 1.46 0.55 0.91
1536 540.25 227.98 2.09 1.57 1.73 0.56 1.04
2048 713.87 290.24 7.45 1.58 2.12 0.56 1.20
4096 1413.76 541.53 32.56 1.58 4.87 0.59 2.33

Experimental results on a protein sequence from the Saccharomyces cerevisiae genome (σ = 20)

m Shift-And
∗

F-Shift-And
∗

LBNDM BNDM BNDM
∗

F-BNDM F-BNDM
∗

32 10.19 25.04 4.60 3.66 3.82 5.18 4.88
64 59.00 42.93 3.42 3.64 5.39 2.94 3.69

128 93.97 114.22 3.43 3.65 5.79 2.66 5.37
256 162.79 167.11 11.68 3.64 4.79 2.59 4.11
512 301.55 281.37 82.94 3.66 4.16 2.53 3.54

1024 579.92 460.37 96.13 3.64 4.21 2.50 3.42
1536 860.84 649.88 91.45 3.64 4.54 2.49 3.66
2048 1131.50 839.32 89.45 3.64 4.98 2.48 3.98
4096 2256.37 1728.71 85.87 3.64 7.81 2.48 6.22

Experimental results on a genome sequence of Escherichia coli (σ = 4)

(A) ecoli protein bible
32 32 32 32
64 63 64 64

128 72 122 128
256 74 148 163
512 77 160 169

1024 79 168 173
1536 80 173 176
2048 80 174 178
4096 82 179 182

(B) ecoli protein bible
32 15 8 6
64 29 14 12

128 59 31 26
256 119 60 50
512 236 116 102

1024 472 236 204
1536 705 355 304
2048 944 473 407
4096 1882 951 813

(C) ecoli protein bible
32 2.13 4.00 5.33
64 2.20 4.57 5.33

128 2.16 4.12 4.92
256 2.15 4.26 5.12
512 2.16 4.41 5.01

1024 2.16 4.33 5.01
1536 2.17 4.32 5.05
2048 2.16 4.32 5.03
4096 2.17 4.30 5.03

(A) The length of the longest substring of the pattern fitting in w bits.
(B) The size of the minimal 1-factorization of the pattern.
(C) The ratio between m and the size of the minimal 1-factorization of the pattern.

Concerning the BNDM-like algorithms, the experimental results show that
in the case of long patterns both variants based on the 1-factorization encoding
are considerably faster than their corresponding variants BNDM and BNDM∗.
In the first test suite, with σ = 63, the LBNDM algorithm turns out to be the
fastest one, except for very long patterns, as the treshold on large alphabets is
quite high. In the second test suite, with σ = 20, LBNDM is still competitive
but, in the cases in which it beats the BNDM

∗ algorithm, the difference is thin.
Likewise, the F-Shift-And variant is faster than the classical Shift-And algo-

rithm in all cases, for m > 64.

6 Conclusions

We have presented an alternative technique, suitable for bit-parallelism, to repre-
sent the nondeterministic automaton and the nondeterministic suffix automaton
of a given string. On the average, the new encoding allows to pack in a single ma-
chine word of w bits state configurations of (suffix) automata relative to strings
of more than w characters long. When applied to the BNDM algorithm, and for
long enough patterns, our encoding allows larger shifts in the case of the single
word variant and a more compact encoding in the case of the multiple words
variant, resulting in faster implementations.

Further compactness could be achieved with 2-factorizations (with the obvi-
ous meaning), or with hybrid forms of factorizations. Clearly, more involved fac-
torizations will also result into more complex bit-parallel simulations and larger
space complexity, thus requiring a careful tuning to identify the best degree of
compactness for the application at hand.

References

1. R. Arnold and T. Bell. A corpus for the evaluation of lossless compres-
sion algorithms. In DCC ’97: Proceedings of the Conference on Data Com-

pression, page 201, Washington, DC, USA, 1997. IEEE Computer Society.
http://corpus.canterbury.ac.nz/.

2. R. Baeza-Yates and G. H. Gonnet. A new approach to text searching. Commun.

ACM, 35(10):74–82, 1992.

3. R. S. Boyer and J. S. Moore. A fast string searching algorithm. Communications

of the ACM, 20(10):762–772, 1977.
4. M. Crochemore and W. Rytter. Text algorithms. Oxford University Press, 1994.
5. D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt. Fast pattern matching in strings.

SIAM Journal on Computing, 6(1):323–350, 1977.
6. G. Navarro and M. Raffinot. A bit-parallel approach to suffix automata: Fast

extended string matching. In M. Farach-Colton, editor, Proc. of the 9th Annual

Symposium on Combinatorial Pattern Matching, volume 1448 of Lecture Notes in

Computer Science, pages 14–33. Springer-Verlag, Berlin, 1998.
7. C. G. Nevill-Manning and I. H. Witten. Protein is incompress-

ible. In DCC ’99: Proceedings of the Conference on Data Compres-

sion, page 257, Washington, DC, USA, 1999. IEEE Computer Society.
http://data-compression.info/Corpora/ProteinCorpus/.

8. H. Peltola and J. Tarhio. Alternative algorithms for bit-parallel string matching. In
M. A. Nascimento, E. Silva de Moura, and A. L. Oliveira, editors, String Processing

and Information Retrieval, 10th International Symposium, SPIRE 2003, Manaus,

Brazil, October 8-10, 2003, Proceedings, volume 2857 of Lecture Notes in Computer

Science, pages 80–94. Springer-Verlag, Berlin, 2003.

