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Abstract. In this article we present two efficient variants of the BOM string matching al-
gorithm which are more efficient and flexible than the original algorithm. We also present
bit-parallel versions of them obtaining an efficient variant of the BNDM algorithm. Then we
compare the newly presented algorithms with some of the most recent and effective string
matching algorithms. It turns out that the new proposed variants are very flexible and achieve
very good results, especially in the case of large alphabets.
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1 Introduction

Given a text t of length n and a pattern p of length m over some alphabet Σ of size
σ, the string matching problem consists in finding all occurrences of the pattern p in
the text t. It is an extensively studied problem in computer science, mainly due to its
direct applications to such diverse areas as text, image and signal processing, speech
analysis and recognition, information retrieval, computational biology and chemistry,
etc.

Many string matching algorithms have been proposed over the years (see [CL04]).
The Boyer-Moore algorithm [BM77] deserves a special mention, since it has been
particularly successful and has inspired much work.

Automata play a very important role in the design of efficient pattern match-
ing algorithms. For instance the well known Knuth-Morris-Pratt algorithm [KMP77]
uses a deterministic automaton that searches a pattern in a text by performing its
transitions on the text characters. The main result relative to the Knuth-Morris-Pratt
algorithm is that its automaton can be constructed in O(m)-time and -space, whereas
pattern search takes O(n)-time.

Automata based solutions have been also developed to design algorithms which
have optimal sublinear performance on average. This is done by using factor au-
tomata [BBE+83,Cro85,BBE+85,ACR99], data structures which identify all factors
of a word. Among the algorithms which make use of a factor automaton the BOM
(Backward Oracle Matching) algorithm [ACR99] is the most efficient, especially for
long patterns. Another algorithm based on the bit-parallel simulation [BYG92] of the
nondeterministic factor automaton, and called BNDM (Backward Nondeterministic
Dawg Match) algorithm [NR98], is very efficient for short patterns.

In this article we present two efficient variations of the BOM string matching
algorithm which turn out to be more efficient and flexible than the original BOM
algorithm. We also present a bit-parallel version of the previous solution which effi-
ciently extends the BNDM algorithm.
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The article is organized as follows. In Section 2 we introduce basic definitions and
the terminology used along the paper. In Section 3 we survey some of the most effec-
tive string matching algorithms. Next, in Section 4, we introduce two new variations
of the BOM algorithm. Experimental data obtained by running under various condi-
tions all the algorithms reviewed are presented and compared in Section 5. Finally,
we draw our conclusions in Section 6.

2 Basic Definitions and Terminology

A string p of length m is represented as a finite array p[0 .. m − 1], with m ≥ 0.
In particular, for m = 0 we obtain the empty string, also denoted by ε. By p[i] we
denote the (i + 1)-st character of p, for 0 ≤ i < m. Likewise, by p[i .. j] we denote
the substring of p contained between the (i + 1)-st and the (j + 1)-st characters of
p, for 0 ≤ i ≤ j < m. Moreover, for any i, j ∈ Z, we put p[i .. j] = ε if i > j
and p[i .. j] = p[max(i, 0), min(j, m − 1)] if i ≤ j. A substring of the form p[0 .. i] is
called a prefix of p and a substring of the form p[i .. m− 1] is called a suffix of p for
0 ≤ i ≤ m− 1. For any two strings u and w, we write w ⊐ u to indicate that w is a
suffix of u. Similarly, we write w ⊏ u to indicate that w is a prefix of u. The reverse

of a string p[0 .. m− 1] is the string built by the concatenation of its letters from the
last to the first: p[m− 1]p[m− 2] · · ·p[1]p[0].

A Finite State Automaton is a tuple A = {Q, q0, F, Σ, δ}, where Q is the set of
states of the automaton, q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting
states, Σ is the alphabet of characters labeling transitions and δ() : (Q × Σ) → Q
is the transition function. If δ(q, c) is not defined for a state q ∈ Q and a character
c ∈ Σ we say that δ(q, c) is an undefined transition and write δ(q, c) =⊥.

Let t be a text of length n and let p be a pattern of length m. When the character
p[0] is aligned with the character t[s] of the text, so that the character p[i] is aligned
with the character t[s + i], for i = 0, . . . , m − 1, we say that the pattern p has shift

s in t. In this case the substring t[s .. s + m − 1] is called the current window of the
text. If t[s .. s + m− 1] = p, we say that the shift s is valid.

Most string matching algorithms have the following general structure. First, dur-
ing a preprocessing phase, they calculate useful mappings, in the form of tables, which
later are accessed to determine nontrivial shift advancements. Next, starting with shift
s = 0, they look for all valid shifts, by executing a matching phase, which determines
whether the shift s is valid and computes a positive shift increment.

For instance, in the case of the naive string matching algorithm, there is no pre-
processing phase and the matching phase always returns a unitary shift increment,
i.e. all possible shifts are actually processed.

In contrast the Boyer-Moore algorithm [BM77] checks whether s is a valid shift,
by scanning the pattern p from right to left and, at the end of the matching phase,
it computes the shift increment as the maximum value suggested by two heuristics:
the good-suffix heuristic and the bad-character heuristic, provided that both of them
are applicable (see [CL04]).
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3 Very Fast String Matching Algorithms

In this section we briefly review the BOM algorithm and other efficient algorithms
for exact string matching that have been recently proposed. In particular, we present
algorithms in the Fast-Search family [CF05], algorithms in the q-Hash family [Lec07]
and some among the most efficient algorithms based on factor automata.

