
Efficient Pattern Matching on Binary Strings?

Simone Faro1 and Thierry Lecroq2

1 Dipartimento di Matematica e Informatica, Università di Catania, Italy
2 University of Rouen, LITIS EA 4108, 76821 Mont-Saint-Aignan Cedex, France

faro@dmi.unict.it, thierry.lecroq@univ-rouen.fr

1 Introduction

The binary string matching problem is an interesting problem in computer sci-
ence, since binary data are omnipresent in telecom and computer network ap-
plications. The main reason for using binaries is size. A binary is a much more
compact format than the symbolic or textual representation of the same infor-
mation. Consequently, less resources are required to transmit binaries over the
network. For this reason the binary string matching problem finds applications
also in pattern matching on compressed texts, when using the Huffman com-
pression strategy [KS05,SD06].

Binary vectors are usually structured in blocks of k bits, typically bytes
(k = 8), halfwords (k = 16) or words (k = 32), which can be processed at the
cost of a single operation. If p is a binary string of length m we use the symbol
P [i] to indicate the (i + 1)-th block of p and use p[i] to indicate the (i + 1)-th
bit of p. If B is a block of k bits we indicate with symbol Bj the (j + 1)-th bit
of B. Thus, for i = 0, . . . ,m− 1 we have p[i] = P [bi/kc]i mod k.

Now we present a high level model to process binary strings which exploits
the block structure of text and pattern to speed up the searching phase avoiding
to work with bitwise operations.

Let T [i] and P [i] denote, respectively, the (i + 1)-th byte of the text and
of the pattern, starting for i = 0 with both text and pattern aligned at the
leftmost bit of the first byte. Since the lengths in bits of both text and pattern
are not necessarily multiples of k, the last byte may be only partially defined.
We suppose that the undefined bits of the last byte are set to 0.

In our high level model we define a sequence of several copies of the pattern
memorized in the form of a matrix of bytes, Patt , of size k× (dm/ke+ 1). Each
row i of the matrix Patt contains a copy of the pattern shifted by i position to
the right. The i leftmost bits of the first byte remain undefined and are set to 0.
Similarly the rightmost k − ((m + i) mod k) bits of the last byte are set to 0.
Formally, for 0 ≤ i < k and 0 ≤ h < d(m + i)/ke, the j-th bit of byte Patt [i, h]
is equal to p[kh− i + j] if 0 ≤ kh− i + j < m, 0 otherwise.

Observe that each factor of length k of the pattern appears once in the table
Patt . In particular, the factor of length k starting at position j of p is memorized
in Patt [k − (j mod k), dj/ke].
? An extended version of this paper has been published as technical report in [FL08a]



The high level model uses bytes in the matrix Patt to compare the pattern
block by block against the text for any possible shift of the pattern. However
when comparing the first or last byte of P against its counterpart in the text,
the bit positions not belonging to the pattern have to be neutralized. For this
purpose we define a matrix of bytes, Mask , of size k × (dm/ke+ 1), containing
binary masks of length k. In particular a bit in the mask Mask [i, h] is set to 1 if
and only if the corresponding bit of Patt [i, h] belongs to P . More formally, for
0 ≤ i < k and 0 ≤ h < d(m + i)/ke, Mask[i, h]j = 1 if 0 ≤ kh − i + j < m, 0
otherwise. Finally we need to compute an array, Last , of size k where Last [i] is
defined to be the index of the last byte in the row Patt [i]. Formally, for 0 ≤ i < k
we define Last [i] = d(m + i)/ke. The procedure used to precompute the tables
requires O(k × dm/ke) = O(m) time and O(m) extra-space.

The model uses the precomputed tables to check whether s is a valid shift
without making use of bitwise operations but processing pattern and text byte
by byte. In particular, for a given shift position s (the pattern is aligned with
the s-th bit of the text), we report a match if Patt [i, h] = T [j + h] & Mask [i, h],
for h = 0, 1, ...,Last [i], where j = bs/kc is the starting byte position in the text
and i = (s mod k).

2 New Efficient Binary String Matching Algorithms

In this section we present two new efficient algorithms for matching on binary
strings based on the high level model presented above. The first algorithm is
an adaptation of the q-Hash algorithm [Lec07] which has been presented as an
adaptation of the Wu and Manber multiple string matching algorithm [WM94]
to single string matching problem.

