
Ant-CSP: an Ant Colony Optimization
Algorithm for the Closest String Problem

Simone Faro and Elisa Pappalardo

Università di Catania, Dipartimento di Matematica e Informatica
Viale Andrea Doria 6, I-95125 Catania, Italy

{faro | epappalardo} @dmi.unict.it

Abstract. Algorithms for sequence analysis are of central importance
in computational molecular biology and coding theory. A very interesting
problem in this field is the Closest String Problem (CSP) which consists
in finding a string t with minimum Hamming distance from all strings
in a given finite set. To overcome the NP-hardness of the CSP problem,
we propose a new algorithm, called Ant-CSP, based on the Ant Colony
Optimization metaheuristic. To assess its effectiveness and robustness,
we compared it with two state-of-the-art algorithms for the CSP problem,
respectively based on the simulated annealing and the genetic algorithm
approaches. Experimental results show that Ant-CSP outperforms both
of them in terms of quality of solutions and convergence speed.

Keywords: closest string problem, string comparison problems, meta-
heuristic algorithms, ant colony optimization, NP-hard problems.

1 Introduction

The task of finding a string that is close to each of the strings in a given finite set
is a combinatorial optimization problem particularly important in computational
biology and coding theory. In molecular biology, one of the main issues related
to DNA or protein sequences comparison is to find similar regions. Such problem
finds applications, for instance, in genetic drug target and genetic probes design
[16], in locating binding sites [25, 11], and in coding theory [6, 5], where one is
interested in determining the best way to encode a set of messages [24].

A precise definition of the Closest String Problem (CSP, for short) is given
next. To begin with, for a string s over a finite alphabet Σ, we denote by |s|
and s[i] the length of s and the i-th character of s, respectively. The Hamming
distance H(s, t) between two strings s and t, of equal length, is the number of
positions in which s and t differ.

Definition 1 (CSP problem). Let S = {s1, s2, ..., sn} be a finite set of n
strings, over an alphabet Σ, each of length m. The Closest String Problem for S
is to find a string t over Σ, of length m, that minimizes the Hamming distance
H(t, S) =Def maxs∈SH(t, s).

2

Recently, the CSP problem has received much attention. Frances and Litman
[5] have proved the NP-hardness of the problem for binary codes. Gramm et al.
[9, 10] provided a fixed-parameter algorithm for the CSP problem with running
time O(nm + ndd+1), where d is the parameter. Plainly, for large values of d,
such approach becomes prohibitive.

Several approximation algorithms have been proposed for the CSP problem:
Gasieniec et al. [6] and Lanctot et al. [16] developed two (4/3 + ε)-polynomial
time approximation algorithms. Then, based on such results, Li et al. [17] and
Ma and Sun [20] presented two new polynomial-time approximation algorithms.
However, the running time of these algorithms make them of theoretical im-
portance only. We mention also an approach based on the integer-programming
formulation proposed by Meneses, Pardalos et al. in [21]: the CSP is reduced to
an integer-programming problem, and then using a branch-and-bound algorithm
to solve it. Despite the high quality of solutions, such algorithm is not always ef-
ficient and has an exponential time complexity. Moreover, the branch-and-bound
tecnique leads easily to memory explosion.

Another approach to NP-hard problems consists in using heuristics. In 2005,
Liu et al. [18] proposed to apply two heuristic algorithms to solve the CSP
problem, based on the simulated annealing and the genetic algorithm approaches;
then in [19], Liu and Holger presented a hybrid algorithm which combines both
the genetic and the simulated annealing approaches, though limited only to
binary alphabets. We mention also the approach in [8], based on a combination
of a 2-approximation algorithm with local search strategies, consisting in taking
a string s and modifying it until a local optimal solution is found. However,
approximation algorithms sacrifice solution quality for speed [12].

