
An Efficient Algorithm for δ-Approximate
Matching with α-Bounded Gaps in Musical

Sequences

Domenico Cantone, Salvatore Cristofaro, and Simone Faro

Università di Catania, Dipartimento di Matematica e Informatica
Viale Andrea Doria 6, I-95125 Catania, Italy

{cantone | cristofaro | faro}@dmi.unict.it

Abstract. We present a new efficient algorithm for the δ-approximate
matching problem with α-bounded gaps. The δ-approximate matching
problem, recently introduced in connection with applications in music
retrieval, generalizes the exact string matching problem by relaxing the
notion of matching. Here we consider the case in which matchings may
contain bounded gaps.
An extensive comparison with the only (to our knowledge) other solution
existing in literature for the same problem, due to Crochemore et al.,
indicates that our algorithm is more efficient, especially in the cases of
large alphabets and long patterns. In addition, our algorithm computes
the total number of approximate matchings for each position of the text,
requiring only O(mα)-space, where m is the length of the pattern.
Key words: approximate string matching, experimental algorithms,
musical information retrieval.

1 Introduction

Given a text T and a pattern P over some alphabet Σ, the string matching

problem consists in finding all occurrences of P in T . It is a very extensively
studied problem in computer science, mainly due to its direct applications to
such diverse areas as text, image and signal processing, speech analysis and
recognition, information retrieval, computational biology and chemistry, etc.

Recently, the classical string matching problem has been generalized with
various notions of approximate matching, particularly useful in specific fields
such as molecular biology [KMGL88], musical applications [CIR98], or image
processing [KPR00].

In this paper we focus on a variant of the approximate string matching prob-
lem, namely the δ-approximate string matching problem with α-bounded gaps.
Such a problem, which will be given a precise definition later, arises in many
questions concerning musical information retrieval and musical analysis. This is
especially true in the context of monophonic music, in which one wants to retrieve
a given melody from a complex musical score. We mention here that a significant
amount of research has been devoted to adapt solutions for exact string match-
ing to δ-approximate matching (see for instance [CCI+99], [CILP01], [CIL+02],

Fig. 1. Representation of the C-minor and B-sus4 chords in the absolute pitch encoding
(a.p.e.) and in the interval pitch encoding (i.p.e.).

[CCF04]). In this respect, Boyer-Moore-type algorithms are of particular interest,
since they are very fast in pratice.

The paper is organized as follows. In Section 2 we discuss the applications of
approximate matching in the context of musical sequences. Then in Section 3 we
introduce some basic notions and give a formal definition of the δ-approximate
matching problem with α-bounded gaps. An algorithm based on the dynamic
programming approach for the approximate matching problem of our interest is
reviewed in Section 4. Then, in Section 5, we present a new efficient algorithm
for the same problem. Experimental data obtained by running under various
conditions both our algorithm and the one based on the dynamic programming
approach are presented and compared in Section 6. Finally, we draw our conclu-
sions in Section 7.

2 Approximate matching in musical sequences

Musical sequences can be schematically viewed as sequences of integer numbers,
representing either the notes in the chromatic or diatonic notation (absolute
pitch encoding), or the intervals, in number of semitones, between consecutive
notes (interval pitch encoding); see the examples in Fig. 1. The second repre-
sentation is generally of greater interest for applications in tonal music, since
absolute pitch encoding disregards tonal qualities of pitches. Note durations and
note accents can also be encoded in numeric form, giving rise to richer alphabets
whose symbols can really be regarded as sets of parameters. This is the reason
why alphabets used for music representation are generally quite large.

δ-approximate string matching algorithms are very effective to search for
all similar but not necessarily identical occurrences of given melodies in musical
scores. We recall that in the δ-approximate matching problem two integer strings
of the same length match if the corresponding integers differ by at most a fixed
bound δ. For instance, the chords C-minor and B-sus4 match if a tolerance of
δ = 1 is allowed in the absolute pitch encoding (where C-minor= (60, 63, 67, 72)
and B-sus4= (59, 64, 66, 71)), whereas if we use the interval pitch encoding, a tol-
erance of δ = 2 is required to get a match (in this case we have C-minor= (3, 4, 5)

Fig. 2. Two bars of the study Op. 25 N. 1 of F. Chopin (first score). The second score
represents the melody.

and B-sus4= (5, 2, 5)); see Fig. 1. Notice that for δ = 0, the δ-approximate string
matching problem reduces to the exact string matching problem.

