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Abstract. We investigate the problem of getting to a higher instruction-
level parallelism in string matching algorithms. In particular, starting
from an algorithm based on bit-parallelism, we propose two flexible ap-
proaches for boosting it with a higher level of parallelism. These ap-
proaches are general enough to be applied to other bit-parallel algo-
rithms. It turns out that higher levels of parallelism lead to more efficient
solutions in practical cases, as demonstrated by an extensive experimen-
tation.
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1 Introduction

Given a text t of length n and a pattern p of length m over some alphabet
Σ of size σ, the string matching problem consists in finding all occurrences of
the pattern p in the text t. This problem has been extensively studied in com-
puter science because of its direct applications to such diverse areas as text,
image and signal processing, speech analysis and recognition, information re-
trieval, computational biology and chemistry. String matching algorithms are
also basic components in many software applications. Moreover, they emphasize
programming methods that serve as paradigms in other fields of computer sci-
ence. Finally, they also play an important rôle in theoretical computer science
by providing challenging problems.

In this paper we focus on one of such engaging problems, namely the problem
of enhancing the instruction-level parallelism of string matching algorithms.

The instruction-level parallelism (ILP) is a measure of how many opera-
tions in an algorithm can be performed simultaneously. Ordinary programs are
typically written under a sequential execution model, in which instructions are
executed one after the other and in the order specified by the programmer. ILP
allows one to overlap the execution of multiple instructions or even to change
the order in which instructions are executed. The extent to which ILP is present
in programs heavely depends on the application. In certain fields, such as graph-
ics and scientific computing, ILP is largely used. However, workloads such as
cryptography exhibit much less parallelism.



sequence a
a1. p[j]← p[j] + 2
a2. h← p[i]× 3
a3. p[i]← p[j] + h

sequence b
b1. a← b← 0
b2. for i = 1 to n do
b3. a← a + (q[i]× p[i])
b4. b← b + (3× p[i])

sequence c
c1. j ← 0
c2. for i = 1 to n do
c3. j ← j + (p[i]× (3000 + q[i]))
c4. a← j mod 1000
c5. b← bj/1000c

Fig. 1. Three sequences of instructions.

Consider, for instance, the sequences of instructions shown in Fig. 1. In se-
quence a, operation a3 depends on the results of operations a1 and a2, and thus it
cannot be calculated until both operations are completed. However, operations
a1 and a2 can be calculated simultaneously as they are independent of each
other. If we assume that each operation can be completed in one time unit, then
these three instructions can be completed in two time units, yielding an ILP of
3/2.

Two main techniques can be adopted to increase the ILP of a sequence of
instructions: micro-architectural and software techniques.

Micro-architectural techniques used to exploit ILP include, among others,
instruction pipelining, where the execution of multiple instructions can be par-
tially overlapped, and superscalar execution, in which multiple execution units
are used to execute multiple instructions in parallel. For instance, in sequence
b, operation b3 and b4 are independent, so (if two different processors are avail-
able) they can be calculated in parallel for each iteration of the cycle in b2, thus
halving the time needed for their execution.

Instead, software techniques are generally more challenging as they strongly
depend on the processed data. Consider again sequence b shown in Fig. 1. As-
suming that the sum

∑n
i=1 p[i]q[i] is less than 1000, a smart programmer could

modify the sequence in the form proposed in sequence c, achieving again an ILP
of 2 while using a single processor.

Several string matching algorithms have been proposed to take advantage
of micro-architectural techniques for increasing ILP (see for instance [6, 7, 10,
5]). However, most of the work has been devoted to develop software techniques
for ILP to simulate efficiently the parallel computation of nondeterministic fi-
nite automata (NFAs) related to the search pattern, whose number of states is
about the pattern size (see for instance [2, 8, 9, 3]). Such simulations can be done
efficiently using the bit-parallelism technique, which consists in exploiting the
intrinsic parallelism of the bit operations inside a computer word [2]. In some
cases, bit-parallelism allows to reduce the overall number of operations up to a
factor equal to the number of bits in a computer word. Thus, although string
matching algorithms based on bit-parallelism are usually simple and have very
low memory requirements, they generally work well with patterns of moderate
length only.



When the pattern size is small enough, in favorable situations it becomes
possible to carry on in parallel the simulation of multiple copies of a same NFA
or of multiple distinct NFAs, thus getting to a second level of parallelism.