3.1 Fast-Search and Forward-Fast-Search Algorithms

The Fast-Search algorithm [CF03] is a very simple, yet efficient, variant of the Boyer-
Moore algorithm. Let p be a pattern of length m and let t be a text of length n
over a finite alphabet Σ. The Fast-Search algorithm computes its shift increments
by applying the bad-character rule if and only if a mismatch occurs during the first
character comparison, namely, while comparing characters p[m− 1] and t[s + m− 1],
where s is the current shift. Otherwise it uses the good-suffix rule.

The Forward-Fast-Search algorithm [CF05] maintains the same structure of the
Fast-Search algorithm, but it is based upon a modified version of the good-suffix rule,
called forward good-suffix rule, which uses a look-ahead character to determine larger
shift advancements. Thus, if the first mismatch occurs at position i < m − 1 of the
pattern p, the forward good-suffix rule suggests to align the substring t[s+i+1 .. s+m]
with its rightmost occurrence in p preceded by a character different from p[i]. If such
an occurrence does not exist, the forward good-suffix rule proposes a shift increment
which allows to match the longest suffix of t[s+ i+1 .. s+m] with a prefix of p. This
corresponds to advance the shift s by −→gsP (i + 1, t[s + m]) positions, where

−→gsP (j, c) =
Def

min({0 < k ≤ m | p[j − k .. m− k − 1] ⊐ p

and (k ≤ j − 1→ p[j − 1] 6= p[j − 1− k])

and p[m− k] = c} ∪ {m + 1}) ,

for j = 0, 1, . . . , m and c ∈ Σ.
The good-suffix rule and the forward good-suffix rule require tables of size m and

m · |Σ|, respectively. These can be constructed in time O(m) and O(m ·max(m, |Σ|)),
respectively.

More effective implementations of the Fast-Search and Forward-Fast-Search algo-
rithm are obtained along the same lines of the Tuned-Boyer-Moore algorithm [HS91]
by making use of a fast-loop, using a technique described in Section 4.1 and shown in
Figure 3(A). Then subsequent matching phase can start with the (m−2)-nd character
of the pattern. At the end of the matching phase the algorithms uses the good-suffix
rule for shifting.

3.2 The q-Hash Algorithms

Algorithms in the q-Hash family have been introduced in [Lec07] where the au-
thor presented an adaptation of the Wu and Manber multiple string matching al-
gorithm [WM94] to single string matching problem.

The idea of the q-Hash algorithm is to consider factors of the pattern of length q.
Each substring w of such a length q is hashed using a function h into integer values
within 0 and 255. Then the algorithm computes in a preprocessing phase a function
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shift() : {0, 1, . . . , 255} → {0, 1, . . . , m− q}. Formally for each 0 ≤ c ≤ 255 the value
shift(c) is defined by

shift(c) = min
(

{0 ≤ k < m− q | h(p[m− k − q .. m− k − 1]) = c} ∪ {m− q}
)

.

The searching phase of the algorithm consists of reading, for each shift s of the pat-
tern in the text, the substring w = t[s+m−q .. s+m−1] of length q. If shift[h(w)] > 0
then a shift of length shift[h(w)] is applied. Otherwise, when shift[h(w)] = 0 the
pattern x is naively checked in the text. In this case a shift of length sh is applied
where sh = m− 1− i with

i = max{0 ≤ j ≤ m− q|h(x[j .. j + q − 1]) = h(x[m− q + 1 .. m− 1]}.

3.3 The Backward-Automaton-Matching Algorithms

Algorithms based on the Boyer-Moore strategy generally try to match suffixes of the
pattern but it is possible to match some prefixes or some factors of the pattern by
scanning the current window of the text from right to left in order to improve the
length of the shifts. This can be done by the use of factor automata and factor oracles.

The factor automaton [BBE+83,Cro85,BBE+85] of a pattern p, Aut(p), is also
called the factor DAWG of p (for Directed Acyclic Word Graph). Such an automaton
recognizes all the factors of p. Formally the language recognized by Aut(p) is defined
as follows

L(Aut(p)) = {u ∈ Σ∗ : exists v, w ∈ Σ∗ such that p = vuw}.

The factor oracle of a pattern p, Oracle(p), is a very compact automaton which rec-
ognizes at least all the factors of p and slightly more other words. Formally Oracle(p)
is an automaton {Q, m, Q, Σ, δ} such that

1. Q contains exactly m + 1 states, say Q = {0, 1, 2, 3, . . . , m}
2. m is the initial state
3. all states are final
4. the language accepted by Oracle(p) is such that L(Aut(p)) ⊆ L(Oracle(p)).

Despite the fact that the factor oracle is able to recognize words that are not
factors of the pattern, it can be used to search for a pattern in a text since the only
factor of p of length greater or equal to m which is recognized by the oracle is the
pattern itself. The computation of the oracle is linear in time and space in the length
of the pattern.

In Figure 1 are shown the factor automaton and the factor oracle of the reverse
of pattern p = baabbba.

