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Natural languages are probably one of the most common type of input for
text processing algorithms. Therefore, it is often desirable to have a large train-
ing/testing set of input of this kind, especially when dealing with algorithms
tuned for natural language texts. The problem in creating good corpora is that
often natural language texts are too short with respect to the dimension required
to test effectively the goodness of text processing algorithms, such as string
matching and compression algorithms. This is, for instance, the case of the well-
known Canterbury Corpus [RB97], used for testing lossless data compression al-
gorithms, which contains natural language texts with a relative small dimension
of not more than 500Kb. The only exception is the “King James Version of the
Bible” (approximately 3, 85Mb) contained in the Large Corpus [RB97]. On the
other hand corpora of non-textual data contain test files with dimensions up to
3Mb (like the Protein Corpus [NMW99] and the Silesia Corpus [D03]), while test-
ing on random texts is often performed on buffers of dimension 10Mb [ACR99]
and 20Mb [CF04].

In many cases the problem due to the lack of big corpus of natural language
texts can be solved by simply concatenating a set of collected texts, even with
heterogeneous contexts and by different authors. This is the case, for example,
of The Linguistic Data Consortium (http://www.ldc.upenn.edu), an open con-
sortium of universities which creates, collects and distributes speech and text
databases and other resources for research and development purposes.

However, in this context, the task of being able to automatically generate
texts which maintain properties of real texts is appealing. In this note we present
a preliminary study on a finite state model for text generation which maintains
statistical and structural characteristics of natural language texts, i.e., Zipf’s
law [Z32] and inverse-rank power law [CF03], thus providing a very good ap-
proximation for testing purposes.

1 Preliminaries

Before entering into details, we review a bit of notations and terminology. A
string S of length m > 0 is represented as a finite array S[0 .. m− 1]. The length
of S is denoted with |S|, i.e, |S| = m. By S[i] we denote the (i + 1)-st character
of S, for 0 ≤ i < m. Likewise, by S[i .. j] we denote the substring of S contained
between the (i + 1)-st and the (j + 1)-st characters of S, for 0 ≤ i ≤ j < m.



A Finite State Automaton is a quintuple A = (Q, p0, F, Σ, δ), where Q is
the set of states of the automaton, p0 ∈ Q is the initial state, F ⊆ Q is the set of
accepting states, Σ is the alphabet of characters labeling transitions, and δ is a
partial function from Q×Σ to Q, called the transition function. If δ(p, c) is not
defined for a state p ∈ Q and a character c ∈ Σ, we say that δ(p, c) is an empty
transition and write δ(p, c) =⊥. Moreover, for all c ∈ Σ we put δ(⊥, c) = ⊥.

In contrast with what can be observed in random texts with a uniform char-
acter distribution, it turns out that some naturally occurring phenomena in
natural language texts obey a power-law distribution.

Zipf’s law (cf.[Z32]), named after the Harvard linguistic professor George
Kingsley Zipf (1902-1950), is one of the most interesting applications of the
power-law to natural languages. In particular, Zipf’s law connects the rank of
a word in a natural language text with its relative frequency on the text itself
as follows: given a text T , Zipf’s law states that, with a very good approxima-
tion, the relative frequency of a word is inversely proportional to its rank. More
formally, if R is the number of different words in T , then the relative frequency
f(r) of a word with rank r in T is approximated by expression (1) shown below:

(1) f(r) '
1

r ln(1.78R)
, (2) f(r) '

(R − i + 1)k

∑R
j=1 jk

.

Figure 1 presents the relative frequencies of words in a random text buffer, with
a uniform distribution of characters (Figure 1.A) and in a natural language text
“Hamlet” (Figure 1.B) and their approximations with the Zipf’s law. In contrast
with the natural language text, we can observe that the relative frequency of
words in the random text does not follow a Zipf’s law.

Recently, in [CF03] a similar characterization has been reported for the fre-
quencies of characters in natural language texts. Such distribution model gives
a very good approximation of the relative frequency function of characters in
terms of their rank both in natural language dictionaries and texts. The model
is based on the following inverse-rank power-law of degree k, which states
that if R is the number of different characters in T , then the relative frequency
f(r) of the character with rank r in T is approximated by the above expression
(2), for a degree k ∈ R whose value is to be determined experimentally (usually
k ranges in the closed interval [3 .. 10]).