In this paper we propose a new heuristic solution, Ant-CSP, based on the Ant
Colony Optimization (ACO) metaheuristic, and we compare it to those proposed
by Liu et al. [18], which are to date the fastest algorithms for the CSP problem.
The ACO metaheuristic is inspired by the foraging behaviour of ant colonies [3].
Artificial ants implemented in ACO are stochastic procedures that, taking into
account heuristic information and artificial pheromone trails, probabilistically
construct solutions by iteratively adding new components to partial solutions.

The paper is organized as follows. In Sections 2 and 3, we present in some
detail the two heuristic algorithms by Liu et al. [18] for the CSP problem, respec-
tively based on the simulated annealing and the genetic algorithm approaches.
Then, in Section 4, after describing the Ant Colony Optimization metaheuristic,
we illustrate our proposed solution, Ant-CSP. In Section 5, we discuss the results
of an extensive experimental comparison of our algorithm with the ones by Liu
et al. [18]. Finally, we report our conclusions in Section 6.

2 A simulated annealing algorithm for the CSP problem

Simulated Annealing (SA) is a generalization of Monte Carlo methods, originally
proposed by Metropolis and Ulam [23, 22] as a means of finding the equilibrium
configuration of a collection of atoms at a given temperature. The basic idea of

3

SA was taken from an analogy with the annealing process used in metallurgy, a
technique involving heating and controlled cooling of a material to increase the
size of its crystals and reduce their defects. In the original Metropolis scheme,
an initial state of a thermodynamic system is chosen, having energy E and
temperature T . Keeping T constant, the initial configuration is perturbed, and
the energy change ∆E is computed. If ∆E is negative, the new configuration
is always accepted, otherwise it is accepted with a probability given by the
Boltzmann factor e−(∆E/T). This process is repeated L times for the current
temperature, then the temperature is decremented and the entire process is
repeated until a frozen state is reached at T = 0. Due to such characteristics,
methods based on the SA may accept not only transitions that lead to better
solutions, but also transitions that lead to worse ones, though with probabilities
which tend to 0: at the beginning of the search, when temperatures are high,
the algorithm behaves as a random search and therefore bad solutions can be
accepted; whereas for lower values of T , solutions are located in promising regions
of the search space.

Kirkpatrick [15] first proposed to apply SA to solve combinatorial optimiza-
tion problems. The SA algorithm for the CSP problem by Liu et al. [18] works
much along the same lines as Kirkpatrick’s algorithm. Initially, the temperature
T is set to m/2, where m is the common string length. For each temperature
value, a block of L iterations is performed. At each iteration, a new string u′

of length m, over Σ, is constructed in the following way: the current string u
is split around a random point and the two substrings are interchanged. Then
the energy change ∆E = H(u′, S)−H(u, S) is evaluated, where S is the input
set of strings. If ∆E ≤ 0, u′ becomes the new current solution, otherwise u′ is
choosen as current solution with probability e−(∆E/T) only. At the end of each
block of iterations, the temperature value is multiplied by a reduction factor γ.
Liu et al. [18] report experiments with the parameters L = 100 and γ = 0.9. The
algorithm stops when a suitable termination criterion is met.

The pseudo-code of the algorithm SA for the CSP problem (SA-CSP) is shown
below.

3 A genetic algorithm for the CSP problem

Genetic algorithms were first proposed by John Holland [13, 7, 14, 1] as an ab-
straction of the biological evolution of living organisms. Genetic algorithms are
based on natural selection and sexual reproduction processes. The first mecha-
nism determines which members of a population survive and are able to repro-
duce, the second one assures genic recombination among individuals of a same
population. The principle of selection is based on a function, called fitness, that
measures “how good is an individual”: individuals with better fitness have higher
probability to reproduce and survive.