The data structures factor automaton and factor oracle are used respectively
in [CCG+94,CR94] and in [ACR99] to get optimal pattern matching algorithms on
the average. The algorithm which makes use of the factor automaton of the reverse
pattern is called BDM (for Backward Dawg Matching) while the algorithm using the
factor oracle is called BOM (for Backward Oracle Matching). Such algorithms move
a window of size m on the text. For each new position of the window, the automaton
of the reverse of p is used to search for a factor of p from the right to the left of
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Figure 1. The factor automaton (A) and the factor oracle (B) of the reverse of pattern p = baabbba. The
factor automaton recognizes all, and only, the factors of the reverse pattern. On the other hand note that
the word aba is recognized by the factor oracle whereas it is not a factor.
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Figure 2. The nondeterministic factor automaton of the string abbbaab.

the window. The basic idea of the BDM and BOM algorithms is that if its backward
search failed on a letter c after the reading of a word u then cu is not a factor of p
and moving the beginning of the window just after c is secure. If a factor of length
m is recognized then we have found an occurrence of the pattern.

The BDM and BOM algorithms have a quadratic worst case time complexity
but are optimal in average since they perform O(n(logσm)/m) inspections of text
characters reaching the best bound shown by Yao [Yao79] in 1979.

3.4 The BNDM Algorithm

The BNDM algorithm [NR98] (for Backward Nondeterministic Dawg Match) is a
bit-parallel simulation [BYG92] of the BDM algorithm. It uses a nondeterministic
automaton instead of the deterministic one in the BDM algorithm.

Figure 2 shows the nondeterministic version of the factor automaton for the reverse
of pattern p = baabbba. For each character c ∈ Σ, a bit vector B[c] is initialized in the
preprocessing phase. The i-th bit is 1 in this vector if c appears in the reversed pattern
in position i. Otherwise the i-th bit is set to 0. The state vector D is initialized to 1m.
The same kind of right to left scan in a window of size m is performed as in the BOM
algorithm while the state vector is updated in a similar fashion as in the Shift-And
algorithm [BYG92]. If the m-th bit is 1 after this update operation, we have found a
prefix starting at position j where j is the number of updates done in this window.
Thus if j is the first position in the window, a match has been found.

A simplified version of the BNDM, called SBNDM, as been presented in [HD05].
This algorithm differs from the original one in the main loop which starts each it-
eration with a test of two consecutive text characters. Moreover it implements a
fast-loop to obtain better results on average. Experimental results show that this
simplified variant is always more efficient than the original one.
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4 New Variations of the BOM Algorithm

In this section we present two variations of the BOM algorithm which perform bet-
ter in most cases. The first idea consists in extending the BOM algorithm with a
fast-loop over oracle transitions, along the same lines of the Tuned-Boyer-Moore al-
gorithm [HS91]. Thus we are able to perform factor searching if and only if a portion
of the pattern has already matched against a portion of the current window of the
text. We present this idea in Section 4.1.

An other efficient variation of the BOM algorithm can be obtained by applying
the idea suggested by Sunday in the Quick-Search algorithm and then implemented
in the Forward-Fast-Search algorithm. This consists in taking into account, while
shifting, the character which follows the current window of the text, since it is always
involved in the next alignment. Such a variation is presented in Section 4.2.

4.1 Extending the BOM Algorithm with a Fast-Loop

In this section we present an extension of the BOM algorithm by introducing a fast-
loop with the aim of obtaining better results on the average. We discuss the applica-
tion of different variations of the fast-loop, listed in Figure 3, and present experimental
results in order to identify the best choice.

The idea of a fast loop has been proposed in [BM77]. The fast-loop we are using
here has first introduced in the Tuned-Boyer-Moore algorithm [HS91] and later largely
used in almost all variations of the Boyer-Moore algorithm. Generally a fast-loop is
implemented by iterating the bad character heuristic in a checkless cycle, in order
to quickly locate an occurrence of the rightmost character of the pattern. Suppose
bc() : Σ → {0, 1, . . . , m} is the function which implements the bad-character heuristic
defined, for all c ∈ Σ, by

bc(c) = min({0 ≤ k < m | p[m− 1− k] = c} ∪ {m}) .

If we suppose that t[j] is the rightmost character of the current window of the
text for a shift s, i.e. j = s + m− 1, then the original fast-loop can be implemented
in a form similar to that presented in Figure 3(A).

In order to avoid testing the end of the text we could append the pattern at the
end of the text, i.e. set t[n .. n+m−1] to p. Thus we exit the algorithm only when an
occurrence of p is found. If this is not possible (because memory space is occupied)
it is always possible to store t[n −m .. n− 1] in z then set t[n −m .. n− 1] to p and
check z at the end of the algorithm without slowing it.

However algorithms based on the bad character heuristic obtain good results only
in the case of large alphabets and short patterns. It turns out moreover from experi-
mental results [Lec07] that the strategy of using an automaton to match prefixes or
factors is much better when the length of the pattern increases.

This behavior is due to the fact that for large patterns an occurrence of the
rightmost character of the window, i.e. t[j], can be found in the pattern and the
probability that the rightmost occurrence is near the rightmost position increases for
longer patterns and smaller alphabets. In this latter case an iteration of the fast loop
leads to a short shift. In contrast, when using an oracle for matching, it is common
that after a small number of characters we are not able to perform other transitions.
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(A)

k = bc(tj)
while (k 6= 0) do

j = j + k

k = bc(tj)

(B)

q = δ(m, tj)
while (q ==⊥) do

j = j + m

q = δ(m, tj)

(C)

q = δ(m, tj)
if q 6= ⊥ then

p = δ(q, tj−1)
while (p ==⊥) do

j = j + m− 1
q = δ(m, tj)
if q 6= ⊥ then

p = δ(q, tj−1)

(D)

q = λ(tj , tj−1)
while (q ==⊥) do

j = j + m− 1
q = λ(tj , tj−1)

Figure 3. Different variations of the fast-loop where tj = ts+m−1 is the rightmost character of the current
window of the text. (A) The original fast-loop based on the bad character rule. (B) A modified version of the
fast-loop based on automaton transitions. (C) A fast-loop based on two subsequent automaton transitions.
(D) An efficient implementation of the previous fast loop which encapsulate two subsequent transitions in a
single λ table.