In this paper we illustrate this idea in the case of BNDM-like algorithms.
More specifically, not satisfied with the degree of parallelism of the bit-parallel
implementation of a variant of the Wide-Window algorithm, we present two differ-
ent approaches which yield a better ILP if compared with the original algorithm.
The methods we present turn out to be quite flexible and, as such, can be applied
to other bit-parallel algorithms as well.1

The rest of the paper is organized as follows. In Section 2 we introduce the
notations and terminology used in the paper. In Section 3, we introduce the
bit-parallel technique and describe some string matching algorithms based on it.
Next, in Section 4, we present two techniques to enhance ILP and illustrate two
new algorithms resulting from their application. Experimental data obtained by
running the algorithms under various conditions are presented and compared in
Section 5. Finally, we draw our conclusions in Section 6.

2 Notations and Terminology

Throughout the paper we will make use of the following notations and terminol-
ogy. A string p of length m ≥ 0 is represented as a finite array p[0 . .m − 1] of
characters from a finite alphabet Σ of size σ (in particular, for m = 0 we obtain
the empty string, also denoted by ε). Thus p[i] will denote the (i+1)-st character
of p, for 0 ≤ i < m, and p[i . . j] will denote the factor or substring of p contained
between the (i + 1)-st and the (j + 1)-st characters of p, for 0 ≤ i ≤ j < m. A
factor of the form p[0 . . i], also written pi, is called a prefix of p and a factor of
the form p[i . . m− 1] is called a suffix of p for 0 ≤ i ≤ m− 1. We write Suff(p)
for the collection of all suffixes of p. In addition, we write p.p′ or, more simply,
pp′ to denote the concatenation of the strings p and p′. Finally, we denote the
reverse of the string p by p̄ , i.e. p̄ = p[m− 1]p[m− 2] . . . p[0].

The nondeterministic suffix automaton with ε-transition NSA(p) =
(Q,Σ, δ, I, F ) for the language Suff(P ) of the suffixes of p is defined as follows:

– Q = {I, q0, q1, . . . , qm} (I is the initial state)
– F = {qm} (F is the set of final states)
– the transition function δ : Q× (Σ ∪ {ε}) −→ Pow(Q) is such that δ(q, c) =
{qi+1}, if q = qi and c = p[i] (0 ≤ i < m); δ(q, c) = {q0, q1, . . . , qm}, if q = I
and c = ε; and δ(q, c) = ∅, otherwise.

We will also make use of the following C-like notations to represent some
bitwise operations. In particular, “|” represents the bitwise Or; “&” denotes
the bitwise And; “∼” represents the one’s complement; “�” and “�” denote
respectively the bitwise right shift and the bitwise left shift.
1 A similar technique has been exploited in [4] to boost the approximate search of a

pattern, under the edit distance; the algorithm proposed in [4] performs a left to
right scan of the text while processing bw/mc text segments simultaneously (w is
the word size in bits). We thank an anonymous referee for pointing this out to us.



3 Bit-Parallelism: Starting from the First Level

Bit-parallelism exploits the intrinsic parallelism of bit operations inside computer
words, allowing in favorable cases to cut down the overall number of operations
up to the number of bits in a computer word.

Among the several algorithms based on bit-parallelism which have been devel-
oped over the years, the Backward-Nondeterministic-DAWG-Matching algorithm
(BNDM, for short) deserves particular attention as it has inspired various other
algorithms and is still considered one of the fastest algorithms based on bit-
parallelism [8].

The BNDM algorithm uses bit-parallelism to simulate the nondeterministic
suffix automaton NSA(p̄) for the reverse of the search pattern p.

To this purpose, the states of the automaton (except states I and q0) are put
in a one-one correspondence with the bits of a bit mask D, having size equal to
the length L of the pattern p.2 In this context, in any automaton configuration
bits corresponding to active states are set to 1, while bits corresponding to
inactive states are set to 0. Additionally, for each character c of the alphabet Σ,
the algorithm maintains a bit mask B[c] whose i-th bit is set to 1 iff p[i] = c.
Thus, the array B requires |Σ| · L bits.

The BNDM algorithm works by shifting a window of length m over the text.
For each window alignment, it searches the pattern by scanning the current
window backwards, updating the automaton configuration for each character
read. Whenever bit (m− 1) of D is set, a suffix of p̄ (i.e., a prefix of p) has been
found and the current position is recorded. A search ends when either D becomes
zero or the algorithm has performed m iterations. The window is then shifted
to the start position of the longest recognized proper suffix of p̄.