In the genetic algorithm for the CSP problem (GA-CSP, for short) pro-
posed by Liu et al. [18], an initial population P of random candidate solutions
ind0, ..., indpopsize−1 is generated. An individual/solution is a string of length m

4

Algorithm 1 SA-CSP(S)
1: randomly generate an initial string u
2: set an initial T = Tmax
3: set the number of iterations L
4: set γ
5: while not (TERMINATION CRITERION) do
6: for 0 ≤ I < L do
7: u′ ← mutate(u);
8: ∆ = evaluate energy(u′, S)− evaluate energy(u, S);
9: if ((∆ ≤ 0) or

(
(∆ > 0) and

(
e−∆/T > random(0, 1)

))
) then

10: u← u′;
11: end if
12: end for
13: T ← γ · T ;
14: end while

over the alphabet Σ of the input string set S. The fitness function f is evaluated
for each string in the current population, where f = m−Hmax and Hmax is the
maximum Hamming distance of s from all strings in S: therefore the larger is
f , the better will be the solution represented by the string. A crossover step al-
lows to generate new individuals from members of the current population. More
specifically, firstly two “parental” individual indx and indy, are randomly se-
lected according to their crossover probablity pc, which is proportional to the
fitness value of each individual. Then the crossover operator simply exchanges a
randomly selected segment in the pair of “parents” so that two new strings are
generated, each inheriting a part from each of the parents. At this intermediate
stage, there are two populations, namely, parents and offsprings. To create the
next generation, an elitist strategy is applied, i.e., the best individuals from both
populations are selected, based on their fitness. Finally, a mutation operator is
applied to each individual, depending on a probability pm: this consists in ex-
changing two random positions in the string. Reproduction and mutation steps
are repeated until a termination criterion is met. We report the pseudo-code of
GA-CSP as Algorithm 2 below.

4 Ant Colony Optimization

We present now a new algorithm for the CSP problem based on the Ant Colony
Optimization (ACO) metaheuristic.

ACO is a multi-agent metaheuristic approach particularly suited for hard
combinatorial optimization problems. ACO was firstly proposed by Dorigo [3] as
an innovative approach to the Traveling Salesman problem. It has been inspired
by the real behaviour of ant colonies, where the behaviour of single ants is di-
rected to the survival of the whole colony. In particular, in his analysis Dorigo
observed the foraging behaviour of colonies: when a new food source is found,
ants search the shortest and easiest way to return to nest. While walking from

5

Algorithm 2 GA-CSP(S)
1: t← 0
2: initialize P (t) = {indi ∈ P (t), i = 0, 1, ...popSize− 1}
3: evaluate P (t) to get the fitness of each individual in S
4: calculate the probability of each individual, pi ∝ indi.fitness
5: currentBest = best ind(P (t));
6: bestInd = indcurrBest;
7: while t < TERMINATION CRITERION do
8: i = 0;
9: while i < popSize/2 do

10: select (indxindy) from P (t) according to their pind
11: {chd(2i), chd(2i+1)} = crossover(indx, indy);
12: end while
13: i = 0;
14: while i < popSize do
15: r ← random(0, 1);
16: if (r < pm) then
17: mutate(chdi);
18: end if
19: P (t+ 1)← P (t+ 1)

⋃
chdi

20: end while
21: evaluate P (t+ 1) to get the fitness of each individual in S
22: calculate the probability of each individual, pi ∝ indi.fitness
23: worst = worst ind(P (t+ 1));
24: indworst ← bestInd;
25: currBest = best ind(P (t+ 1));
26: if (indcurrBest.fitness > bestInd.fitness) then
27: bestInd = indcurrBest;
28: end if
29: t← t+ 1;
30: end while

food sources to the nest, and vice versa, ants deposit on the ground a substance
called pheromone [4]. Ants can smell pheromones and, when choosing their way,
they select, with higher probability, paths marked by strong pheromone con-
centrations. It has been proved that pheromone trails make shortest paths to
emerge over other paths [2], due to the fact that pheromone density tends to be
higher on shortest paths.