So generally this strategy looks for a number of characters greater than 1, for each
iteration, but leads to shift of length m.

As a first step we can translate the idea of the fast-loop over to automaton transi-
tions. This consists in shifting the pattern along the text with no more check until a
non-undefined transition is found with the rightmost character of the current window
of the text. This can be translated in the fast-loop presented in Figure 3(B).

It turns out from experimental results presented in Figure 4 that the variation of
the BOM algorithm which uses the fast-loop on transitions (col.B) performs better
than the original algorithm (first column), especially for large alphabets. However it
is not flexible since its performances decrease when the length of the pattern increases
or when the dimension of the alphabet is small. This is the fast-loop finds only a small
number of undefined transitions for small alphabets or long patterns.

The variation of the algorithm we propose tries two subsequent transitions for each
iteration of the fast-loop with the aim to find with higher probability an undefined
transition. This can be translated in the fast-loop presented in Figure 3(C). From
experimental results it turns out that such a variation (Figure 4, col.C) obtains better
results than the previous one only for long pattern and large alphabets. This is for
each iteration of the fast-loop the algorithm performs two subsequent transitions
affecting the overall performance.

To avoid this problem we could encapsulate the two first transitions of the oracle
in a function λ() : (Σ ×Σ)→ Q defined, for each a, b ∈ Σ, by

λ(a, b) =

{

⊥ if δ(m, a) = ⊥
δ(δ(m, a), b) otherwise.

Thus the fast loop can be implemented as presented in Figure 3(D). At the end
of the fast-loop the algorithm could start standard transitions with the Oracle from
state q = λ(t[j], t[j − 1]) and character t[j − 2]. The function λ can be implemented
with a two dimensional table in O(σ2) time and space.

The resulting algorithm, here named Extended-BOM algorithm, is very fast and
flexible. Its pseudocode is presented in Figure 6(A). From experimental results in
Figure 4 it turns out that the Extended-BOM algorithm (col.D) is the best choice in
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Experimental results with σ = 8
m BOM (A) (B) (C) (D)
4 157.62 95.95 135.95 109.03 55.35
8 85.48 58.66 78.70 58.63 34.16
16 43.04 43.36 43.00 37.15 26.82
32 26.63 35.00 28.29 25.93 21.25
64 17.39 28.05 17.13 17.00 14.42
128 15.28 23.68 15.75 15.87 12.87
256 10.79 19.86 9.60 9.76 8.53
512 6.18 14.29 6.11 5.76 4.76
1024 3.29 8.20 3.45 3.35 2.64

Experimental results with σ = 32
m BOM (A) (B) (C) (D)
4 78.76 55.23 57.75 88.57 37.44
8 51.68 30.37 42.03 39.84 18.59
16 35.40 19.92 30.18 20.34 12.29
32 20.62 16.12 19.34 12.20 11.58
64 12.11 14.84 11.55 10.63 11.10
128 12.60 15.63 11.26 10.01 7.46
256 7.58 16.73 6.32 5.90 3.79
512 4.29 17.90 3.73 3.83 3.20
1024 2.87 14.19 2.67 2.79 2.01

Experimental results with σ = 16
m BOM (A) (B) (C) (D)
4 103.28 66.81 86.28 93.53 40.63
8 71.59 38.72 60.27 44.02 21.73
16 39.61 26.57 35.70 23.68 14.91
32 18.68 21.80 18.82 15.71 12.73
64 12.67 20.09 12.55 12.73 12.49
128 14.22 19.38 14.14 12.35 10.38
256 8.81 19.05 8.12 7.83 6.88
512 4.62 17.73 4.62 4.53 3.60
1024 2.35 11.49 2.66 2.89 2.67

Experimental results with σ = 64
m BOM (A) (B) (C) (D)
4 64.84 50.93 42.34 88.52 37.04
8 39.35 27.44 29.29 38.84 17.99
16 26.09 17.12 22.03 20.07 11.57
32 19.45 14.09 17.11 11.81 10.76
64 13.15 13.58 12.28 10.37 10.70
128 13.11 17.67 10.86 9.76 6.35
256 6.25 18.04 5.79 5.55 3.60
512 2.91 18.00 3.12 5.32 1.98
1024 2.71 16.89 2.58 2.42 1.57

Figure 4. Experimental results obtained by comparing the original BOM algorithm (in the first column)
against variations implemented using the four fast-loop presented in Figure 3. The results have been obtained
by searching 200 random patterns in a 40Mb text buffer with a uniform distribution over an alphabet of
dimension σ. Running times are expressed in hundredths of seconds.

most cases and, differently from the original algorithm, it has very good performance
also for short patterns.

