
Patter Matching with Swaps in Linear Time
for Short Patterns

Domenico Cantone and Simone Faro

Università di Catania, Dipartimento di Matematica e Informatica
Viale Andrea Doria 6, I-95125 Catania, Italy

{cantone | faro}@dmi.unict.it

Abstract. The Pattern Matching problem with Swaps consists in find-
ing all occurrence of a pattern P in a text T allowing a series of local
swaps in the pattern where all the swaps are constrained to be disjoint.
In the Approximate Pattern Matching problem with Swaps the output
is, for every text location where there is a swapped match of P , the num-
ber of swaps necessary to create the swapped version that matches such
a location.
In this paper, we present a new approach for solving both Swap Match-
ing and Approximate Swap Matching Problems in linear time for short
patterns. In particular we devise an efficient general algorithm, named
Cross-Sampling, with a O(nm) and show how to obtain an efficient im-
plementation, based on bit-parallelism, which achieves O(n) worst case
time and O(σ) space complexity for patterns having length similar to
the word-size of the target machine.

Key words: Design and analysis of algorithms, combinatorial algo-
rithms on words, pattern matching, pattern matching with swaps, non-
standard pattern matching

1 Introduction

The Pattern Matching problem with Swaps (swap matching problem for short)
is a well-studied variant of the classic Pattern Matching problem. It consists in
finding all occurrences of a pattern P of length m in a text T of length n, both
being sequences of characters drawn from a finite character set Σ. The pattern
is said to match the text at a given location j if adjacent pattern characters can
be swapped, if necessary, so as to make the pattern identical to the substring
of the text ending (or equivalently, starting) at location j. All the swaps are
constrained to be disjoint, i.e., each character is involved in at most one swap.
Moreover identical adjacent characters cannot be swapped.

This problem is interesting as a fundamental computer science problem and is
a basic need of many practical applications such as text retrieval, music retrieval,
computational biology, data mining, network security, among many others.

The problem was introduced in 1995 as one of the open problems in non-
standard string matching [Mut95]. However until a decade there were no known



upper bounds better than the naive O(nm) algorithm for the swap matching
problem. The first nontrivial results on this problem was obtained by Amir et
al [AAL+97]. They showed that the case when the size of the alphabet set Σ
exceeds 2 can be reduced to the case when it is exactly 2 with a time overhead
of O(log2 σ) (The reduction overhead was reduced to O(log σ) in the journal
version [1]). They then showed how to solve the problem for alphabet sets of size
2 in time O(nm

1
3 log m). Amir et al. [ALLL98] also give certain special cases for

which O(m log2 m) time can be obtained. However, these cases are rather restric-
tive. More recently, Amir et al. [ACH+03] solved the Swap Matching problem in
time O(n log m log σ). All the above solutions to swap matching depend on the
fast fourier transform (FFT) technique.

In 2008 the first attempt to provide an efficient solution to the swap matching
problem without using the FFT techniques has been presented by Iliopoulos and
Rahman in [IR08]. They presented a new graph-theoretic approach to model the
problem devising an efficient algorithm, based on bit parallelism, which runs in
O((n+m) log m) if the pattern is similar in size to the size of word in the target
machine.

The Approximate Pattern Matching problem with Swaps seeks to compute,
for each text location j, the number of swaps necessary to convert the pattern
to the substring of length m ending at text location j (provided there is a
swap match at j). In [ALP02] Amir et al. presented an algorithm that counts
the number of swaps at every location where there is a swapped matching in
time O(n log m log σ). Consequently, the total time for solving the approximate
pattern matching with swaps problem is O(n log m log σ).

In this paper, we present a first approach for solving both Swap Matching
and Approximate Swap Matching Problems in linear worst case time for short
patterns. More precisely we devise a new simple algorithm to solve the problem,
named Cross-Sampling, with a O(nm) worst case time complexity. Then we
show how to obtain an efficient implementation of the algorithm, based on bit-
parallelism, which achieves O(n) worst case time and O(σ) space complexity for
patterns having length similar to the word-size of the target machine.

The rest of the paper is organized as follows. In Section 2, we present some
preliminary definitions. Section 3 presents the new Cross-Sampling algorithm
for the swap matching and approximate swap matching problem. In Section 4, we
use bit-parallelism to obtain efficient implementations of the Cross-Sampling
algorithms. Finally, we briefly conclude in Section 5.