Intuitively, we say that a melody (or pattern) has a δ-approximate occurrence
with α-bounded gaps within a given musical score (or text), if the melody has a
δ-approximate matching with a subsequence of the musical score, in which it is
allowed to skip up to a fixed number α of symbols (the gap) between any two
consecutive positions. In the present context, two symbols have an approximate
matching if the absolute value of their difference is bounded by a fixed number δ.

In classical music compositions, and in particular in compositions for Piano

Solo, it is quite common to find musical pieces based on a sweet ground melody,
whose notes are interspaced by rapidly executed arpeggios. Fig. 2 shows two bars
of the study Op. 25 N. 1 for Piano Solo by F. Chopin illustrating such a point.
The notes of the melody are the first of each group of six notes (sextuplet).
If we use the standard MIDI representation of the pitches, then the melody
corresponds to the sequence of integer numbers P = [76, 81, 83, 84, 84, 83, 86, 77].
Then, if a gap bound of α = 5 is allowed, an exact occurrence of the melody can
be found through the piece.

The above musical technicality is not by any means the only one for which
approximate string matching with bounded gaps turns out to be very useful.
Other examples are given by musical ornaments, which are common practice
in classical music, and especially in the music of the baroque period. Musical
ornaments are groups of notes, played at a very fast tempo, which generally
are “attached” to the notes of a given melody, in order to emphasize or adorn
certain dynamical passages. Some of the most common musical ornaments are
the acciaccatura, the appoggiatura, the mordent, the turn, and the trill.

Fig. 3 shows an excerpt of a Minuet by J.S. Bach, which makes use of musi-
cal ornaments. We provide both the actual score, in which ornaments are repre-
sented as special symbols marked above notes or as groups of small notes, and
the corresponding score showing how these notations translate into real musical
execution. Note that in Fig. 3 the mordent corresponds to a group of three notes,
whereas the trill corresponds to a group of 16 notes. In general, to take care of
musical ornaments in δ-matching problem with gaps, one needs gap values in
the range between 4 and 16.

Fig. 3. An excerpt of a piece of J.S. Bach (first score). The second score shows how
the musical ornaments must be played. Two musical ornaments are present: a mordent,
attached to the 4th note, and a trill, attached to the 11th note.

3 Basic definitions and properties

Before entering into details, we need a bit of notations and terminology. A string
P is represented as a finite array P [0 ..m − 1], with m ≥ 0. In such a case we
say that P has length m and write length(P) = m. In particular, for m = 0
we obtain the empty string. By P [i] we denote the (i + 1)-st character of P , for
0 ≤ i < length(P). Likewise, by P [i .. j] we denote the substring of P contained
between the (i+1)-st and the (j+1)-st characters of P , for 0 ≤ i ≤ j < length(P).
The substrings of the form P [0 .. j] (also denoted by Pj), with 0 ≤ j < length(P),
are the nonempty prefixes of P .

Let Σ be an alphabet of integer numbers and let δ ≥ 0 be an integer. Two
symbols a and b of Σ are said to be δ-approximate (or we say that a and b

δ-match), in which case we write a =δ b, if |a−b| ≤ δ. Two strings P and Q over
the alphabet Σ are said to be δ-approximate (or we say that P and Q δ-match),

in which case we write P
δ
= Q, if

length(P) = length(Q), and P [i] =δ Q[i], for i = 0, ..., length(P) − 1 .

Given a text T of length n and a pattern P of length m, a δ-occurrence

with α-bounded gaps of P in T at position i is an increasing sequence of indices
(i0, i1, . . . , im−1) such that (i) 0 ≤ i0 and im−1 = i ≤ n−1, (ii) ih+1− ih ≤ α+1,
for h = 0, 1, . . . m − 2, and (iii) P [j] =δ T [ij], for j = 0, 1, . . . m − 1. We write
PEδ, αTi to mean that P has a δ-occurrence with α-bounded gaps in T at position
i (in fact, when the bounds δ and α are well understood from the context, we
will simply write P E Ti).

The δ-approximate string matching problem with α-bounded gaps admits the
following variants: (a) find all δ-occurrences with α-bounded gaps of P in T ; (b)
find all positions i in T such that P E Ti; (c) for each position i in T , find the
number of distinct δ-occurrences of P with α-bounded gaps at position i.