4.2 Looking for the Forward Character

The idea of looking for the forward character for shifting has been originally intro-
duced by Sunday in the Quick-Search algorithm [Sun90] and then efficiently imple-
mented in the Forward-Fast-Search algorithm [CF05]. Specifically, it is based on the
following observation: when a mismatch character is encountered while comparing
the pattern with the current window of the text t[s .. s+m−1], the pattern is always
shifted to the right by at least one character, but never by more than m characters.
Thus, the character t[s + m] is always involved in testing for the next alignment.

In order to take into account the forward character of the current window of the
text without skip safe alignment we construct the forward factor oracle of the reverse
pattern. The forward factor oracle of a word p, FOracle(p), is an automaton which
recognizes at least all the factors of p, eventually preceded by a word x ∈ Σ ∪ {ε}.
More formally the language recognized by FOracle(p) is defined by

L(FOracle(p)) = {xw | x ∈ Σ ∪ {ε} and w ∈ L(Oracle(p))}

Observe that in the previous definition the prefix x could be the empty string. Thus
if w is a word recognized by the factor oracle of p then the word cw is recognized by
the forward factor oracle, for all c ∈ Σ ∪ {ε}.

The forward factor oracle of a word p can be constructed, in time O(m + Σ), by
simply extending the factor oracle of p with a new initial state which allows to perform
transitions starting at the text character of position s + m of the text, avoiding to
skip valid shift alignments.
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Figure 5. (A) The forward factor oracle of the reverse pattern p = baabbba (B) The nondeterministic version
of the forward factor automaton of the reverse pattern p = baabbba

Suppose Oracle(p) = {Q, m, Q, Σ, δ}, for a pattern p of length m. We construct
FOracle(p) by adding a new initial state (m + 1) and introducing transitions from
state (m + 1). More formally, given a pattern p of length m, FOracle(p) is an au-
tomaton {Q′, (m + 1), Q, Σ, δ′}, where

1. Q′ = Q ∪ {(m + 1)}
2. (m + 1) is the initial state
3. all states are final
4. δ′(q, c) = δ(q, c) for all c ∈ Σ, if q 6= (m + 1)
5. δ′(m + 1, c) = {m, δ(m, c)} for all c ∈ Σ

Figure 5(A) shows the forward factor oracle of the reverse pattern p = baabbba.
The dashed transitions are those outgoing from the new initial state. A transition
labeled with all characters of the alphabet has been introduced from state (m + 1)
to state m. Note that, according to rule n.5, the forward factor oracle of the reverse
pattern p is a non-deterministic automaton. For example, starting from the initial
state 8 in Figure 5(A), after reading the couple of characters aa, both states 6 and 1
are active.

Observe moreover that we have to read at least two consecutive characters to find
an undefined transition. This is state m is always active after reading any character
of the alphabet.

Suppose we start transitions from the initial state of FOracle(p). Then after
reading a word w = au, with a ∈ Σ and u ∈ Σ+, at most two different states could
be active, i.e., state x = δ∗(w) and state y = δ∗(u). Where we recall that δ is the
transition function of Oracle(p) and where δ∗() : Σ∗ ← Q is the final state function
induced by δ and defined recursively by

δ∗(w) = δ(δ∗(w′), c), for each w = w′c, with w′ ∈ Σ∗, c ∈ Σ.

The idea consists in simulating the behavior of the nondeterministic forward factor
oracle by following transition for only one of the two active states. More precisely we
are interested only in transitions from state q where

q =

{

y = δ∗(u) if u[0] = p[m− 1]
x = δ∗(w) otherwise

To prove the correctness of our strategy, suppose first we have read a word w = au,
as defined above, and u[0] 6= p[m−1]. If Oracle(p) recognizes a word u (i.e. δ∗(u) 6= ⊥)
then by definition FOracle(p) recognize the word au, since a ∈ Σ ∪ {ε}.
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(A)

Extended-BOM(p, m, t, n)

1. δ ← precompute-factor-oracle(p)
2. for a ∈ Σ do

3. q ← δ(m, a)
4. for b ∈ Σ do

5. if q = ⊥ then λ(a, b)← ⊥
6. else λ(a, b)← δ(q, b)
7. t[n .. n + m− 1]← p

8. j ← m− 1
9. while j < n do

10. q ← λ(t[j], t[j − 1])
11. while q = ⊥ do

12. j ← j + m− 1
13. q ← λ(t[j], t[j − 1])
14. i← j − 2
15. while q 6= ⊥ do

16. q ← δ(q, t[i])
17. i← i− 1
18. if i < j −m + 1 then

19. output(j)
20. i← ı + 1
21. j ← j + i + m

(B)

Forward-Bom(p, m, t, n)

1. δ ← precompute-factor-oracle(p)
2. for a ∈ Σ do

3. q ← δ(m, a)
4. for b ∈ Σ do

5. if q = ⊥ then λ(a, b)← ⊥
6. else λ(a, b)← δ(q, b)
7. q ← δ(m, p[m− 1])
8. for a ∈ Σ do λ(a, p[m− 1])← q

9. t[n .. n + m− 1]← p

10. j ← m− 1
11. while j < n do

12. q ← λ(t[j + 1], t[j])
13. while q = ⊥ do

14. j ← j + m

15. q ← λ(t[j + 1], t[j])
16. i← j − 1
17. while q 6= ⊥ do

18. q ← δ(q, t[i])
19. i← i− 1
20. if i < j −m + 1 then

21. output(j)
22. i← ı + 1
23. j ← j + i + m

Figure 6. (A) The Extended-BOM algorithm which extend the original BOM algorithm by using an efficient
fast-loop. (B) The Forward-BOM algorithm which performs a look ahead for character of position t[j + 1]
in text to obtain larger shift advancements.