2 Notions and Basic Definitions

A string P is represented as a finite array P [0 ..m − 1], with m ≥ 0. In such a
case we say that P has length m and write length(P ) = m. In particular, for
m = 0 we obtain the empty string, also denoted by ε. By P [i] we denote the
(i + 1)-st character of P , for 0 ≤ i < length(P ). Likewise, by P [i .. j] we denote
the substring of P contained between the (i +1)-st and the (j +1)-st characters
of P , for 0 ≤ i ≤ j < length(P ). For any two strings P and P ′, we say that P ′ is



a suffix of P if P ′ = P [i .. length(P )− 1], for some 0 ≤ i < length(P ). Similarly,
we say that P ′ is a prefix of P if P ′ = P [0 .. i−1], for some 0 ≤ i ≤ length(P ). We
denote with symbol Pi the nonempty prefix of P of length i+1, with 0 ≤ i < m.
In addition, we write P.P ′ to denote the concatenation of P and P ′.

Definition 1. A swap permutation for a string P of length m is a permutation
π : {0...m− 1} → {0...m− 1} such that:

1. if π(i) = j then π(j) = i (characters are swapped).
2. for all i, π(i) ∈ {i− 1, i, i + 1} (only adjacent characters are swapped).
3. if π(i) 6= i then P [π(i)] 6= P [i] (identical characters are not swapped).

For a given string P and a swap permutation π for P , we use π(P ) to denote
the swapped version of P , where π(P ) = P [π(0)].P [π(1)]...P [π(m− 1)].

Definition 2. Given a text T of length n and a pattern P of length m, P is
said to swap-match (or to have a swapped occurrence) at location j of T if there
exists a swap permutation π of P such that π(P ) matches T at location j, i.e.
P [π(i)] = T [j −m + i + 1], for i = 0...m− 1. In such a case we write P ∝ Tj.

Observe that if we assume there is a swap match ending at location j of
the text, then the number of swaps, k, needed to transform P in its swapped
version π(P ) = T [j −m + 1...j] is equal to half the number of mismatches of P
at location i. Thus the value of k is in between 0 and bm/2c.
Definition 3. Given a text T of length n and a pattern P of length m, P is
said to swap-match (or to have a swapped occurrence) at location j of T with k
swaps if there exists a swap permutation π of P such that π(P ) matches T at
location j and k = |{i : P [i] 6= P [π(i)]}|/2. In such a case we write P ∝

k
Tj.

Definition 4 (Pattern Matching Problem with Swaps). Given a text T
of length n and a pattern P of length m, find all locations j ∈ {m − 1...n − 1}
such that P swap-matches with T at location j.

Definition 5 (Approximate Pattern Matching Problem with Swaps).
Given a text T of length n and a pattern P of length m, find all pairs (j, k), with
j ∈ {m− 1...n− 1} and 0 ≤ k ≤ bm/2c, such that P has a swapped occurrence
in T at location j with k swaps.

The following Lemma will be used later.

Lemma 1. Let P and R be strings of length m over an alphabet Σ and suppose
that exists a swap permutation π such that π(P ) = R. Then π is unique.

Proof. Suppose there exist two different permutations π and π′ such that π(P ) =
π′(P ) = R. Then exists an index i such that π(i) 6= π′(i) but P [π(i)] = P [π′(i)] =
R[i]. By Definition 1 π(i), π′(i) ∈ {i− 1, i, i + 1}. Without loss of generality we
suppose π(i) < π′(i) and suppose i is the smallest index such that π(i) 6= π′(i)
but P [π(i)] = P [π′(i)]. We can observe the following three different cases:



j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
T a b b a b a b a a b b a b a a

P0 - 0 0 - 0 - 0 - - 0 0 - 0 - -
P1 - 1 - 0 1 0 1 0 - 1 - 0 1 0 -
P2 - - 1 1 0 - 0 - - - 1 1 0 - -
P3 - - - 1 - 0 2 0 - 1 - 1 - 0 -
P4 - - - - - - - 2 0 - - - - - 0
P5 - - - - - - - - 2 - - - - - -
P6 - - - - - - - - - 2 - - - - -

Fig. 1. The matrix of swap occurrences of prefixes for a pattern P = babaaab of length
7 and a text T = abbababaabbabaa of length 15. A value k in row Pi and column j
means that Pi ∝k Tj , whereas a symbol - means that Pi 6∝ Tj

1. π(i) = i− 1 and π′(i) = i
Then by Definition 1(1) we have π(i − 1) = i. This implies P [π(i − 1)] =
P [π′(i)] = P [π(i)] = P [i] which violates Definition 1(3).

2. π(i) = i and π′(i) = i + 1
Then by Definition 1(1) we have π′(i + 1) = i. This implies P [π′(i + 1)] =
P [π(i)] = P [π′(i)] = P [i] which violates Definition 1(3).