2 The Finite State Model

The model adopted in this note is a Deterministic Probabilistic Finite Automa-
ton (DPFA) [Paz71,VT+05], called Extended q-Gram Model [NMW99], which
inherits the statistical structure of the string used for its construction (see below).
The q-Grams automata are equivalent to a class of DPFA known as stochastic

k-testable automata [GV90].
The DPFAs are models which are generative in nature. This is in contrast

with the standard definition of automata in the conventional (non-probabilistic)
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Fig. 1. The relative frequencies of words in a random text buffer (A) and in a natural
language text (B), and their approximations with Zipf’s law. The text buffer in (A) has
been generated randomly with a uniform distribution of characters (n = 200000, σ =
50). The natural language text in (B) derives from the English drama “Hamlet” (n =
174073, σ = 65).

formal language theory, where strings are generated by grammars, whereas the
automata are the accepting devices. Thus, if S is a natural language string, then
a DPFA for S can be used to generate random texts which maintain the peculiar
characteristics of S itself. The q-Gram Model for a string S is constructed by
extracting all q-grams of the string S, for some fixed q > 0, and by carrying the
statistical relationships between overlapping q-grams.

To begin with, let S be a string and let Σ be its alphabet. Given a positive
integer q, with q ≤ lenght(S), we define a q-gram of S as a substring w of S

of length q, i.e., w = S[i .. i + q − 1], for some 0 ≤ i ≤ |S| − q. We denote with
Gq(S) the set of all q-grams of S. We define also an occurrence function ρ

S
which

associates to each nonempty string w over Σ the number of its occurrences in
S, namely:

ρ
S
(w) = |{i : 0 ≤ i ≤ n − |w| and S[i .. i + |w| − 1] = w}| .1

A standard natural language text can be seen as a sequence of words sepa-
rated by special symbols such as punctation marks, numbers, blanks, etc. Thus,
we assume that there is a distinguished set Σsep ⊆ Σ containing such symbols,
used as separators between different words.

Given a value q, with 0 < q < n, the q-Gram Automaton (q-GA for short)
for the string S is formally defined as the probabilistic finite state automaton
A = (Q, p0, F, Σ, δ, ϕ), where

1. Q is the set of all q-grams of S, i.e., Q = Gq(S);
2. p0 is the initial state, defined as the first q-gram of S, i.e. p0 = S[0 .. q − 1];
3. F is the set of final states, defined as F = {w ∈ Q | w[q − 1] ∈ Σsep};
4. δ is the transition function defined, for each w ∈ Gq(S) and a ∈ Σ, by

δ(w, a) =

{

w[1 .. q − 1].a if w[1 .. q − 1].a ∈ Gq(S)
⊥ otherwise,

1 Notice that 0 < ρ
S
(w) ≤ n − q + 1, for each q-gram w of S.
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Fig. 2. (A) The 2-GA for the string S = abaac • dabab • abacc • dabcc, where Σ =
{a, b, c, d, •} and Σsep = {•}. Each transition δ(w, c) of the automaton is labeled with
the pair (c, ϕ(w, c)), where c is the character which performs the transition and ϕ(w, c)
is the relative frequency of the transition. (B) The 1-GA for the string S = abaac •
dabab • abacc • dabcc.

5. ϕ : (Q×Σ) → R is a map which associates to each transition of the automa-
ton its relative frequency. The map ϕ is formally defined by

ϕ(w, a) =







ρ
S
(w.a)

∑

c∈Σ ρ
S
(w.c)

if δ(w, a) 6= ⊥

0 otherwise,

for each w ∈ Gq(S) and a ∈ Σ.

See Figure 2 for a pictorial illustration. The construction of the q-GA for a string
S of length n takes O(n + |Σ|q+1)-time and requires O(|Σ|q+1)-space, where Σ

is the alphabet of the string S.

3 Text Generation

In this section we present a simple algorithm for generating random texts by
means of the finite state model described above. Then we present experimental
evidence that the random texts so generated obey Zipf’s law and the inverse-
rank power law, namely they enjoy the structural and statistical characteristics
of natural language texts.