If the pattern p is a binary string we associate each substring of length q with
its numeric value in the range [0, 2q − 1]. In order to exploit the block structure
of the text we take into account substrings of length q = k. This means that,
if k = 8, each block B of k bits can be considered as a value 0 ≤ B ≤ 255.
Thus we define a function Hs : {0, 1, . . . , 2k − 1} → {0, 1, . . . , m}, such that
Hs(B) = min({0 ≤ u < m | p[m − u − k .. m − u − 1] is a suffix of B} ∪ {m}),
for each byte 0 ≤ B < 2k. Observe that if B = p[m − k .. m − 1] then Hs[B] is
defined to be 0.

The preprocessing phase of the algorithm consists in computing the function
Hs defined above and requires O(m + k2k+1) time complexity and O(m + 2k)
extra space. During the search phase the algorithm reads, for each shift position
s of the pattern in the text, the block B = t[s + m− q .. s + m− 1] of k bits. If
Hs(B) > 0 then a shift of length Hs(B) is applied. Otherwise, when Hs(B) = 0
the pattern p is naively checked in the text block by block.

After the test an advancement of length shift is applied where shift =
min({0 < u < m |p[m−u−k ..m−u−1] is a proper suffix of p[m−k .. m−1]}∪
{m}). If the block B has its s` rightmost bits in in the j-th block of T and the
(k − s`) leftmost bits in the block T [j − 1], then it is computed by performing
the following bitwise operation B = (T [j] À (k − s`)) | (T [j − 1] ¿ (s` + 1)).



The Binary-Hash-Matching algorithm has a O(dm/ken) time complexity
and requires O(m + 2k) extra space.

The second solution can be seen as an adaptation to binary string matching
of the Skip-Search algorithm [CLP98].

In the binary case, for each possible block B of k bits, a bucket collects all
pairs (i, h) in the table Patt such that Patt [i, h] = B. When a block of bits occurs
more times in the pattern, there are different corresponding pairs in the bucket
of that block. Observe that for a pattern of length m there are m−k+1 different
blocks of length k corresponding to the blocks Patt [i, h] such that kh − i ≥ 0
and k(h + 1)− i− 1 < m.

However, to take advantage of the block structure of the text, we can compute
buckets only for blocks contained in the suffix of the pattern of length m′ =
kbm/kc. In such a way m′ is a multiple of k and we could reduce to examine
a block for each m′/k blocks of the text. Formally, for 0 ≤ B < 2k, Sk[B] is
defined as the set {(i, h) : (m mod k) ≤ kh− i ≤ m− k ∧ Patt [i, h] = B}.

The preprocessing phase of the Binary-Skip-Search algorithm consists in
computing the buckets for all possible blocks of k bits. The space and time
complexity of this preprocessing phase is O(m + 2k). The main loop of the
search phase consists in examining every (m′/k)th text block. For each block
T [j] examined in the main loop, the algorithm inspects each pair (i, pos) in the
bucket Sk[T [j]] to obtain a possible alignment of the pattern against the text.
For each pair (i, pos) the algorithm checks whether p occurs in t by comparing
Patt [i, h] and T [j − pos + h], for h = 0, . . . ,Last [i]. The Binary-Skip-Search
algorithm has a O(dm/ken) quadratic worst case time complexity and requires
O(m + 2k) extra space. In practice, if the block size is k, the Binary-Skip-
Search algorithm requires a table of size 2k to compute the function Sk.

3 Experimental Results

Here we present experimental data which allow to compare, in terms of run-
ning time and number of text character inspections, the following algorithms: a
Binary-Naive algorithm (BNAIVE), Binary-Boyer-Moore by Klein (BBM),
the Binary-Hash-Matching (BHM) and the Binary-Skip-Search (BSKS)
algorithms. For the sake of completeness we have also tested the following al-
gorithms for standard pattern matching: the q-Hash algorithm [Lec07] with
q = 8 (HASH8) and the Extended-BOM algorithm [FL08b] (EBOM). The
Extended-BOM and the q-Hash algorithms have been tested on the same
texts and patterns but in their standard form. The algorithms have been tested
on three Rand(1/0)γ problems, for γ = 50 and 70. Searching have been performed
for binary patterns, of length m from 20 to 500, which have been taken as sub-
string of the text at random starting positions. In particular each Rand(1/0)γ

problem consists of searching a set of 1000 random patterns of a given length
in a random binary text of 4× 106 bits. The distribution of characters depends
on the value of the parameter γ. In particular bit 0 appears with a percentage
equal to γ%. In the following tables, running times (on the left) are expressed



in hundredths of seconds. Tables with the number of text character inspections
(on the right) are presented in light-gray background color. Best results are bold
faced.