3. π(i) = i− 1 and π′(i) = i + 1
By hypothesis we have π(i−1) = π′(i+1) = i. Thus π′(i−1) 6= i = π(i−1).
Moreover we have P [π′(i − 1)] = R[i − 1] = P [i] = P [π(i − 1)]. which
violates the hypothesis that i is the smallest index such that π(i) 6= π′(i)
but P [π(i)] = P [π′(i)].

Corollary 1. Given a text T of length n and a pattern P of length m, if P ∝ Tj,
for a given position j ∈ {m−1...n−1}, then exists a unique swapped occurrence
of P in T ending at position j.

3 A New Approach to the Swap Matching Problem

In this section we present a new efficient algorithm for solving the swap matching
problem. Our algorithm is characterized by an O(mn)-time and an O(m)-space
complexity, where m and n are the length of the pattern and text, respectively.
We show also how to extend such algorithm to solve the approximate swap
matching problem achieving the same time and space complexity.

Suppose T is a text o of length n, and P is a pattern of length m. Our
algorithm solves the swap matching problem by computing the occurrences of
all prefixes of the pattern in continuously increasing prefixes of the text. That is,
during its first iteration the algorithm computes the occurrences of prefixes Pi

such that Pi ∝ T0. Then, during the j-th iteration, it computes all occurrences
of prefixes Pi such that Pi ∝ Tj , using information gathered during previous
iterations.

Fig. 1 shows the n×m matrix of swap occurrences of prefixes for a pattern
P = babaaab of length 7 and a text T = abbababaabbabaa of length 15. Each



row of the matrix is labeled with a prefix Pi of the pattern while columns are
labeled with locations of the text. A value k in row Pi and column j means that
Pi ∝k

Tj , whereas a symbol - means that Pi 6∝ Tj . Our algorithm computes the
non null elements of the j-th column of the matrix for increasing values of j.

The following very elementary fact helps to define the algorithm’s strategy.

Lemma 2. Let T and P be a text of length n and a pattern of length m, respec-
tively. Then, for each 0 ≤ j < n and 0 ≤ i < m, we have that Pi ∝ Tj if and
only if one of the following two facts holds

– P [i] = T [j] and either i = 0, or Pi−1 ∝ Tj−1

– P [i] = T [j − 1], P [i− 1] = T [j] and either i = 1, or Pi−2 ∝ Tj−2

To begin with, let S0
j denote the collection of all values i such that the prefix

Pi of P has a swapped occurrence ending at position j of the text, for 0 ≤ j ≤ n.
Moreover let S1

j denote the collection of all values i such that the prefix Pi−1 of P
has a swapped occurrence ending at position j − 1 of the text and P [i] = T [j+1].
Formally

S0
j = {0 ≤ i ≤ m− 1 | Pi ∝ Tj}
S1

j = {0 ≤ i < m− 1 | (Pi−1 ∝ Tj−1 ∨ i = 0) and P [i] = T [j + 1]} (1)

Then the problem of finding the positions j in T such that P ∝ Tj translates to
the problem of finding all values j such that m− 1 ∈ S0

j .
Consider the example shown in Fig. 1. The elements of set S0

j are non null
values in the j-th column of the matrix. Thus S0

1 = {0, 1}, S0
2 = {0, 2}, S0

6 =
{0, 1, 2, 3}, S0

8 = {4, 5} and S0
9 = {0, 1, 3, 6}. Since 6 ∈ S0

9 we can report a
swapped match at position 9 of the text.

To efficiently compute the sets defined above notice that the sets S0
0 and S1

0

can be defined as follows

λj =
{{0} if P [0] = T [j]
∅ otherwise , S0

0 = λ0, and S1
0 = λ1. (2)

Moreover Lemma 2 justifies the following recursive definitions of the sets
S0

j+1 and S1
j+1 in terms of S0

j and S1
j , for 0 < j < n:

S0
j+1 = {i ≤ m− 1 | ((i− 1) ∈ S0

j and P [i] = T [j + 1]) or
((i− 1) ∈ S1

j and P [i] = T [j]) } ∪ λj+1

S1
j+1 = {i < m− 1 | (i− 1) ∈ S0

j and P [i] = T [j + 2]} ∪ λj+2

(3)

where we assume that, for a given set S, if i ∈ S than S ∪ {i} = S.
Such relations, coupled with the initial conditions in Eq.2, allow one to com-