In analogy with the real behaviour of ant colonies, ACO applies pheromone
trails and social behaviour concepts to solve hard optimization problems. In
short, ACO algorithms work as follows: a set of asynchronous and concurrent
agents, a colony of ants, moves through the states of the problem. To determine
the next state, ants apply stochastic local decisions based on pheromone trails.
Ants can release (additional) pheromone into a state, while building a solution,
and/or after a solution has been built, by moving back to all visited states.

6

In an elitist strategy, only the ant that has produced the best solution is
allowed to update pheromone trails. In general, the amount of pheromone de-
posited is proportional to the quality of the solution built.

To avoid a too rapid convergence towards suboptimal regions, ACO algo-
rithms include another mechanism for the updating of pheromone trails, namely,
pheromone evaporation. This consists in decreasing over time the intensity of
the components of pheromone trails, as pheromone density tends to increase on
shortest paths. Thus, the evaporation mechanism limits premature stagnation,
namely situations in which all ants repeatedly construct the same solutions,
which would prevent further explorations of the search space.

The ACO metaheuristic has two main application fields: NP-hard problems,
whose best known solutions have exponential time worst-case complexity, and
shortest path problems, in which the properties of the problem’s graph repre-
sentation can change over time, concurrently with the optimization process. As
the CSP problem is NP-hard, and searching a closest string can be viewed as
finding a minimum path into the graph of all feasible solutions, it is natural to
apply the ACO heuristic to the CSP problem. This is what we do next.

4.1 The Ant-CSP algorithm

We describe now our proposed ACO algorithm for the CSP problem, called
Ant-CSP. Given an input set S of n strings of length m, over an alphabet Σ,
at each iteration of the Ant-CSP algorithm, a COLONY consisting of u ants
is generated. Each of the artificial ant, say COLONYi, searches for a solution
by means of the find solution procedure, by building a string while it moves
character by character on a table T , represented as a |Σ|×mmatrix. The location
T [i, j], with 1 ≤ i ≤ |Σ| and 0 ≤ j ≤ m − 1, mantains the pheromone trail for
the i-th character at the j-th position of the string.

Ants choose “their way” probabilistically, using a probability depending on
the value T [i, j] of the local pheromone trail: the normalized probability for
each character is computed, depending on the pheromone value deposited on it.
So, the algorithm probabilistically chooses a character. Initially, T [i, j] = 1/|Σ|;
when each ant has built and evaluated its own solution, respectively by means
of the find solution() and evaluate solution() procedures, pheromone trails are
updated. We adopted an elitist strategy, so that only the ant that has found the
best solution, say COLONYbest, updates the pheromone trails, by depositing
on the characters that appear in the best solution an amount of pheromone
proportional to the quality of the solution itself. In particular:

T (t+1)[i, j] = T (t)[i, j] +
(

1− HD
m

)
,

where HD is the maximum Hamming distance of the current string from all
strings in S. Thus, the larger is the pheromone trail for the i-th character, the
higher will be the probability that this character will be chosen in the next
iteration.

7

Pheromone values are normalized and are used as probabilities. After ad-
ditional pheromone trail on the best string has been released, the evaporation
procedure is applied: this consists in decrementing each value T [i, j] by a con-
stant factor ρ; in our experiments, we put ρ = 0.03.

The pseudo-code of the Ant-CSP algorithm is shown as Algorithm 3 below.

Algorithm 3 Ant-CSP(S)
1: initialize table T
2: for i← 1 to m do
3: for j ← 1 to |Σ| do
4: Tij ← 1/|Σ|
5: end for
6: end for
7: initialize COLONY
8: while not (TERMINATION CRITERION) do
9: for i← 1 to u do

10: COLONYi ← new ant()
11: COLONYi.find solution()
12: COLONYi.evaluate solution()
13: end for
14: for i← 1 to m do . start pheromone evaporation
15: for j ← 1 to |Σ| do
16: Tij ← (1− ρ) · Tij ;
17: end for
18: end for . end pheromone evaporation
19: COLONYbest.update trails()
20: end while

5 Experimental results

We have tested the SA-CSP, the GA-CSP, and the ACO-CSP algorithms using the
azotated compounds alphabet Σ = {A,C,G, T} of the fundamental components
of nucleic acids.
In our test platform, we considered a number of input strings n ∈ {10, 20, 30, 40,
50}, and string length m ∈ {10, 20, ..., 50} ∪ {100, 200, ..., 1000}. For each of a
randomly generated problem instances, all algorithms were run 20 times.