Random-Transition(A,Σ, w)

1. r ← random(0, 1]
2. π ← 0
3. j ← 1
4. while π < r do
5. π ← π + ϕ(w, cj)
6. j ← j + 1
7. return cj

Generator(S,A, q, Σ, n)

1. w ← S[0 .. q − 1]
2. T [0 .. q − 1]← w
3. i← q
4. while i < n do
5. c← Random-Transition(A, Σ, w)
6. T [i]← c
7. w ← δ(w, c)
8. i← i + 1
9. return T



The algorithm Generator given above takes as input a string S, the
q-GA A for the string S, a dimension q, the alphabet Σ, and the length n

of the output text buffer T . We assume that the alphabet Σ is an ordered finite
alphabet, so that we can write Σ = {c1, c2, . . . , cσ}, with |Σ| = σ. The algorithm
starts its transitions from the initial state w = S[0 .. q−1]. Thus the first q char-
acters of the output text T will be equal to the first q characters of S. Then it
performs a loop until n characters have been inserted in T . More precisely, at
each iteration, it uses the last q-gram of T , w, to compute the subsequent char-
acter c to be inserted. In particular c is selected randomly among all possible
transitions δ(w, c) in the q-GA, according to their frequencies ϕ(w, c) (procedure
Random-Transition). Then w is updated to δ(w, c). Clearly the Generator

algorithm takes O(n)-time for computing a text buffer of length n.

The following table lists some files containing random texts (output files), all
of dimension 2Mb, generated by the algorithm described above from natural lan-
guage texts (source files) of different sizes and languages, with grams dimension
q = 2. Each file is accessible via a URL of the form

http://www.ippari.unict.it/faro/fsmnlp08/file name.txt.

text language source file output file
Hamlet (W. Shakespeare) English ham.txt (176Kb) hamg3.txt

La Divina Commedia (D. Aligheri) Italian div.txt (549Kb) divg3.txt

De la Terre à la Lune (J. Verne) French terlun.txt (335Kb) terlung3.txt

Don Quijote (M. Cervantes) Spanish quijote.txt (2, 04Mb) quijoteg3.txt

English dictionary (151.160 entries) English endict.txt (1, 47Mb) endictg3.txt

Words beginning with w (328 words) English wwords.txt (2, 24Kb) wwordsg3.txt

Italian dictionary (277.313 entries) Italian itdict.txt (3, 13Mb) itdictg3.txt

World Fact Book (Canterbury Corpus) English world192.txt (2, 35Mb) world192g3.txt

The Bible (Canterbury Corpus) English bible.txt (3, 85Mb) bibleg3.txt

Below are presented three examples of random texts, of length n ≥ 100,
generated by the algorithm described above from strings S1, S2, and S3 with
grams dimensions q ∈ {1, 2}.

Example 1. S1 =“abaac dabab abacc dabcc” (this is the strung used in Figure 2):
(q=1) ab daababab ab ababcc abacc dabab dababc dababacccccc abababababaacc dabababab

dababcc ab dab dababa

(q=2) ababcc dab ab abacc dabcc dabac dabaac dabcc dab abaacc dabac dabac dabab

abcc dab abacc dabacc dabc

Example 2. S2 = concatenation of the 328 different words of length 6 of the English
dictionary, beginning with the letter w:

(q=1) we warif wolviter w wices whofeshs wadeddd wommmpier wilads waxeathaveshs

wally war wind wis waldooup

(q=2) waffy wra winne wifer wiper whoolver woo wafed weekly wagong whing wincern

weaker wrer woolver woren

Example 3. S3 = concatenation of the 1389 different words of length 6 of the Italian
dictionary, beginning with the letter a

(q=1) aro acca agnfi ac ara ara alito andereatealbiannna arga aloniacci affi arma ale

aluca atsiti affe

(q=2) abbaggia azoiolo apone amperemia abdulsa assi annomie arreso agrai amarpo

aucideraspio aliata apta
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Fig. 3. The relative frequencies of characters (A-C) and words (B-D) in two different
randomly text buffers of dimension 2MB, generated from two 2-GA, and their approxi-
mations with the inverse-rank power law and Zipf’s law, respectively. The text buffer in
(A-B) comes from the English drama “Hamlet” (n = 174073, σ = 65). The text buffer
in (C-D) comes from the Italian poem “La Divina Commedia” (n = 548159, σ = 62).

Observe that texts generated by the 1-GAs contain words which are not
closely related with the structure of the source string. Short words like “ab” in
Example 1, “w” in Example 2, and “ac” in Example 3, appear in the generated
texts together with quite long words like “abababababaacc” (in Example 1), “wax-

eathaveshs” (in Example 2) and “andereatealbiannna” (in Example 3). Moreover,
strings containing long sequences of a same character, like “dababacccccc” (in Ex-
ample 1) and “wommmpier” (in Example 2) can occur. Instead, the length of
the words generated by the 2-GAs are very close to the length of the words in
the source string and anomalies due to character repetitions are not present.