Because of the ε-closure of the initial state I, at the beginning of any search
all states are active, i.e. D = 1m. A transition on character c is implemented
(with the exception of the first one3) as follows:

D← (D� 1) & B[c] .

The BNDM algorithm scales in function of the number dm/ωe of words needed
to represent each of D and B[c], for c ∈ Σ, where ω is the size of the computer
word in bits. Its worst case time complexity is O(nmdm/ωe), though in practice
exhibits a sublinear behavior.

Several variants of the BNDM algorithm have been proposed over the years. In
what follows we briefly describe an efficient variant, the Wide-Window algorithm
(WW, for short) [3], which is particularly suitable for our purposes. However, we
slightly depart from its original version so as to make the algorithm parallelizable
in ways that will be explained in the next section.

2 Note that if L ≤ ω the entire bit mask D fits in a single computer word, otherwise
dL/ωe computer words are needed to represent it.

3 The first transition is simply encoded as D← D & B[c].



3.1 The Wide-Window Algorithm

Let p be a pattern of length m and let t be a text of length n. The WW algorithm
locates bn/mc attempt positions in t, namely positions j = km − 1, for k =
1, . . . , bn/mc. For each such position j, the pattern p is searched for in the attempt
window of size 2m−1 centered at j, i.e. in the substring t[j−m+1 .. j +m−1].
Each of such search phases is divided into two steps.

In the first step, the right side of the attempt window, consisting of the last
m characters, is scanned from left to right with the automaton NSA(p). In this
step, the start positions (in p) of the suffixes of p aligned with position j in t are
collected in a set

Sj = {0 ≤ i < m | p[i ..m− 1] = t[j .. j + m− 1− i]} .

In the second step, the left half of the attempt window, consisting of the first m
symbols, is scanned from right to left with the automaton NSA(p̄). During this
step, the end positions (in p) of the prefixes of p aligned with position j in t are
collected in a set

Pj = {0 ≤ i < m | p[0 .. i] = t[j − i .. j]} .

Taking advantage of the fact that an occurrence of p is located at position
(j − k) of t if and only if k ∈ Sj ∩ Pj , for k = 0, . . . ,m − 1, the number of all
the occurrences of p in the attempt window centered at j is readily given by the
cardinality |Sj ∩ Pj |.

Fig. 2(A) shows a simple schematization of the structure of an iteration of
the WW algorithm at a given position j in t. The two sequential phases are
represented by the arrows labeled 1 and 2, respectively.

It is straightforward to devise a bit-parallel implementation of the WW algo-
rithm. The sets P and S can be encoded by two bit masks P and S, respectively.
The nondeterministic automata NSA(p) and NSA(p̄) are then used for searching
the suffixes and prefixes of p on the right and on the left parts of the window, re-
spectively. Both automata state configurations and final state configuration can
be encoded by the bit masks D and M = (1� (m−1)), so that (D & M) 6= 0 will
mean that a suffix or a prefix of the search pattern p has been found, depending
on whether D is encoding a state configuration of the automaton NSA(p) or of
the automaton NSA(p̄). Whenever a suffix (resp., a prefix) of length (` + 1) is
found (with ` = 0, 1, . . . , m − 1), the bit S[m − 1 − `] (resp., the bit P[`]) is set
by one of the following bitwise operations:

S← S | ((D&M)� `) (in the suffix case)
P← P | ((D&M)� (m− 1− `)) (in the prefix case) .

If we are only interested in counting the number of occurrences of p in t,
we can just count the number of bits set in (S & P). This can be done in
log2(ω) operations by using a population count function, where ω is the size of
the computer word in bits (see [1]). Otherwise, if we want also to retrieve the
matching positions of p in t, we can iterate over the bits set in (S & P) by



repeatedly computing the index of the highest bit set and then masking it. The
function that computes the highest bit set of a register x is blog2(x)c, and can be
implemented efficiently in either a machine dependent or machine independent
way (see again [1]).

The resulting algorithm based on bit parallelism is named Bit-Parallel Wide-
Window algorithm (BpWw, for short). It needs dm/ωe words to represent the bit
masks D, S, P, and B[c], for c ∈ Σ. The worst case time complexity of the BpWw

algorithm is O(ndm/ωe+ bn/mc log2(ω)).
Additionally, we observe that the BpWw algorithm can be easily modified so

as to work on windows of size 2m. For the sake of clarity, we have just discussed
a simpler but slightly less efficient variant.