The total colony size for the Ant-CSP algorithm as well as the population size
for the GA-CSP algorithm have been set to 10, whereas the number of generations
has been set to 1500. In the case of the SA-CSP algorithm, we fixed the number
of function evaluations in 15,000, making the number of function evaluations
comparable to the computational work performed by the former two algorithms.

Our tests have been performed on an Intel Pentium M 750, 1.86 GHz, 1 GB
RAM, running Ubuntu Linux.

8

We report the results of our tests in the five tables below: HD indicates
the Hamming distance value, that we want to minimize, Time is the running
time in milliseconds. For each length, we computed the average (AVG) of the
closest string scores found in the 20 runs and the standard deviation σ. Also, we
computed the average of the running time over the 20 runs (AVG). Best results
are reported in bold.

Experimental results show that almost always the Ant-CSP outperforms both
the GA-CSP and the SA-CSP algorithms both in terms of solution quality and
efficiency. As a matter of fact, the tables below show that our algorithm is much
faster than both the GA-CSP and SA-CSP algorithms. In particular, in the case
of short instances, i.e. for 10 ≤ m ≤ 50, the Ant-CSP algorithm is from 5 to 36
times faster than GA-CSP.
Furthermore, it turns out that as n increases, the gap between the running time
of the Ant-CSP and the SA-CSP algorithms becomes considerable. In Figure 1
we report the running times of the algorithms for some sets of strings.

We also remark that the Ant-CSP provides results of a better quality than
the other two algorithms in terms of Hamming distance. In fact, the coopera-
tion among the colony ants and the pheromone trails tend to orient the search
towards optimal solutions, allowing to explore and modify local optima. On the
other hand, the SA-CSP algorithm behaves as a random search, as it simply
modifies a string without considering local promising solutions. Likewise, the
GA-CSP algorithm performs random mutations and crossovers, whereas the Ant-
CSP probabilistically selects each character for the solution.

We note also that the Ant-CSP algorithm is quite robust, as its standard
deviation σ remains low.

The above considerations show that our algorithm represents a valid and
innovative alternative to the SA-CSP and GA-CSP algorithms.

SA-CSP GA-CSP Ant-CSP
Size (m) HD Time HD Time HD Time

AVG σ AVG AVG σ AVG AVG σ AVG

10 8.45 0.497 67.5 6.9 0.3 1840 7.05 0.218 50.5
20 15.9 0.384 112 13.3 0.714 1860 13.1 0.589 97
30 23.6 0.663 216 19.6 0.583 2700 19.3 0.557 200
40 31.4 0.589 313 25.3 0.714 3040 25.1 0.654 281
50 38.8 0.678 428 31.8 0.994 3220 31.6 0.805 386
100 75.9 0.943 465 63.4 1.31 2060 62.2 0.766 433
200 151 1.04 901 129 1.43 2290 124 1.58 855
300 226 1.18 1350 195 2.19 2540 188 1.57 1290
400 301 2.01 1780 262 2.52 2720 252 1.68 1700
500 375 2.05 2190 330 2.52 2940 317 2.15 2110
600 450 1.87 2740 400 3.71 3800 385 2.5 2920
700 525 1.68 3980 470 3.43 4860 451 2.95 4270
800 600 1.51 3720 540 4.04 4370 517 2.11 3860
900 675 1.19 5670 610 4.01 6110 585 4.05 5690
1000 750 1.53 7720 680 4.12 7850 652 3.72 7850

Table 1. Results for inputset of 10 strings of length m.