pute the sets S0
j and S1

j in an iterative fashion, as shown in Fig. 2 (on the top).
Observe that S0

j is computed in terms of both S0
j−1 and S1

j−1, while S1
j needs

only S0
j−1 to be computed. The resulting shape is a double crossed link, from



S0
0 S0

1 S0
2 S0

3 S0
4 S0

5 S0
j S0

j+1

S1
0 S2

1 S1
2 S1

3 S1
4 S1

5 S1
j S1

j+1

Computation of S0
9 Computation of S1

9

4 ∈ S0
8 but P [5] 6= T [9] → 5 6∈ S0

9
5 ∈ S0

8 and P [6] = T [9] → 6 ∈ S0
9

0 ∈ S1
8 and P [1] = T [8] → 1 ∈ S0

9
2 ∈ S1

8 and P [3] = T [8] → 3 ∈ S0
9

P [0] = T [9] → 0 ∈ S0
9

4 ∈ S0
8 but P [5] 6= T [10] → 5 6∈ S1

9
5 ∈ S0

8 and P [6] = T [10] → 6 ∈ S1
9

P [0] = T [10] → 0 ∈ S1
9

S0
9 = {0, 1, 3, 6} S1

9 = {0, 6}

Fig. 2. (On the top) A graphic representation of the iterative fashion for computing
sets S0

j and S1
j for increasing values of j. (On the bottom) Computation of the sets

S0
9 and S1

9 in terms of sets S0
8 and S1

8 for a pattern P = babaaab of length 7 and a text
T = abbababaabbabaa of length 15. We notice that S0

8 = {4, 5} and S1
8 = {0, 2}.

which the name of the algorithm of Fig. 3, Cross-Sampling, which solves the
swap matching problem by computing sets S0

j and S1
j for increasing values of j

Fig. 2 shows also (on the bottom) the computation of the sets S0
9 and S1

9

in terms of sets S0
8 and S1

8 for the pattern P = babaaab and a text T =
abbababaabbabaa presented in the example of Fig. 1.

To compute the worst case time complexity of the Cross-Sampling algo-
rithm, first observe that the for cycle of line 4 is executed O(n) times. During
the j-th iteration, the for cycles of line 6 and line 11 are executed |S0

j | and |S1
j |

times, respectively. However according with Lemma 1, for each position j of the
text we can report only a single swapped occurrence of the prefix Pi in Tj , for
each 0 ≤ i < m, which implies |S0

j | ≤ m and |S1
j | < m. Thus the time complexity

of the resulting algorithm is O(nm).

3.1 Solving the Approximate Swap Matching Problem

Now we show how is possible to extend the Cross-Sampling algorithm to solve
the approximate swap matching problem. To begin with we extend Lemma 2
with the following

Lemma 3. Let T and P be a text of length n and a pattern of length m, respec-
tively. Then, for each 0 ≤ i < n and 0 ≤ k < m, we have that Pi ∝k

Tj if and
only if one of the following two facts hold

– P [i] = T [j] and either (i = 0 ∧ k = 0), or Pi−1 ∝k
Tj−1



(A) Cross-Sampling (P, m, T, n)

1. S0
0 ← S1

0 ← ∅
2. if P [0] = T [0] then S0

0 ← {0}
3. if P [0] = T [1] then S1

0 ← {0}
4. for j = 1 to n− 1 do
5. S0

j ← S1
j ← ∅

6. for each i ∈ S0
j−1 do

7. if i < m− 1 then
8. if P [i + 1] = T [j]
9. then S0

j ← S0
j ∪ {i + 1}

10. if j < n− 1 and P [i + 1] = T [j + 1]
11. then S1

j ← S1
j ∪ {i + 1}

12. else Output(j − 1)
13. for each i ∈ S1

j−1 do
14. if i < m− 1 and P [i + 1] = T [j − 1]
15. then S0

j ← S0
j ∪ {i + 1}

16. if P [0] = T [j] then S0
j ← S0

j ∪ {0}
17. if j < n− 1 and P [0] = T [j + 1]
18. then S1

j ← S1
j ∪ {0}

19. for each i ∈ S0
j−1 do

20. if i = m− 1 then Output(n− 1)

(B) Approximate-Cross-Sampling (P, m, T, n)

1. S̄0
0 ← S̄1

0 ← ∅
2. if P [0] = T [0] then S̄0

0 ← {(0, 0)}
3. if P [0] = T [1] then S̄1

0 ← {(0, 0)}
4. for j = 1 to n− 1 do
5. S̄0

j ← S̄1
j ← ∅

6. for each (i, k) ∈ S̄0
j−1 do

7. if i < m− 1 then
8. if P [i + 1] = T [j]
9. then S̄0

j ← S̄0
j ∪ {(i + 1, k)}

10. if j < n− 1 and P [i + 1] = T [j + 1]
11. then S̄1

j ← S̄1
j ∪ {(i + 1, k)}

12. else Output((j − 1, k))
13. for each (i, k) ∈ S̄1

j−1 do
14. if i < m− 1 and P [i + 1] = T [j − 1]
15. then S̄0

j ← S̄0
j ∪ {(i + 1, k + 1)}

16. if P [0] = T [j] then S̄0
j ← S̄0

j ∪ {(0, 0)}
17. if j < n− 1 and P [0] = T [j + 1]
18. then S̄1

j ← S̄1
j ∪ {(0, 0)}

19. for each (i, k) ∈ S̄0
n−1 do

20. if i = m− 1 then Output(n− 1, k)