In Section 5 we will describe an efficient O(mn)-time solution for the variants
(b) and (c) above which uses only O(mα) extra space. Variant (a) can then be

solved by running an O(m2α)-time and -space local search at each position i

such that P E Ti.
The following very elementary fact will be used later.

Lemma 1. Let T and P be a text of length n and a pattern of length m, respec-

tively. Also, let δ, α ≥ 0. Then, for each 0 ≤ i < n and 0 ≤ k < m, we have that

Pk Eδ, α Ti if and only if P [k] =δ T [i] and either k = 0, or Pk−1 Eδ, α Ti−h, for

some h such that 1 ≤ h ≤ α + 1.

4 A dynamic programming algorithm: δ-Bounded-Gaps

The δ-approximate matching problem with α-bounded gaps has been first ad-
dressed by Crochemore et al. in [?], where an algorithm based on the dy-
namic programming approach —named δ-Bounded-Gaps— has been proposed.
To our knowledge, this is still the only solution present in literature for the
δ-approximate matching problem with α-bounded gaps. In our review, we fol-
low the presentation given later in [CIM+02], which considers also several new
versions of the approximate matching problem with gaps.

Given as usual a text T of length n, a pattern P of length m, and two integers
δ, α ≥ 0, the algorithm δ-Bounded-Gaps runs in O(mn)-time and -space, at least
in the case in which one is interested in finding all δ-occurrences with α-bounded
gaps of P in T (variant (a)). Space requirements can be reduced to O(n), if only
positions i in T such that P E Ti need to be computed (variant (b)). To solve
also variant (c) with δ-Bounded-Gaps, one needs to first solve variant (a) and
then trace back and count all approximate matchings with gaps at each position
of the text T .

The algorithm δ-Bounded-Gaps is presented as an incremental procedure,
based on the dynamic programming approach. More specifically, it starts by
first computing all the δ-occurrences with α-bounded gaps in T of the prefix
of P of length 1, i.e. P0. Then, during the i-th iteration, it looks for all the
δ-occurrences with α-bounded gaps in T of the prefix Pi−1. At the end of the
last iteration, the δ-occurrences of the whole pattern P have been computed.

To give a more formal description of the algorithm, let us put:

LastOccurj(Pi) = max ({0 ≤ k ≤ j : Pi E Tk and j − k ≤ α} ∪ {−1}) .

Notice that if LastOccurj(Pi) = −1, then Pi 6ETk for k = j −α, j −α + 1, . . . , j.
Otherwise, LastOccurj(Pi) is the largest value k ∈ {j −α, j −α + 1, . . . , j} such
that Pi E Tk.

Using a trace-back procedure, as described in [CIM+02], the values LastOccurj(Pi)
can be used to retrieve the approximate matchings at a given position in time
O(mα).

The values LastOccurj(Pi) can be computed incrementally, for i = 0, 1, . . . ,m−
1 and j = 0, 1, . . . , n − 1. More specifically, the algorithm δ-Bounded-Gaps fills
a matrix D of dimension m × n, where D[i, j] corresponds to LastOccurj(Pi),
according to the following recursive relation:

δ-Bounded-Gaps (P , T , δ, α)
1. n = length(T)
2. m = length(P)
3. for i = 0 to m − 1 do
4. D[i, 0] = −1
5. for i = 0 to m − 2 do
6. for j = 1 to n − 1 do
7. D[i, j] = −1
8. if P [i] =δ T [j] then
9. if i = 0 or D[i − 1, j − 1] ≥ 0 then

10. D[i, j] = j

11. else if D[i, j − 1] ≥ j − α then
12. D[i, j] = D[i, j − 1]
13. for j = m − 1 to n − 1 do
14. if P [m − 1] =δ T [j] and D[m − 2, j − 1] ≥ 0 then
15. output(j)

Fig. 4. The algorithm δ-Bounded-Gaps for the δ-approximate matching problem with
α-bounded gaps.