4 Bit-(Parallelism)2: Getting to the Second Level

In this section we present two different approaches which lead to a higher level
of parallelism. By way of demonstration we apply them to a bit-parallel version
of the Wide-Window algorithm,4 but our approaches can be applied as well to
other (more efficient) solutions based on bit-parallelism.

The two approaches can be summarized as follows:

– first approach: if the algorithm searches for the pattern in fixed-size text
windows then, at each attempt, process simultaneously two (adjacent or
partially overlapping) text windows by using in parallel two copies of a same
automaton;

– second approach: if each search attempt of the algorithm can be divided
into two steps (which possibly make use of two different automata) then exe-
cute simultaneously the two steps, by running the two automata in parallel.

Both variants use the SIMD (Single Instruction Multiple Data) paradigm.
This approach, on which vectorial instructions sets like MMX and SSE are based,
consists in executing the same instructions on multiple data in a parallel way.
Tipically, a register of size ω is logically divided into i blocks of k bits which are
then updated simultaneously.

In both variants of the BpWw algorithm, we divide a word of ω bits into
two blocks, each being used to encode a suffix automaton. Thus, the maximum
length of the pattern gets restricted to bω/2c. We denote with B the array of bit
masks encoding the suffix automaton NSA(p) and with C the array of bit masks
encoding the suffix automaton NSA(p̄).

4.1 The Bit-Parallel (Wide-Window)2 Algorithm

In the first variant, named Bit-Parallel (Wide-Window)2 (BpWw
2 , for short), two

partially overlapping windows in t, each of size 2m− 1, centered at consecutive
4 We chose the Wide-Window algorithm in our case study since its structure makes its

parallelization simpler.



(A) The Bit-Parallel Wide-Window algorithm (B) The Bit-(Parallel)2 Wide-Window algorithm

(C) The Bit-Parallel (Wide-Window)2 algorithm

Fig. 2. Structure of a searching iteration at a given position j in the text t of (A) the
BpWw algorithm, (B) the Bp

2 Ww algorithm, and (C) the BpWw
2 algorithm.

attempt positions j − m and j, are processed simultaneously. For the parallel
simulation two automata are represented in a single word and updated in parallel.

Specifically, each search phase is again divided into two steps. During the first
step, two copies of NSA(p) are operated in parallel to compute simultaneously
the sets Sj−m and Sj (lines 13-18). Likewise, in the second step, two copies of
NSA(p̄) are operated in parallel to compute the sets Pj−m and Pj (lines 20-25).
To represent the automata with a single word, the bit masks D, M, S, and P are
logically divided into two blocks, each of k = ω/2 bits.

During the first step, the most significant k bits of D encode the state of
the suffix automaton NSA(p) that scan the attempt window centered at j −m.
Similarly, the least significant k bits of D encode the state of the suffix automaton
NSA(p) that scans the attempt window centered at j. An analogous encoding
is used in the second step, but with the automaton NSA(p̄) in place of NSA(p).
Fig. 2(C) schematizes the structure of a search iteration of the BpWw

2 algorithm,
at given attempt positions j −m and j of t.

The most significant k bits of the bit mask S (resp., P) encode the set Sj−m

(resp., Pj−m), while the least significant k bits encode the set Sj (resp., Pj).
Thus, to properly detect suffixes in both windows, the bit mask M is initialized
(lines 8-9) with the value

M← (1� (m + k − 1)) | (1� (m− 1))

and transitions of the automata are performed in parallel with the following
bitwise operations (lines 14-15 and lines 21-22)

D← (D� 1) & ((B[t[j −m + `]]� k) | B[t[j + `]]) (in the first phase)
D← (D� 1) & ((C[t[j −m− `]]� k) | C[t[j − `]]) (in the second phase) ,

for ` = 1, . . . , m− 1 (when ` = 0, the left shift of D does not take place).



The remaining bitwise operations are left unchanged, as the automata con-
figurations are updated using the same instructions. Since two windows are si-
multaneously scanned at each search iteration, the shift becomes 2m, therefore
doubling the length of the shift with respect to the WW algorithm. The pseu-
docode of the algorithm BpWw

2 is reported in Fig. 3 (on the left).