Figure 3 shows the relative frequencies of characters and words in two dif-
ferent text buffers of dimension 2Mb, generated from 2-GAs for two different
natural language texts. Observe that for both text buffers the relative frequen-
cies of characters are well approximated by an inverse-rank power law, of degree
4.7 and 5.9, while the relative frequency of words follows closely a Zipf’s law.

4 Conclusion and Plans for Future Works

In this note we have presented a preliminary study of a finite state model for
generating random text buffers with the same structure of natural language
texts. The model can be used to generate large corpora of data for testing text
processing algorithms for data-compression and pattern-matching. We intend



(A) words Italian English German
airships 0.0279 0.1323 0.0576
beautiful 0.0989 0.1355 0.1022
cetrioli 0.1391 0.1000 0.0610
crazed 0.0362 0.2346 0.0378
cucumbers 0.0821 0.1871 −

dirigibili 0.2186 0.1360 0.0949
equazioni 0.4025 − −

hydrophily − 0.3123 −

idrofilo 0.1550 0.0963 0.0536
impazzivo 0.1947 − 0.0691
inno 0.4825 0.1958 0.1793
meravigliosi 0.2221 0.0965 0.1035
none 0.2018 0.2063 0.1039
piuolo 0.1296 − −

(B) words Italian English German
quadrato 0.3313 0.2491 0.2223
quaglia 0.4088 0.2565 −

quando 0.4598 0.2687 0.2894
quantizzammo 0.4086 0.1884 0.1915
raggi 0.2519 0.1027 0.0639
spokes 0.0938 0.2067 0.1360
spring 0.0851 0.2559 0.1900
stare 0.1795 0.0903 0.1377
stars 0.1002 0.2112 0.1209
state 0.2354 0.1738 0.1564
testamenti 0.2631 0.1519 0.1451
trentesimo 0.2327 0.1168 0.1483
why − 0.1159 −

wills 0.0994 0.2656 0.1713

(C) sentences italian english french
A buon cavallo non manca sella 0.2189 − −

A buon intenditor poche parole 0.2275 − −

A picture is worth a thousand words − 0.2132 −

A tavola non si invecchia 0.2630 − −

A word to the wise is sufficient − 0.2409 −

Action speak louder than words − 0.2276 −

Buon sangue non mente 0.2492 − −

Chi domanda cio che non dovrebbe, ode cio che non vorrebbe 0.2755 − −

Chi dorme d’agosto, dorme a suo costo 0.1837 − −

Hard words break no words − 0.1870 −

Il faut tourner sa langue sept fois dans sa bouche avant de parle − − 0.2604
In the land of the blind, the one eyed man is king − 0.3012 −

La parole est d’argent, mais le silence est d’or − − 0.2185
Le parole sono femmine e i fatti sono maschi 0.1822 − −

Nel mezzo del cammin di nostra vita 0.2672 − −

The cat will mew and dog will have its day − 0.2882 −

To be or not to be, that is the problem − 0.3282 −

Fig. 4. (A-B) The similarity coefficient values for a set of words over the Italian,
English and German dictionaries. The symbol “−” indicates that the word is not rec-
ognized by the automaton. (C) The similarity coefficient values for a set of English,
Italian and French proverbs. The sentences have been tested with three 2-GAs con-
structed over three different natural language texts: the English drama “Hamlet” by
William Shakespeare; the Italian poem “La Divina Commedia” by Dante Alighieri; the
French novel “De la Terre à la Lune” by Jules Verne.

to investigate further applications of the Extended q-Gram Model in automatic
music generation, for creating original music pieces from input scores, and in the
field of image precessing for automatic texture generation.

Another major application field which we intend to investigate relates to the
Language Identification problem, which has applications in many areas such as
in spelling and grammar correction, in database search engine, etc. For instance,
given a q-GA A = (Q, p0, F, Σ, δ, ϕ) and an input string w of length m, we can
associate to w a similarity coefficient value, Γ

A
(w), computed as the average

relative frequency of transitions (w[i .. i + q − 1], w[q]), for 0 ≤ i < |w| − q. A
similar application, based on Markov Models, has been presented in [D94].

Then the language identification problem can be addressed by parsing the in-
put string with different q-GAs constructed over different natural language texts
and taking the language which leads to the higher similarity coefficient value.



Figure 4(A-B) presents the similarity coefficient values obtained by parsing a set
of English and Italian words with 2-GAs constructed over three different natu-
ral language dictionaries whereas Figure 4(C) presents the similarity coefficient
values for a set of English, Italian and French proverbs.
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