D[i, j] =



























j if T [j] =δ P [i] , i, j ≥ 1 , and D[i − 1, j − 1] ≥ 0

j if T [j] =δ P [i] and i = 0

D[i, j − 1] if T [j] 6=δ P [i] , j ≥ 1 , and D[i, j − 1] ≥ j − α

−1 otherwise

where 0 ≤ i < m and 0 ≤ j < n.
Fig. 4 presents the pseudo-code of the algorithm δ-Bounded-Gaps. Its running

time is easily seen to be O(mn). Also, O(mn)-space is needed to store the matrix
D. However, if one is only interested in the positions i of T at which P E Ti,
space requirements reduce to O(n), since the computation of each row depends
only on the values stored in the previous row.

5 A new efficient algorithm: (δ, α)-Sequential-Sampling

In this section we present a new efficient algorithm for the δ-approximate match-
ing problem with α-bounded gaps, named (δ, α)-Sequential-Sampling. Our algo-
rithm is characterized by an O(mn)-time and an O(mα)-space complexity, where
m and n are the length of the pattern and text, respectively. Notice that in prac-
tical applications mα is much smaller than n. In addition, our algorithm solves
variant (c) (and therefore also variant (b)) of the approximate matching prob-
lem with gaps, as stated in Section 3, namely it computes the number of distinct
δ-occurrences of the patter with α-bounded gaps at each position of the text. If

one is also interested in retrieving the actual approximate matching occurrences
at position i of a text T , a possibility would be to compute the submatrix D[k, j],
for max(0, (m − 1) · (α + 1)) ≤ k ≤ i and 0 ≤ j ≤ m − 1, where, as before, m is
the length of the pattern, and then trace back through all possible approximate
matchings. The submatrix D[k, j] can be computed in time and space O(m2α)
by the algorithm δ-Bounded-Gaps.

Our algorithm follows a different computation ordering than the one followed
by the algorithm δ-Bounded-Gaps; in fact, it computes the occurrences of all
prefixes of the pattern in continuously increasing prefixes of the text, rather
than computing all occurrences in the whole text of continuously increasing
prefixes of the pattern, as the algorithm δ-Bounded-Gaps does. That is, for a
text T of length n, pattern P of length m, and nonnegative integers δ, α, during
its first iteration the algorithm (δ, α)-Sequential-Sampling computes the (number
of) occurrences of all prefixes Pk of P such that Pk E T0. Then, during the i-th
iteration, it computes (the number of) all occurrences of prefixes Pk of P such
that Pk E Ti, using information gathered during previous iterations.

To be more precise, let Si denote the collection of all pairs (j, k) such that
Pk E Tj , for 0 ≤ i ≤ n, 0 ≤ j < i, and 0 ≤ k < m. Notice that S0 = ∅. If we
put S = Sn, then the problem of finding the positions i in T such that P E Ti

translates to the problem of finding all values i such that (i,m − 1) ∈ S.

To begin with, notice that Lemma 1 justifies the following recursive definition
of the set Si+1 in terms of Si, for i < n:

Si+1 = Si ∪ {(i, k) : P [k] =δ T [i] and
(k = 0 or (i − h, k − 1) ∈ Si, for some h ∈ {1, . . . , α + 1})}.

Such relation, coupled with the initial condition S0 = ∅, allows one to com-
pute the set S in an iterative fashion, as shown in Fig. 5. The time complexity of
the resulting algorithm —named Slow-(δ, α)-Sequential-Sampling— is O(nmα).
Notice that given the set S, one can easily compute the actual δ-occurrences
with α-gaps of P in T .

From a practical point of view, the set S in the algorithm Slow-(δ, α)-Sequential-

Sampling could be represented by its characteristic n × m matrix M, where
M[i, k] is 1 or 0, provided that the pair (i, k) belongs or does not belong to S,
for 0 ≤ i < n and 0 ≤ k < m.

Since during the i-th iteration of the for-loop at line 4 of the algorithm Slow-
(δ, α)-Sequential-Sampling at most α + 1 rows of M need to be scanned —more
precisely the ones having index j ∈ {max(0, i − α − 1), i − 1},— it would be
enough to store only α + 1 rows of M at each step of the computation, plus
another one as working area.