Forward-SBNDM(p, m, t, n)

1. for all c ∈ Σ do B[i]← 1
2. for i = 0 to m− 1 do B[p[i]]← B[p[i]] | (1 << (m− i))
3. j ← m− 1
4. while j < n do

5. D← (B[t[j + 1]] << 1) & B[t[j]]
6. if D 6= 0 then pos← j

7. while D← (D + D) & B[t[j − 1]] do j ← j − 1
8. j ← j + m− 1
9. if j = pos then

10. output(j)
11. j ← j + 1
12. else j ← j + m

Figure 7. The Forward SBNDM algorithm which simulates using bit-parallelism the non deterministic
forward automaton of the reverse pattern.

Suppose now that u[0] = p[m − 1]. If Oracle(p) recognizes a word w then it
recognizes also word u which is a suffix of w. Thus by definition FOracle(p) recognizes
the word xu, with x = ε.

The simulation of the forward factor oracle can be done by simply changing the
computation of the λ table in the following way

λ(a, b) =

{

δ(m, b) if δ(m, a) = ⊥ ∨ b = p[m− 1]
δ(δ(m, a), b) otherwise

Figure 6(B) shows the code of the Forward-Bom algorithm. Here the fast loop has
been modified to take into account also the forward character of position t[s + m].
However if there is no transition for the first two characters, t[s+m] and t[s+m−1], the
algorithm can shift the pattern of m position to the right. Line 1 of the preprocessing

10



Efficient Variants of the Backward-Oracle-Matching Algorithm

phase can be performed in O(m)-time, lines 2 to 6 in O(σ2) and line 8 in O(σ). Thus
the preprocessing phase can be performed in O(m + σ2) time and space.

This idea can be applied also to the SBNDM algorithm based on bit-parallelism.
In this latter case we have to add a new first state and change the preprocessing in
order to perform correct transitions from the first state. Moreover we need m + 1
bits for representing the NFA, thus we are able to search only for patterns with
1 ≤ m < w, if w is the dimension of a machine word. Figure 7 shows the code of the
Forward-SBNDM algorithm.

5 Experimental Results

We present next experimental data which allow to compare in terms of running time
the following string matching algorithms under various conditions: Fast-Search (FS),
Forward-Fast-Search (FFS), BOM (BOM), SBNDM (SBNDM), q-Hash (q-HASH with
q = 3, 5, 8), Extended-BOM (EBOM), Forward-BOM (FBOM) and Forward-SBNDM
(FSBNDM).

All algorithms have been implemented in the C programming language and were
used to search for the same strings in large fixed text buffers on a PC with Intel Core2
processor of 1.66GHz. In particular, the algorithms have been tested on seven Randσ
problems, for σ = 2, 4, 8, 16, 32, 64, 128, on a genome, on a protein sequence and on
a natural language text buffer. Searching have been performed for patterns of length
m = 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024. In the following tables, running times
are expressed in hundredths of seconds.

5.1 Running Times for Random Problems

For the case of random texts the algorithms have been tested on seven Randσ prob-
lems. Each Randσ problem consists of searching a set of 400 random patterns of a
given length in a 20Mb random text over a common alphabet of size σ, whit a uniform
distribution of characters.
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  FSBNDM

m FS FFS BOM EBOM FBOM 3-HASH 5-HASH 8-HASH SBNDM FSBNDM

4 153.52 129.07 209.07 169.22 177.31 162.98 - - 155.38 145.47
8 115.44 94.42 133.73 105.08 114.17 77.03 67.91 - 87.42 80.72
16 83.60 63.05 71.75 58.91 63.23 51.65 25.27 34.33 44.87 41.31
32 61.96 43.40 38.55 30.58 33.24 45.38 14.85 13.50 23.88 20.77
64 48.16 32.69 21.24 17.43 17.91 44.65 11.53 7.42 - -
128 39.55 24.90 11.91 11.73 15.63 44.02 10.09 8.34 - -
256 32.80 21.14 8.45 8.43 10.00 44.92 11.02 6.86 - -
512 28.07 17.27 6.36 4.87 5.87 45.65 10.04 6.21 - -
1024 23.39 15.47 4.00 2.79 3.95 44.72 10.59 5.14 - -

Running times for a Rand2 problem
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  FSBNDM

m FS FFS BOM EBOM FBOM 3-HASH 5-HASH 8-HASH SBNDM FSBNDM

4 82.12 78.03 111.55 58.93 84.93 117.82 - - 60.57 74.73
8 60.00 54.02 61.31 43.57 51.38 43.77 56.23 - 40.46 40.79
16 49.05 39.49 35.58 29.11 31.66 22.40 20.54 33.98 23.49 23.15
32 41.72 30.56 19.98 16.88 18.13 16.27 10.60 12.70 12.97 12.48
64 37.11 23.71 11.63 9.79 11.11 13.53 7.05 7.11 - -
128 32.02 18.43 8.30 7.56 10.20 12.17 7.05 8.12 - -
256 28.54 15.72 6.27 5.72 6.16 12.25 6.97 6.99 - -
512 26.07 14.13 3.52 3.31 3.67 12.10 7.46 5.71 - -
1024 22.14 12.97 1.83 2.25 2.78 11.46 8.02 4.76 - -