4.2 The Bit-(Parallel)2 Wide-Window Algorithm

The second variant of the WW algorithm which we present next is called Bit-
(Parallel)2 Wide-Window algorithm (Bp

2Ww, for short). The idea behind it con-
sists in processing a single window at each attempt (as in the original WW algo-
rithm) but this time by scanning its left and right sides simultaneously. Fig. 2(B)
schematizes the structure of a searching iteration of the Bp

2 Ww algorithm, while
Fig. 3 (on the right) shows the pseudocode of the Bp

2 Ww algorithm.
As above, let p be a pattern of length m, and t be a text of length n. The

bit masks B and C which are used to perform the transitions on both automata
NSA(p) and NSA(p̄) are computed as in the BpWw algorithm (lines 3-7).

Automata state configurations are again encoded simultaneously in a same
bit mask D. Specifically, the most significant k bits of D encode the state of the
suffix automaton NSA(p), while the least significant k bits of D encode the state
of the suffix automaton NSA(p̄). The Bp

2 Ww algorithm uses the following bitwise
operations to perform transitions5 of both automata in parallel (lines 14-15,17):

D← (D� 1) & ((B[t[j + `]]� k) | C[t[j − `]]) ,

for ` = 1, . . . , m − 1. Note that in this case the left shift of k positions can be
precomputed in B by setting B[c]← B[c]� k, for each c ∈ Σ.

Using the same representation, the final-states bit mask M is initialized as

M← (1� (m + k − 1)) | (1� (m− 1)) (lines 8-9) .

At each iteration around an attempt position j of t, the sets Sj and P∗j are
computed, where Sj is defined as in the case of the BpWw algorithm, and P∗j is
defined as P∗j = {0 ≤ i < m | p[0 ..m − 1 − i] = t[j − (m − 1 − i) .. j]}, so that
Pj = {0 ≤ i < m | (m− 1− i) ∈ P∗j }.

The sets Sj and P∗j can be encoded with a single bit mask PS, in the rightmost
and the leftmost k bits, respectively. Positions in Sj and P∗j are then updated
simultaneusly in PS by executing the following operation (line 16):

PS← PS | ((D & M)� l) .

At the end of each iteration, the bit masks S and P are retrieved from PS with
the following bitwise operations (lines 19-20):

P← reverse(PS)� (ω −m) , S← PS� k ,

where reverse denotes the bit-reversal function, which satisfies reverse(x)[i] =
x[ω−1− i], for i = 0, . . . , ω−1 and any bit mask x. In fact, to obtain the correct

5 For ` = 0, D is simply updated by D← D & ((B[t[j + l]]� k) | C[t[j − l]]).



Bit-Parallel (Wide-Window)2 (p, m, t, n)
1. count← 0
2. k ← ω/2
3. for c ∈ Σ do B[c]← 0
4. for c ∈ Σ do C[c]← 0
5. for i← 0 to m− 1 do
6. B[p[i]]← B[p[i]]|(1� i)
7. C[p[m− 1− i]]← C[p[m− 1− i]]|(1� i)
8. H← 1� (m− 1)
9. M← (H� k) | H

10. j ← 2m− 1
11. while j < n−m do
12. D← ∼ 0, l← 0, S← 0
13. while D 6= 0 do
14. H← (B[t[j −m + l]]� k)|B[t[j + l]]
15. D← D & H
16. S← S | ((D & M)� l)
17. D← D� 1
18. l← l + 1
19. D← ∼ 0, l← 0, P← 0
20. while D 6= 0 do
21. H← (C[t[j −m− l]]� k) | C[t[j − l]]
22. D← D & H
23. P← P | ((D&M)� (m− 1− l))
24. D← D� 1
25. l← l + 1
26. count← count + popcount(P&S)
27. j ← j + 2m

Bit-(Parallel)2 Wide-Window (p, m, t, n)
1. count← 0
2. k ← ω/2
3. for c ∈ Σ do B[c]← 0
4. for c ∈ Σ do C[c]← 0
5. for i← 0 to m− 1 do
6. B[p[i]]← B[p[i]] | (1� (k + i))
7. C[p[m− 1− i]]← C[p[m− 1− i]]|(1� i)
8. H← 1� (m− 1)
9. M← (H � k) | H

10. j ← m− 1
11. while j < n−m do
12. D←∼ 0, l← 0, PS← 0
13. while D 6= 0 do
14. H← C[t[j − l]] | B[t[j + l]]
15. D← D & H
16. PS← PS | ((D & M)� l)
17. D← D� 1
18. l← l + 1
19. P← reverse(PS)� (ω −m)
20. S← PS� k
21. count← count + popcount(P&S)
22. j ← j + m

Fig. 3. The Bit-Parallel (Wide-Window)2 algorithm (on the left) and the Bit-(Parallel)2

Wide-Window algorithm (on the right) for the exact string matching problem.

value of P we used bit-reversal modulo m, which has been easily achieved by right
shifting reverse(PS) by (ω−m) positions. We recall that the reverse function can
be implemented efficiently with O(log2(ω)) operations (see [1]).