Fig. 3. (A) The Cross-Sampling algorithm for solving the swap matching problem.
(B) The Approximate-Cross-Sampling algorithm for solving the approximate swap
matching problem

– P [i] = T [j−1], P [i−1] = T [j] and either (i = 1∧k = 1), or Pi−2 ∝k−1 Tj−2

Then we define sets S̄0
j and S̄1

j to denote, respectively, the collection of all
pairs (i, k) such that the prefix Pi of P has a k-swapped occurrence ending at
position j of the text and the collection of all pairs (i, k) such that the prefix
Pi−1 of P has a k-swapped occurrence ending at position j − 1 of the text and
P [i] = T [j + 1], for 0 ≤ j ≤ n. Formally

S̄0
j = {(i, k) | 0 ≤ i ≤ m− 1 and Pi ∝k

Tj}
S̄1

j = {(i, k) | 0 ≤ i < m− 1 and (Pi−1 ∝k
Tj−1 ∨ i = 0) and P [i] = T [j + 1]}

Then the approximate swap matching problem translates to the problem of
finding all pairs j such that (m− 1, k) ∈ S̄0

j , for 0 ≤ k < bm/2c.
Sets S̄0

0 and S̄1
0 can be defined as follows

λ̄j =
{{(0, 0)} if P [0] = T [j]
∅ otherwise , S̄0

0 = λ̄0, and S̄1
0 = λ̄1.

while Lemma 3 justifies the following recursive definition of the sets S̄0
j+1 and

S̄1
j+1 in terms of S̄0

j and S̄1
j , for j < n:

S̄0
j+1 = {(i, k) | i ≤ m− 1 and ((i− 1, k) ∈ S̄0

j and P [i] = T [j + 1]) or
((i− 1, k − 1) ∈ S̄1

j and P [i] = T [j]) } ∪ λ̄j+1

S̄1
j+1 = {(i, k) | i < m− 1 and (i− 1, k) ∈ S̄0

j and P [i] = T [j + 2]} ∪ λ̄j+2



Computation of S̄0
9 Computation of S̄1

9

(4, 0) ∈ S̄0
8 but P [5] 6= T [9] → (5, 0) 6∈ S̄0

9
(5, 2) ∈ S̄0

8 and P [6] = T [9] → (6,2) ∈ S̄0
9

(0, 0) ∈ S̄1
8 and P [1] = T [8] → (1, 1) ∈ S̄0

9
(2, 0) ∈ S̄1

8 and P [3] = T [8] → (3, 1) ∈ S̄0
9

P [0] = T [9] → (0, 0) ∈ S̄0
9

(4, 0) ∈ S̄0
8 but P [5] 6= T [10] → (5, 0) 6∈ S̄1

9
(5, 2) ∈ S̄0

8 and P [6] = T [10] → (6, 2) ∈ S̄1
9

P [0] = T [10] → (0, 0) ∈ S̄1
9

S0
9 = {(0, 0), (1, 1), (3, 1), (6,2)} S1

9 = {(0, 0), (6, 2)}

Fig. 4. Computation of the sets S̄0
9 and S̄1

9 in terms of sets S̄0
8 and S̄1

8 for a pattern
P = babaaab of length 7 and a text T = abbababaabbabaa of length 15. We notice that
¯̄S

0

8 = {(4, 0), (5, 2)} and ¯̄S
1

8 = {(0, 0), (2, 0)}.

Fig. 4 shows the computation of the sets S̄0
9 and S̄1

9 in terms of sets S̄0
8 and

S̄1
8 for the pattern P = babaaab and a text T = abbababaabbabaa presented in

the example of Fig. 1.
Fig. 3(B) shows the Approximate-Cross-Sampling algorithm for solving

the approximate swap matching problem. The worst case time complexity of the
algorithm is O(nm).

4 A Linear Algorithm for Short patterns

In this section we present simple algorithms to search swapped occurrence of a
pattern in a text which makes use of bit-parallelism [BYG92]. This technique
consists in taking advantage of the intrinsic parallelism of the bit operations
inside a computer word, allowing to cut down the number of operations that an
algorithm performs by a factor of at most w, where w is the number of bits in
the computer word.