Running times for a Rand4 problem
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m FS FFS BOM EBOM FBOM 3-HASH 5-HASH 8-HASH SBNDM FSBNDM

4 46.34 44.32 78.94 26.81 49.87 105.12 - - 33.82 40.05
8 29.61 27.46 43.23 16.85 30.11 37.30 54.47 - 18.70 23.09
16 22.46 20.67 21.72 13.34 19.01 18.07 18.90 33.90 12.81 14.71
32 19.97 16.91 13.70 10.15 12.29 10.89 9.92 13.14 9.92 9.73

64 18.93 14.14 8.70 7.07 7.95 8.71 7.87 7.09 - -
128 17.85 12.10 6.99 6.66 7.85 7.11 7.81 7.98 - -
256 17.15 11.13 5.26 3.56 4.70 7.68 6.48 7.43 - -
512 16.02 11.29 3.25 2.61 2.38 7.75 6.53 6.03 - -
1024 15.35 9.63 1.88 1.55 1.61 6.91 6.56 5.57 - -

Running times for a Rand8 problem

 0

 2

 4

 6

 8

 10

 12

 14

 0  200  400  600  800  1000

Running times for a Rand16 problem and long patterns

FS
 FFS

BOM
EBOM
 FBOM

 3-HASH
5-HASH
 8-HASH

 0

 10

 20

 30

 40

 50

 5  10  15  20  25  30

Running times for a Rand16 problem and short patterns

 FS
 FFS

EBOM
 FBOM

 3-HASH
5-HASH

 SBNDM
  FSBNDM

m FS FFS BOM EBOM FBOM 3-HASH 5-HASH 8-HASH SBNDM FSBNDM

4 33.17 32.13 52.02 20.09 39.26 102.31 - - 28.16 27.98
8 18.52 18.91 35.48 10.73 21.87 34.74 54.09 - 14.04 15.22
16 13.48 13.01 19.61 6.98 13.76 16.33 18.71 33.78 7.66 9.18
32 11.41 10.83 9.33 6.36 8.29 9.46 8.64 13.35 6.80 6.43
64 10.54 9.57 6.74 5.58 7.12 6.79 6.21 7.29 - -
128 10.39 9.14 7.58 5.05 9.99 6.25 8.52 7.93 - -
256 9.88 9.08 5.00 3.16 4.45 6.84 6.98 7.07 - -
512 10.23 9.10 2.55 2.18 2.61 6.22 5.90 6.44 - -
1024 10.14 8.55 1.57 1.18 1.45 6.33 5.40 5.62 - -

Running times for a Rand16 problem
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m FS FFS BOM EBOM FBOM 3-HASH 5-HASH 8-HASH SBNDM FSBNDM

4 28.04 26.91 35.98 19.03 35.98 100.51 - - 26.88 23.75
8 15.51 15.23 24.54 8.98 20.74 34.34 53.71 - 12.28 12.54
16 9.78 9.44 17.46 6.18 11.56 15.44 18.36 34.14 6.95 7.46
32 8.29 7.98 10.26 5.46 7.11 8.36 9.02 13.16 5.59 5.75
64 7.50 7.35 5.78 5.58 6.37 6.37 6.22 7.07 - -
128 7.38 7.70 6.21 3.36 10.62 7.58 8.21 8.32 - -
256 7.59 8.33 3.62 2.38 5.94 6.73 6.95 6.75 - -
512 7.89 8.91 1.96 1.41 3.28 6.28 5.78 6.40 - -
1024 7.84 7.73 1.57 1.45 1.39 5.91 5.31 5.83 - -

Running times for a Rand32 problem
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m FS FFS BOM EBOM FBOM 3-HASH 5-HASH 8-HASH SBNDM FSBNDM

4 23.55 27.38 29.10 18.79 35.38 97.23 - - 25.05 23.67
8 13.48 13.82 18.51 8.76 19.41 33.79 53.80 - 12.15 11.37
16 8.06 8.44 12.64 5.69 11.35 15.07 18.56 33.32 6.72 6.72
32 7.04 6.47 9.33 5.14 7.20 8.09 9.00 13.15 5.55 5.25
64 6.44 6.68 6.34 5.16 6.52 6.13 6.09 7.23 - -
128 8.41 8.24 6.05 3.84 9.85 8.51 7.72 8.45 - -
256 8.82 8.49 3.19 1.96 5.59 7.08 6.52 7.21 - -
512 8.52 9.14 1.99 1.28 3.21 6.05 5.79 6.07 - -
1024 8.60 8.36 2.41 1.33 1.64 6.25 4.10 5.67 - -

Running times for a Rand64 problem
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m FS FFS BOM EBOM FBOM 3-HASH 5-HASH 8-HASH SBNDM FSBNDM

4 24.42 23.79 26.16 23.45 50.15 99.57 - 27.21 20.60

8 12.77 13.24 15.06 11.21 28.77 33.54 53.99 - 11.83 11.65
16 7.58 7.69 9.81 6.64 15.92 15.10 18.59 33.84 6.72 6.55

32 6.40 6.79 7.43 5.36 9.56 8.24 8.79 13.01 5.25 5.24

64 6.52 6.25 6.09 5.42 6.92 5.90 6.32 6.96 - -
128 9.96 10.31 6.02 3.40 10.67 8.08 8.24 7.96 - -
256 9.29 9.64 3.52 2.03 5.78 6.83 6.79 7.04 - -
512 9.11 9.14 1.87 1.37 3.67 5.86 5.78 6.33 - -
1024 8.80 9.62 1.88 1.13 2.62 5.49 5.00 5.67 - -

Running times for a Rand128 problem

Experimental results show that the Extended-BOM and the Forward-BOM algo-
rithms obtain the best run-time performance in most cases. In particular for small
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alphabets and short patterns the presented variations are second to algorithms in the
q-Hash family. Moreover for large alphabets and short patterns algorithms based on
bit-parallelism are the best choice. Note however that for alphabets of medium di-
mension, when the pattern is short, the performance of the Extended-BOM algorithm
outperform those of bit-parallel algorithms that until now have been considered the
best choice for short patterns.