5 Experimental Results

We present next the results of an extensive experimental comparison of our
proposed variants Bp

2 Ww and BpWw
2 with the BpWw and BNDM algorithms.

In particular, we have tested two different implementations of the Bp
2Ww and

BpWw
2 algorithms, characterized by a different implementation of the population-

count function. One implementation uses the builtin version of the GNU C com-
piler (algorithms Bp

2 Ww and BpWw
2 ), while the second implementation uses the

population-count function described in [1] (algorithms Bp
2 Ww

bc and BpWw
2bc). Thus,

we compared the following string matching algorithms, in terms of running time:

– the Bit-Parallel Wide-Window algorithm (BpWw)
– the Bit-(Parallel)2 Wide-Window algorithm (Bp

2Ww)
– the Bit-(Parallel)2 Wide-Window algorithm with bit-count (Bp

2Ww
bc)

– the Bit-Parallel (Wide-Window)2 algorithm (BpWw
2 )

– the Bit-Parallel (Wide-Window)2 algorithm with bit-count (BpWw
2 bc)

– the Backward-Nondeterministic-DAWG-Matching algorithm (BNDM) .



All algorithms have been implemented in the C programming language and
tested on a PC with Intel Core2 processor of 1.66GHz running Linux and with a
32 bit word. In particular, all algorithms have been tested on seven Randσ prob-
lems, for σ = 2, 4, 8, 16, 32, 64, 128, where a Randσ problem consists of searching
a set of 400 random patterns of a given length in a 5Mb random text over a
common alphabet of size σ, with a uniform character distribution.

Only short patterns of length m = 2, 4, 6, 8, 10, 12, 14, 16 have been considered
in our tests, since the bit size of a word was 32 in our case. However, the same
approach could be applied with 64-bit processors or using Intel Processors with
SSE instructions on 128 bit registers, to process patterns up to a length of 32 and
of 64, respectively. Moreover, we observe that d2m/ωe different words could be
used for representing our suffix automata in case of longer patterns, overcoming
the bound on the value of m, though at the price of an increased running time.

In the following tables, running times are expressed in hundredths of seconds.
The best results among all bit-parallel WW variants have been boldfaced and
underlined. Additionally, running times relative to the BNDM algorithm have
been boldfaced and underlined when the BNDM algorithm outperforms the other
algorithms.