9

SA-CSP GA-CSP Ant-CSP
Size (m) HD Time HD Time HD Time

AVG σ AVG AVG σ AVG AVG σ AVG

10 8.95 0.384 211 7.95 0.218 3560 7.95 0.218 132
20 17.1 0.589 342 14.8 0.4 3460 14.8 0.4 258
30 24.8 0.536 502 21.6 0.497 3300 21.4 0.49 370
40 32.5 0.497 602 28.1 0.477 3220 28 0.632 452
50 40.1 0.726 735 35 0.589 3300 34.8 0.536 546
100 78.4 0.663 874 69.5 0.921 2250 67.7 0.853 646
200 154 0.917 2070 140 1.74 3370 135 0.963 1460
300 229 1.16 2300 210 2.09 2970 203 1.95 1810
400 305 1.18 4460 281 1.95 4980 272 1.56 3090
500 380 1.25 5270 353 2.52 4930 341 1.65 3510
600 456 1.46 4610 426 1.89 4180 411 1.68 3660
700 531 1.16 6280 499 3.51 4770 482 1.95 4350
800 607 1.32 11300 572 1.88 9370 553 2.84 7780
900 682 1.49 13700 645 2.58 10800 623 2.51 10400
1000 757 1.69 15700 720 2.79 11800 695 2.49 11800

Table 2. Results for inputset of 20 strings of length m.

SA-CSP GA-CSP Ant-CSP
Size (m) HD Time HD Time HD Time

AVG σ AVG AVG σ AVG AVG σ AVG

10 9 0 245 8.25 0.433 2830 8.15 0.357 148
20 17.3 0.458 518 15.3 0.458 3460 15.2 0.4 341
30 25.1 0.357 772 22.7 0.458 3520 22.4 0.477 508
40 33 0.316 985 29.5 0.5 3720 29.1 0.357 638
50 40.9 0.539 1230 36.9 0.357 4180 36.1 0.436 814
100 79.3 0.557 1280 72.2 0.726 2450 70.8 0.536 850
200 156 0.829 4760 144 1.08 5800 140 0.975 2750
300 232 0.831 6640 216 1.77 6610 209 1.27 4260
400 308 0.829 9160 290 2.93 8160 280 1.28 5550
500 383 0.963 11110 362 1.66 8830 351 1.79 6760
600 459 1.24 12500 436 2.14 9800 423 1.95 7610
700 534 1.03 14500 510 2.57 10900 495 2.01 9430
800 610 1.14 17700 583 2.57 12600 568 2.36 10300
900 686 1.69 19800 658 3.42 13200 640 2.09 11400
1000 760 2.24 19800 731 2.97 12400 713 2.29 10700

Table 3. Results for inputset of 30 strings of length m.

6 Conclusions

In this paper, we proposed a new promising method for the CSP problem and
we presented and commented some experimental results.

We compared our approach, Ant-CSP, to two heuristic algorithms proposed
by Liu et al. [18]: the SA-CSP algorithm, based on the simulated annealing
approach, and the GA-CSP algorithm, based on the genetic algorithm approach.
Experimental results show that our algorithm computes almost always better

10

SA-CSP GA-CSP Ant-CSP
Size (m) HD Time HD Time HD Time

AVG σ AVG AVG σ AVG AVG σ AVG

10 9.4 0.49 428 8.9 0.3 4000 8.55 0.497 252
20 17.6 0.477 742 15.9 0.218 3990 15.8 0.433 471
30 25.6 0.49 1210 23.1 0.384 4690 22.9 0.384 754
40 33.3 0.458 1540 30.4 0.572 4640 30.1 0.218 962
50 41.2 0.433 1940 37.5 0.497 5070 37 0.589 1220
100 80 0.669 2080 73.6 0.663 3420 71.7 0.477 1260
200 157 0.889 5740 146 1.24 5570 142 0.669 3230
300 233 0.889 8760 219 0.954 8640 214 1.05 5550
400 309 0.831 10090 293 1.87 9510 285 1.16 6560
500 385 0.748 14800 368 2.07 11000 358 1.24 7330
600 461 1.01 17800 441 1.69 13100 431 1.91 7940
700 536 1.05 21700 515 2.1 14300 503 1.01 11700
800 612 1.1 23500 590 2.34 14300 577 1.93 11300
900 688 1.34 26700 664 2.52 17200 649 2.31 15600
1000 763 1.43 30900 738 2.62 15900 722 1.91 16000

Table 4. Results for inputset of 40 strings of length m.