5.2 Running Times for Real World Problems

The tests on real world problems have been performed on a genome sequence and
on a natural language text buffer. A genome is a DNA sequence composed of the
four nucleotides, also called base pairs or bases: Adenine, Cytosine, Guanine and
Thymine. The genome we used for these tests is a sequence of 4, 638, 690 base pairs
of Escherichia coli. We used the file E.coli file of the Large Canterbury Corpus
(http://www.data-compression.info/Corpora/CanterburyCorpus/).

The tests on the protein sequence has been performed using a 2.4Mb file containing
a protein sequence from the human genome with 22 different characters.

For the experiments on the natural language text buffer we used the file world192.txt
(The CIA World Fact Book) of the Large Canterbury Corpus. The alphabet is com-
posed of 94 different characters. The text is composed of 2, 473, 400 characters.

From experimental results it turns out that the Extended-BOM algorithm obtains
in most cases the best results and sporadically is second to algorithms of the q-Hash
family. Again better results are obtained for medium dimensions of the alphabet.

m FS FFS BOM EBOM FBOM 3-HASH 5-HASH 8-HASH SBNDM FSBNDM

4 18.64 16.91 23.25 12.65 19.09 25.48 - - 12.96 17.30
8 13.85 11.63 13.04 10.27 11.40 9.90 12.34 - 8.73 9.01
16 11.48 8.47 7.73 6.77 6.47 4.76 4.39 7.74 5.28 5.50
32 9.58 6.44 4.53 3.52 4.07 3.20 2.77 2.85 3.04 2.62

64 8.56 4.92 2.50 1.95 2.42 2.65 1.60 1.84 - -
128 7.05 4.01 1.74 1.73 1.91 2.42 1.84 2.08 - -
256 6.41 3.35 1.33 1.32 1.33 2.90 1.60 1.41 - -
512 5.66 3.20 0.94 0.82 0.78 2.39 1.60 1.61 - -
1024 5.97 2.19 0.98 0.66 0.51 2.50 1.21 1.21 - -

Running times for a genome sequence (σ = 4)

m FS FFS BOM EBOM FBOM 3-HASH 5-HASH 8-HASH SBNDM FSBNDM

4 4.33 2.93 8.30 2.14 5.51 14.49 - - 5.19 3.59
8 1.68 2.64 4.21 2.27 3.58 4.38 8.09 - 2.31 1.85
16 1.71 1.57 2.66 1.05 1.92 2.50 2.58 4.54 1.25 1.05
32 1.41 1.47 1.62 0.87 1.27 1.30 1.37 1.64 0.89 0.89
64 1.21 1.02 1.10 0.63 1.18 0.85 0.82 1.25 - -
128 1.09 1.33 1.13 0.67 1.51 0.98 1.14 1.22 - -
256 1.37 1.44 0.59 0.51 0.47 0.90 0.90 0.82 - -
512 1.20 1.56 0.50 0.27 0.30 0.77 0.90 0.88 - -
1024 1.25 1.64 0.39 0.35 0.27 0.87 0.70 0.74 - -

Running times for a protein sequence (σ = 22)

m FS FFS BOM EBOM FBOM 3-HASH 5-HASH 8-HASH SBNDM FSBNDM

4 3.66 3.73 5.70 2.70 4.79 11.70 - - 3.65 3.25
8 2.12 2.01 3.95 1.52 2.44 3.83 6.50 - 1.96 1.82
16 1.54 1.29 2.73 0.82 1.80 2.10 1.96 3.66 1.14 1.05
32 1.14 1.09 1.35 1.06 1.29 0.95 1.60 1.05 0.55 0.86
64 0.91 0.82 1.14 0.82 1.45 0.70 0.66 0.63 - -
128 1.10 1.17 0.86 0.79 1.32 0.86 0.90 0.94 - -
256 0.93 1.28 0.48 0.59 0.67 0.83 0.75 0.70 - -
512 0.78 1.21 0.59 0.27 0.71 0.66 0.66 0.40 - -
1024 0.65 1.55 0.69 0.52 0.80 0.63 0.28 0.47 - -

Running times for a natural language text buffer (σ = 93)
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6 Conclusion

We presented two efficient variants of the Backward Oracle Matching algorithm which
is considered one of the most effective algorithm for exact string matching. The first
variation, called Extended-BOM, introduces an efficient fast-loop over transitions of
the oracle by reading two consecutive characters for each iteration. The second varia-
tion, called Forward-BOM, extends the previous one by using a look-ahead character
at the beginning of transitions in order to obtain larger shift advancements.

It turns out from experimental results that the new proposed variations are very
fast in practice and obtain the best results in most cases, especially for long patterns
and alphabets of medium dimension.
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