The simulation of the Cross-Sampling algorithm with bit-parallelism is
performed by representing the sets S0

j and S1
j as lists of m bits, D0

j and D1
j

respectively, where m is the length of the pattern. The i-th bit of D0
j is set to

1 if i ∈ S0
j , i.e. if Pi ∝ Tj while the i-th bit of D1

j is set to 1 if i ∈ S1
j , i.e. if

Pi−1 ∝ Tj−1 and P [i] = T [j + 1]. All other bits in the bit vectors are set to
0. Note that if m ≤ w the entire list fits in a single computer word, whereas if
m > w we need dm/we computer words to represent the sets S0

j and S1
j .

For each character, c, of the alphabet Σ the algorithm maintains a bit mask
M [c] where the i-th bit is set to 1 if P [i] = c.

The bit vectors are initialized to 0m. Then the algorithm scans the text from
the first character to the last one and, for each position j ≥ 0, it computes vector
D0

j in terms of D0
j−1 and D1

j−1, by performing the following bitwise operations:



(A) Bit Vectors (B) Computation of D̄0
9 (C) Computation of D̄1

9

M [a] = 0111010
M [b] = 1000101

D0
8 = 0110000

D1
8 = 0000101

(D0
8 ¿ 1)|1 : 1100001 &

M [b] : 1000101 =
1000001 |

(D1
8 ¿ 1)&M [a] : 0001010 =

1001011

(D0
8 ¿ 1)|1 : 1100001 &

M [b] : 1000101 =
1000001

Fig. 5. (A) Bit vectors precomputed by the algorithm and (B-C) the computation of
the sets S̄0

9 and S̄1
9 in terms of sets S̄0

8 and S̄1
8 for a pattern P = babaaab of length 7

and a text T = abbababaabbabaa of length 15. We notice that S̄0
8 = {(4, 0), (5, 2)} and

S̄1
8 = {(0, 0), (2, 0)}.

D0
j ← D0

j−1 ¿ 1 S0
j = {i : (i− 1) ∈ S0

j−1}
D0

j ← D0
j | 1 S0

j = S0
j ∪ {0}

D0
j ← D0

j & M [T [j]] S0
j = S0

j \ {i : P [i] 6= T [j]}
D0

j ← D0
j | H1 S0

j = S0
j ∪ {i : (i− 1) ∈ S1

j−1 ∧ P [i] = T [j − 1]}

where H1 =
(
(D1

j−1 ¿ 1) & M [T [j − 1]]
)
.

Similarly the bit vector D1
j is computed during the j-th iteration of the al-

gorithm in terms of D0
j−1, by performing the following bitwise operations:

D1
j ← D0

j−1 ¿ 1 S1
j = {i : (i− 1) ∈ S0

j−1}
D1

j ← D1
j | 1 S1

j = S1
j ∪ {0}

D1
j ← D1

j & M [T [j + 1]] S1
j = S1

j \ {i : P [i] 6= T [j + 1]}
During the j-th iteration of the algorithm, if the leftmost bit of D0

j is set to
1, i.e. if (D0

j & 10m−1) 6= 0m, we report a swap match at position j.
Fig. 5 shows the computation of the bit vectors D0

9 and D1
9 in terms of sets

D0
8 and D1

8 for the pattern P = babaaab and the text T = abbababaabbabaa
presented in Fig. 1.

In practice we can use only two vectors to implement sets D0
j and D1

j . Thus
during iteration j of the algorithm vector D0

j−1 is transformed in vector D0
j

while vector D1
j−1 is transformed in vector D1

j . The BP-Cross-Sampling algo-
rithm is shown in Fig. 6(A). It achieves O(dmn/we) worst-case time and require
O(σdm/we) extra-space. If the length of the pattern is m ≤ w then the algo-
rithm reports all swapped matches in O(n) time and O(σ) extra space.

4.1 Approximate Pattern Matching with Swaps

Similarly to the algorithm presented above, the simulation of the Approximate-
Cross-Sampling algorithm is performed by representing the sets S̄0

j and S̄1
j as

a list of q bits, D0
j and D1

j respectively, where where q = log(bm/2c + 1) + 1
and m is the length of the pattern. If the pair (i, k) ∈ S̄0

j , for 0 ≤ i < m and



(A) BP-Cross-Sampling (P, m, T, n)

1. F ← 0m−11
2. for each c ∈ Σ do M [c] ← 0m

3. for i ← 0 to m− 1 do
4. M [xi] ← M [P [i]] | F
5. F ← F ¿ 1
6. F ← 10m−1

7. D0 ← D1 ← 0m

8. for j ← 0 to n− 1 do
9. H ← (D0 ¿ 1) | 1

10. D0 ← (H & M [T [j]])
11. D1 ← (D1 ¿ 1) & M [T [j − 1]]
12. D0 ← D0 | D1

13. D1 ← H & M [T [j + 1]]
14. if (D0 & F ) 6= 0m then
15. Output(j)

(B)BP-Approximate-Cross-Sampling (P, m, T, n)