m BNAIVE BBM BSKS BHM HASH8 EBOM
20 41.53 13.53 3.66 3.40 5.12 8.89
60 41.72 7.77 1.16 1.60 1.72 3.85
100 41.68 6.80 0.70 1.44 1.64 3.06
140 42.11 6.21 0.89 1.24 1.54 2.67
180 41.95 5.76 0.66 1.10 1.80 2.25
220 41.93 5.36 0.74 1.24 1.79 1.87
260 41.95 5.08 0.54 1.05 1.47 2.09
300 41.74 5.07 0.54 1.11 1.82 1.48
340 41.93 4.86 0.39 1.07 1.56 1.56
380 41.97 4.59 0.46 0.97 1.87 1.43
420 42.07 4.52 0.31 1.23 1.59 1.23
460 41.99 4.68 0.23 1.04 1.52 1.19
500 42.06 4.61 0.37 0.81 1.53 1.32

BNAIVE BBM BSKS BHM
9.00 1.82 1.04 0.90
9.00 0.85 0.20 0.31
9.00 0.63 0.13 0.20
9.00 0.54 0.10 0.15
9.00 0.47 0.08 0.13
9.00 0.44 0.07 0.11
9.00 0.41 0.07 0.10
9.00 0.39 0.06 0.09
9.00 0.38 0.06 0.09
9.00 0.37 0.06 0.08
9.00 0.36 0.05 0.08
9.00 0.35 0.05 0.08
9.00 0.35 0.05 0.07

Experimental results for a Rand(0/1)50 problem

m BNAIVE BBM BSKS BHM HASH8 EBOM
20 43.26 17.25 4.01 4.21 4.86 10.92
60 43.15 10.26 1.66 2.09 2.03 4.27
100 43.80 8.44 1.60 2.26 1.95 2.54
140 43.70 8.13 1.28 1.61 1.52 2.68
180 43.22 7.37 1.02 1.67 2.08 2.33
220 43.29 6.82 1.08 1.34 1.94 2.50
260 42.93 6.67 1.07 1.53 1.79 1.94
300 43.66 6.46 0.89 1.22 1.59 1.94
340 43.53 6.35 0.97 1.23 1.28 1.86
380 43.76 6.15 0.70 1.42 1.31 1.65
420 43.29 6.03 0.85 1.34 1.67 1.48
460 43.45 6.00 0.92 1.27 1.37 1.43
500 43.31 6.00 0.70 1.28 1.41 1.48

BNAIVE BBM BSKS BHM
9.41 2.27 1.12 1.01
9.40 1.14 0.29 0.38
9.38 0.89 0.21 0.26
9.38 0.77 0.18 0.21
9.37 0.71 0.17 0.18
9.39 0.65 0.16 0.16
9.38 0.61 0.15 0.15
9.39 0.59 0.15 0.14
9.39 0.57 0.15 0.13
9.38 0.55 0.14 0.12
9.38 0.54 0.14 0.12
9.38 0.53 0.14 0.11
9.37 0.51 0.14 0.11

Experimental results for a Rand(0/1)70 problem

References

[CLP98] C. Charras, T. Lecroq, and J. D. Pehoushek. A very fast string matching algo-
rithm for small alphabets and long patterns. In M. Farach-Colton, editor, Pro-
ceedings of the 9th Annual Symposium on Combinatorial Pattern Matching,
volume 1448 of LNCS, pages 55–64, Piscataway, NJ, 1998. Springer-Verlag.

[FL08a] S. Faro and T. Lecroq. Efficient pattern matching on binary
strings. Report arXiv:0810.2390, Cornell University Library, 2008.
http://arxiv.org/abs/0810.2390.

[FL08b] S. Faro and T. Lecroq. Efficient variants of the Backward-Oracle-Matching
algorithm. In J. Holub and J. Žďárek, editors, Proc. of the Prague Stringology
Conference, pages 146–160, 2008.

[KS05] S. T. Klein and D. Shapira. Pattern matching in Huffman encoded texts. Inf.
Process. Manage., 41(4):829–841, 2005.

[Lec07] T. Lecroq. Fast exact string matching algorithms. Inf. Process. Lett.,
102(6):229–235, 2007.

[SD06] D. Shapira and A. H. Daptardar. Adapting the Knuth-Morris-Pratt algo-
rithm for pattern matching in Huffman encoded texts. Inf. Process. Manage.,
42(2):429–439, 2006.

[WM94] S. Wu and U. Manber. A fast algorithm for multi-pattern searching. Report
TR-94-17, Department of Computer Science, University of Arizona, Tucson,
AZ, 1994.