m 2 4 6 8 10 12 14 16

BpWw 816.50 634.00 521.25 442.50 381.50 334.25 300.75 271.00

Bp
2 Ww 775.00 481.50 332.25 255.50 211.75 183.00 162.25 146.00

Bp
2 Ww

bc 642.25 455.50 353.50 287.50 243.00 210.75 186.50 167.25

BpWw
2 905.75 700.75 554.50 455.25 383.00 331.50 291.75 268.50

BpWw
2 bc 659.75 566.75 478.50 404.50 349.25 306.75 274.50 256.50

BNDM 690.75 545.75 410.50 308.00 244.50 201.50 172.00 150.00

Results for a Rand2 problem

m 2 4 6 8 10 12 14 16

BpWw 615.75 381.25 278.00 221.50 185.50 159.25 140.25 125.50

Bp
2 Ww 527.00 311.75 232.75 186.75 155.75 134.00 118.25 106.25

Bp
2 Ww

bc 503.50 342.75 260.00 207.50 172.75 148.25 130.50 116.50

BpWw
2 645.00 386.25 279.25 219.50 179.75 152.25 132.75 119.25

BpWw
2 bc 557.75 375.50 276.25 217.25 180.00 154.00 135.50 122.25

BNDM 555.50 312.00 215.75 166.25 137.00 117.00 102.00 90.50

Results for a Rand4 problem

m 2 4 6 8 10 12 14 16

BpWw 422.75 273.50 199.75 153.75 123.75 103.50 89.25 79.00

Bp
2 Ww 375.75 234.50 173.25 137.50 115.25 100.50 89.50 80.75

Bp
2 Ww

bc 378.25 252.25 186.00 147.50 123.25 107.25 95.25 86.00

BpWw
2 407.75 239.00 164.75 126.25 103.25 89.00 78.25 70.75

BpWw
2 bc 398.50 249.25 172.25 131.00 107.50 92.00 81.50 73.25

BNDM 369.25 236.50 167.75 124.50 99.25 81.25 69.75 61.00

Results for a Rand8 problem



m 2 4 6 8 10 12 14 16

BpWw 353.75 204.00 154.75 127.50 108.25 92.75 80.75 69.50

Bp
2 Ww 258.25 185.00 145.00 114.25 94.00 78.75 67.75 59.00

Bp
2 Ww

bc 265.00 193.50 151.50 118.50 98.25 82.00 71.00 62.00

BpWw
2 278.50 173.50 129.00 99.25 79.75 65.75 56.25 48.50

BpWw
2 bc 282.75 181.25 134.25 103.25 82.75 68.25 58.00 50.25

BNDM 265.00 169.0 132.00 108.50 91.00 77.00 66.00 57.25

Results for a Rand16 problem

m 2 4 6 8 10 12 14 16

BpWw 273.75 160.75 119.25 98.25 85.00 76.00 68.50 62.75

Bp
2 Ww 191.50 136.50 114.75 95.75 81.50 71.50 63.00 56.00

Bp
2 Ww

bc 197.00 140.50 119.00 98.00 84.50 73.50 64.25 56.75

BpWw
2 215.00 129.00 98.75 82.00 70.50 61.00 53.50 46.25

BpWw
2 bc 219.50 132.50 101.25 83.25 72.00 62.50 54.75 47.50

BNDM 218.75 128.25 98.00 82.00 72.00 64.50 58.25 52.75

Results for a Rand32 problem

m 2 4 6 8 10 12 14 16

BpWw 250.00 136.75 98.50 79.50 67.50 59.50 53.75 49.25

Bp
2 Ww 160.00 107.00 89.00 75.00 65.25 59.75 54.00 50.25

Bp
2 Ww

bc 162.75 111.50 91.50 75.00 67.50 60.50 54.25 50.00

BpWw
2 184.25 104.25 77.00 63.25 55.25 49.50 45.00 41.25

BpWw
2 bc 186.00 105.75 78.25 64.25 55.75 49.75 45.50 41.75

BNDM 197.50 109.00 79.25 64.25 55.25 49.50 45.00 41.75

Results for a Rand64 problem

m 2 4 6 8 10 12 14 16

BpWw 238.50 126.25 88.25 69.25 58.00 50.00 44.50 40.25

Bp
2 Ww 145.75 92.75 73.50 61.50 53.00 49.00 43.50 41.50

Bp
2 Ww

bc 148.00 96.00 76.00 61.50 54.75 49.00 43.00 41.00

BpWw
2 168.25 91.25 65.25 52.50 44.25 39.25 36.00 33.00

BpWw
2 bc 169.00 92.00 65.75 52.50 45.00 39.75 36.00 33.00

BNDM 187.25 99.50 70.25 55.50 46.75 40.75 36.50 33.50

Results for a Rand128 problem

The above experimental results show that the algorithms obtained by apply-
ing a second level of parallelism perform always better then the original BpWw

algorithm. The gap is more evident in the case of short patterns or small al-
phabets. In particular the Bp

2Ww algorithm achieves its best performances with
small alphabets, while the BpWw

2 algorithm turns out to be the best choice for
patterns with a length greater than 4.

The BNDM algorithm obtains the best results in some cases and it performs
always better than the BpWw algorithm. It is interesting to observe that the
BNDM algorithm is outperformed by the Bp

2 Ww algorithm when the alphabet is
small and by the BpWw

2 algorithm in the case of large alphabets.



6 Conclusions

We have presented two variants of the Bit-Parallel Wide-Window algorithm which
use a second level of parallelization inspired by the Single Instruction Multiple
Data paradigm. While the Bp

2Ww variant is quite entangled to the original al-
gorithm, as it uses two different automata in parallel, the other one (BpWw

2 ) is
quite general and much the same approach can possibly be applied to other bit-
parallel algorithms. As the experimental results show, this technique provides
a non negligible speedup; this is particularly true for the second variant as it
allows to double the size of window shifts.
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