1. q ← log(bm/2c+ 1) + 1

2. F ← 0qm−11

3. G ← 0q(m−1)1q

4. for each c ∈ Σ do
5. M [c] ← 0qm

6. B[c] ← 0qm

7. for i ← 0 to m− 1 do
8. M [P [i]] ← M [P [i]] | F
9. B[P [i]] ← B[P [i]] | G

10. F ← (F ¿ q)
11. G ← (G ¿ q)

12. F ← 0q−110q(m−1)

13. D0 ← D1 ← 0qm

14. for j ← 0 to n− 1 do
15. H0 ← (D0 ¿ q) | 1
16. H1 ← ((D1 ¿ q) | 1) & M [T [j − 1]]
17. D0 ← (H0 & B[T [j]]) | H1

18. D0 ← D0 + (H1 ¿ 1)
19. D1 ← (H0 & M [T [j + 1]]) & D0

20. if (D0 & F ) 6= 0qm then
21. k ← (D0 À (q(m− 1) + 1))
22. Output(j, k)

Fig. 6. (A) The BP-Cross-Sampling algorithm which solves the swap matching
problem in linear time by using bit parallelism. (B) The BP-Approximate-Cross-
Sampling algorithm which solves the approximate swap matching problem in linear
time by using bit parallelism

0 ≤ k ≤ bm/2c, then the rightmost bit of the i-th block of D0
j is set to 1 and

the leftmost q − 1 bits of the i-th block contain the value k (we need exactly
log(bm/2c+1) to represent a value between 0 and bm/2c). Otherwise if the pair
(i, k) does not belong to S0

j then the rightmost bit of the i-th block of D0
j is set

to 0. In a similar way we maintain the current configuration of the set S̄1
j .

If m log(bm/2c + 1) + m ≤ w the entire list fits in a single computer word,
otherwise we need dm(log(bm/2c+ 1)/we computer words to represent the sets
S̄0

j and S̄1
j .

For each character, c, of the alphabet Σ the algorithm maintains a bit mask
M [c] where the rightmost bit of the i-th block is set to 1 if P [i] = c. Moreover
the algorithm maintains, for each character c ∈ Σ, a bit mask B[c] where the
i-th block have all bits set to 1 if P [i] = c, while all other bits are set to 0.

Consider the example shown in Fig. 1 where the pattern P = babaaab has
length 7. Then each block is made up by q bits where q = log(b7/2c+1)+1 = 3.
The leftmost two bits of each block contain the number of swaps k, which is
a value between 0 and 3. Fig. 7(A) shows the bit vectors computed by the
algorithm in the preprocessing phase.

Before entering in details we observe that if i ∈ S0
j and i ∈ S1

j then we
can conclude that T [j] = T [j + 1]. Moreover if T [j + 1] = P [i + 1] we have
also T [j] = P [i + 1] which implies a swap between two identical characters
of the pattern. This last condition violates Definition 1(3). Thus during the



(A) Bit Vectors

M [a] = 000 001 001 001 000 001 000
M [b] = 001 000 000 000 001 000 001
B[a] = 000 111 111 111 000 111 000
B[b] = 111 000 000 000 111 000 111

D0
8 = 000 101 001 000 000 000 000

D1
8 = 000 000 000 000 001 000 001

(B) Computation of D̄0
9

(D0
8 ¿ q)|1 : 101 001 000 000 000 000 001 &

B[b] : 111 000 000 000 111 000 111 =
101 000 000 000 000 000 001 |

(D1
8 ¿ q)&M [a] : 000 000 000 001 000 001 000 =

101 000 000 001 000 001 001 +

(D1
8 ¿ (q + 1))&M [a] : 000 000 000 010 000 010 000 =

101 000 000 011 000 011 001

Fig. 7. Computation of the sets D0
9 in terms of sets D0

8 and D1
8 for a pattern P =

babaaab of length 7 and a text T = abbababaabbabaa of length 15. We notice that
S̄0

8 = {(4, 0), (5, 2)} and S̄1
8 = {(0, 0), (2, 0)}.

computation of vectors D0
j and D1

j we keep the following invariant

if the i-th bit of D0
j is set to 1 ⇒ the i-th bit of D1

j is set to 0 (4)

The bit vectors are initialized to 0qm. Then the algorithm scans the text from
the first character to the last one and, for each position j ≥ 0, it computes vector
D0

j in terms of D0
j−1 and D1

j−1, by performing the following bitwise operations:

D0
j ← D0

j−1 ¿ q S̄0
j = {(i, k) : (i− 1, k) ∈ S̄0

j−1}
D0

j ← D0
j | 1 S̄0

j = S̄0
j ∪ {(0, 0)}

D0
j ← D0

j & B[T [j]] S̄0
j = S̄0

j \ {(i, k) : P [i] 6= T [j]}
D0

j ← D0
j | H1 S̄0

j = S̄0
j ∪K

D0
j ← D0

j + (H1 ¿ 1) ∀ (i, k) ∈ K change (i, k) with (i, k + 1) in S̄0
j

where we have set H1 = (D1
j−1 ¿ q) & M [T [j − 1]] and consequently the

set K is define by K = {(i, k) : (i− 1, k) ∈ S̄1
j−1 ∧ P [i] = T [j − 1]}.

Similarly the bit vector D1
j is computed during the j-th iteration of the al-

gorithm in terms of D0
j−1, by performing the following bitwise operations:

D1
j ← D0

j−1 ¿ q S̄1
j = {(i, k) : (i− 1, k) ∈ S̄0

j−1}
D1

j ← D1
j | 1 S̄1

j = S̄1
j ∪ {(0, 0)}

D1
j ← D1

j & B[T [j + 1]] S̄1
j = S̄1

j \ {(i, k) : P [i] 6= T [j + 1]}
D1

j ← D1
j & ∼ D0

j S̄1
j = S̄1

j \ {(i, k) : (i, k) ∈ S̄0
j }

During the j-th iteration of the algorithm, if the rightmost bit of the (m−1)-
th block of D0

j is set to 1, i.e. if (D0
j & 10q(m−1)) 6= 0m, we report a swap match

at position j. Moreover the number of swaps needed to transform the pattern to
its swapped occurrence in the text is contained in the q − 1 leftmost bits of the
(m− 1)-th block of D0

j which can be extracted by performing a bitwise shift of
(q(m− 1) + 1) positions to the right.

As in the case of the BP-Cross-Sampling algorithm, in practice we can
use only two vectors to implement sets D0

j and D1
j . Thus during iteration j

of the algorithm vector D0
j−1 is transformed in vector D0

j while vector D1
j−1



is transformed in vector D1
j . The BP-Approximate-Cross-Sampling algo-

rithm, shown in Fig. 6, achieves O(d(mn log m)/we) worst-case time and re-
quire O(σdm log m/we) extra-space. If the length of the pattern is such that
m(log(bm/2c+ 1) + 1) ≤ w then the algorithm reports all swapped matches in
O(n) time and O(σ) extra space.

5 Conclusions

In this paper, we have presented a new approach for solving both Swap Matching
and Approximate Swap Matching Problems. In particular we devised an efficient
algorithm, named Cross-Sampling, with a O(nm) worst case and a O(n) av-
erage time complexity for alphabet with a uniform distribution of characters.
Then we have shown how to obtain an efficient implementation of the Cross-
Sampling algorithm, based on bit-parallelism, achieving O(n) worst case time
and O(σ) space complexity for patterns having length similar to the word-size of
the target machine. This is the first algorithm which solves the Swap Matching
and the Approximate Swap Matching Problem in linear time even if for short
patterns.

References

[AAL+97] Amihood Amir, Yonatan Aumann, Gad M. Landau, Moshe Lewenstein,
and Noa Lewenstein. Pattern matching with swaps. In IEEE Symposium
on Foundations of Computer Science, pages 144–153, 1997.

[ACH+03] Amihood Amir, Richard Cole, Ramesh Hariharan, Moshe Lewenstein, and
Ely Porat. Overlap matching. Inf. Comput., 181(1):57–74, 2003.

[ALLL98] Amihood Amir, Gad M. Landau, Moshe Lewenstein, and Noa Lewenstein.
Efficient special cases of pattern matching with swaps. Information Process-
ing Letters, 68(3):125–132, 1998.

[ALP02] Amihood Amir, Moshe Lewenstein, and Ely Porat. Approximate swapped
matching. Inf. Process. Lett., 83(1):33–39, 2002.

[BYG92] Ricardo Baeza-Yates and Gaston H. Gonnet. A new approach to text search-
ing. Commun. ACM, 35(10):74–82, 1992.

[IR08] Costas S. Iliopoulos and M. Sohel Rahman. A new model to solve the swap
matching problem and efficient algorithms for short patterns. In SOFSEM,
pages 316–327, 2008.

[Mut95] S. Muthukrishnan. New results and open problems related to non-standard
stringology. In CPM, pages 298–317, 1995.