SA-CSP GA-CSP Ant-CSP
Size (m) HD Time HD Time HD Time

AVG σ AVG AVG σ AVG AVG σ AVG

10 9.45 0.497 574 9 0 4390 8.85 0.357 334
20 17.8 0.433 1030 16.2 0.4 4620 16.1 0.218 620
30 25.9 0.3 1490 23.5 0.5 4820 23.2 0.4 899
40 33.5 0.497 1960 30.9 0.357 5070 30.6 0.497 1180
50 41.7 0.458 2410 38.2 0.433 5270 37.8 0.433 1450
100 80.6 0.49 2970 74.7 0.64 3970 73.3 0.64 1750
200 158 0.671 9090 148 0.91 8530 144 0.698 5550
300 234 0.678 14000 222 0.91 10900 216 0.889 8320
400 310 0.792 18500 297 1.65 13100 289 1.41 11100
500 386 1.16 21900 369 1.69 14800 362 1.24 12900
600 462 1.13 21200 444 1.5 14500 434 1.74 12200
700 538 1.14 26800 519 1.9 17300 508 1.7 15500
800 614 1.43 28900 594 2.9 14000 582 2.29 13900
900 689 1.1 33500 667 1.64 19700 656 2.11 18800
1000 765 1.19 36600 742 3.09 21000 729 1.68 18300

Table 5. Results for inputset of 50 strings of length m.

solutions and is much faster than the GA-CSP and SA-CSP algorithms, regardless
the number and the length of input strings.

Future works will be focused on two fronts: performance improvements and
search for heuristic information to improve quality of solutions and convergence
speeds. Additionally, we plan to extend our algorithm to the Closest Substring
Problem.

Acknowledgments

The authors thank the referees for their helpful comments.

11

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

200 400 600 800 1000

ru
nn

in
g

tim
e

(m
s)

size (#chars)

inputset n=20

Ant-CSP
SA-CSP
GA-CSP

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

200 400 600 800 1000

ru
nn

in
g

tim
e

(m
s)

size (#chars)

inputset n=40

Ant-CSP
SA-CSP
GA-CSP

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

200 400 600 800 1000

ru
nn

in
g

tim
e

(m
s)

size (#chars)

inputset n=30

Ant-CSP
SA-CSP
GA-CSP

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

200 400 600 800 1000

ru
nn

in
g

tim
e

(m
s)

size (#chars)

inputset n=50

Ant-CSP
SA-CSP
GA-CSP

Fig. 1. Running times plot for n = 20, 30, 40, 50. Notice that, as n increases, the gap
between Ant-CSP and the other two algorithms becomes more noticeable.

References

1. L.B. Booker, D.E. Goldberg, and J.H. Holland. Classifier systems and genetic
algorithms. Artif. Intell., 40(1-3):235–282, 1989.

2. J.L. Deneubourg, S. Aron, S. Goss, and J.M. Pasteels. The self-organizing ex-
ploratory pattern of the argentine ant. Journal of Insect Behavior, 3(2):159–168,
1990.

3. M. Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis, Diparti-
mento di Elettronica, Politecnico di Milano, Italy, 1992.

4. M. Dorigo, G.D. Caro, and L.M. Gambardella. Ant Algorithms for Discrete Opti-
mization. Artificial Life, 5(2):137–172, 1999.

5. M. Frances and A. Litman. On covering problems of codes. Theory of Computing
Systems, 30(2):113–119, 1997.

6. L. Gasieniec, J. Jansson, and A. Lingas. Efficient approximation algorithms for
the Hamming center problem. In Proceedings of the 10th annual ACM-SIAM Sym-
posium on Discrete algorithms, pages 905–906. Society for Industrial and Applied
Mathematics Philadelphia, PA, USA, 1999.

7. D.E. Goldberg and J.H. Holland. Genetic Algorithms and Machine Learning.
Machine Learning, 3(2):95–99, 1988.

12

8. F.C. Gomes, C.N. Meneses, P.M. Pardalos, and G.V.R. Viana. A parallel multistart
algorithm for the closest string problem. Computers and Operations Research,
35(11):3636–3643, 2008.

9. J. Gramm, R. Niedermeier, and P. Rossmanith. Exact solutions for Closest String
and related problems. In ISAAC ’01: Proceedings of the 12th International Sympo-
sium on Algorithms and Computation, pages 441–453, London, UK, 2001. Springer-
Verlag.

10. J. Gramm, R. Niedermeier, and P. Rossmanith. Fixed-parameter algorithms for
closest string and related problems. Algorithmica, 37(1):25–42, 2003.

11. G.Z. Hertz, G.W. Hartzell, and G.D. Stormo. Identification of consensus patterns
in unaligned DNA sequences known to be functionally related. Bioinformatics,
6(2):81–92, 1990.

12. D.S. Hochba. Approximation algorithms for NP-hard problems, volume 28. ACM
New York, NY, USA, 1997.

13. J.H. Holland. Adaptation in Natural and Artificial Systems. The MIT Press, 1992.
14. J.H. Holland. Genetic algorithms computer programs that “evolve” in ways that

resemble natural selection can solve complex problems even their creators do not
fully understand. Scientific American, 267:62–72, 1992.

15. S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by Simulated Anneal-
ing. Science, 220(4598):671–680, 1983.

16. J.K. Lanctot, M. Li, B. Ma, S. Wang, and L. Zhang. Distinguishing string se-
lection problems. In Proceedings of the 10th annual ACM-SIAM Symposium on
Discrete algorithms, pages 633–642. Society for Industrial and Applied Mathemat-
ics Philadelphia, PA, USA, 1999.

17. M. Li, B. Ma, and L. Wang. On the closest string and substring problems. Journal
of the ACM, 49(2):157–171, 2002.

18. X. Liu, H. He, and O. Sykora. Parallel Genetic Algorithm and Parallel Simulated
Annealing Algorithm for the Closest String Problem. In Advanced Data Mining and
Applications, volume 3584 of Lecture Notes in Computer Science, pages 591–597.
Springer Berlin/Heidelberg, 2005.

19. X. Liu, M. Holger, Z. Hao, and G. Wu. A Compounded Genetic and Simulated An-
nealing Algorithm for the Closest String Problem. In Bioinformatics and Biomed-
ical Engineering, 2008. ICBBE 2008. The 2nd International Conference on, pages
702–705, 2008.

20. B. Ma and X. Sun. More Efficient Algorithms for Closest String and Substring
Problems. Lecture Notes in Computer Science, 4955:396, 2008.

21. C.N. Meneses, Z. Lu, C.A.S. Oliveira, and P.M. Pardalos. Optimal Solutions for the
Closest-String Problem via Integer Programming. Informs Journal on Computing,
16(4):419–429, 2004.

22. N. Metropolis, A.E. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller.
Perspective on “Equation of state calculations by fast computing machines”. J.
Chem. Phys, 21:1087–1092, 1953.

23. N. Metropolis and S. Ulam. The Monte Carlo method. Journal of the American
Statistical Association, 44(247):335–341, 1949.

24. S. Roman. Coding and information theory. Springer, 1992.
25. G.D. Stormo and G.W. Hartzell. Identifying protein-binding sites from unaligned

DNA fragments. In Proc. Natl. Acad. Sci. USA, volume 86, pages 1183–1187, 1989.