In addition, by maintaining an extra array C of length m such that during
the i-th iteration of the for-loop at line 4 the following invariant holds:

C[k] =

i−1
∑

j=max(0,i−α−1)

M[j, k] , for 0 ≤ k < m ,

Slow-(δ, α)-Sequential-Sampling (T , P , δ, α)
1. n = length(T)
2. m = length(P)
3. S = ∅

4. for i = 0 to n − 1 do
5. for k = m − 1 downto 1 do
6. if P [k] =δ T [i] and (i − h, k − 1) ∈ S, for some h ∈ {1, . . . , α + 1} then
7. S = S ∪ {(i, k)}
8. if P [0] =δ T [i] then
9. S = S ∪ {(i, 0)}
10. for i = 0 to n − 1 do
11. if (i, m − 1) ∈ S then
12. output(i)

Fig. 5. The algorithm Slow-(δ, α)-Sequential-Sampling for the δ-approximate matching
problem with α-bounded gaps.

the test of the conditional instruction at line 6 can be performed in constant
time, rather than in O(α)-time.

Such observations allow to reduce the space requirement to O(mα) and the
running time to O(mn).

In fact, we can do a little bit more than that. Rather than maintaining
in M[j, k] the Boolean value of the test (j, k) ∈ S, it is more convenient to let
M[j, k] count the number of distinct δ-occurrences with α-gaps of Pk at position
j of T . With this change, when the i-th iteration of the for-loop at line 4 of
algorithm Slow-(δ, α)-Sequential-Sampling starts, the item C[k] will contain the
total number of distinct δ-occurrences with α-gaps of Pk at positions max(0, i−
α − 1) through i − 1, provided that the above invariant holds. Such values can
then be used to maintain the invariant itself.

Plainly, at the end of the computation one can retrieve in constant time the
number of approximate matchings at each position of the text.

The resulting algorithm —named (δ, α)-Sequential-Sampling— is presented
in detail in Fig. 6. Its overall running time is O(mn) and its space requirement
is O(mα).

6 Experimental results

In this section we report experimental data relative to an extensive comparison
of the running times of our algorithm (δ, α)-Sequential-Sampling, presented in
Section 5, and the algorithm δ-Bounded-Gaps, described in Section 4.

Both algorithms have been implemented in the C programming language and
were used to search for the same patterns in large fixed text sequences on a PC
with a Pentium IV processor at 2.66GHz. In particular, they have been tested
on three Randσ problems, for σ = 60, 120, 180 and on a real music text buffer.

(δ, α)-Sequential-Sampling (T , P , δ, α)
1. n = length(T)
2. m = length(P)
3. for i = 0 to α + 1 do
4. for j = 0 to m − 2 do
5. M[i, j] = 0
6. for i = 0 to m − 2 do C[i] = 0
7. for i = 0 to n − 1 do
8. j = i mod(α + 2)
9. for k = 0 to m − 2 do
10. C[k] = C[k] −M[j, k]
11. M[j, k] = 0;
12. if P [m − 1] =δ T [i] and C[m − 2] > 0 then
13. output(i)
14. for k = m − 2 downto 1 do
15. if P [k] =δ T [i] and C[k − 1] > 0 then
16. M[j, k] = C[k − 1]
17. C[k] = C[k] + C[k − 1]
18. if P [0] =δ T [i] then
19. M[j, 0] = 1
20. C[0] = C[0] + 1

Fig. 6. The (δ, α)-Sequential-Sampling algorithm for the δ-approximate matching prob-
lem with α-bounded gaps.

In particular, each Randσ problem consisted in searching a set of 250 ran-
dom patterns of length 10, 20, 40, 60, 80, 100, 120, and 140 in a 5Mb random
text sequence over a common alphabet of size σ. For each Randσ problem, the
approximation bound δ and the gap bound α have been set to 1, 2, 4 and to 4,
8, respectively.

Concerning the tests on the real music text buffer, these have been performed
on a 4.8Mb file obtained by combining a set of classical pieces, in MIDI format, by
C. Debussy. The resulting text buffer has been translated in the pitch interval en-
coding with an alphabet of 101 symbols. For each m = 10, 20, 40, 60, 80, 100, 120,
140, we have randomly selected in the file 250 substrings of length m which sub-
sequently have been searched for in the same file.

All running times in the tables have been expressed in tenths of second and,
for each length of the pattern, the best result achieved has been bold-faced.
Moreover, (δ, α)-S-S denotes our algorithm (δ, α)-Sequential-Sampling, whereas
δ-B-G denotes the algorithm δ-Bounded-Gaps by Crochemore et al.

Experimental results with σ = 60

δ = 1, α = 4 10 20 40 60 80 100 120 140

(δ, α)-S-S 5.042 8.203 14.26 20.41 26.38 32.36 38.43 44.47
δ-B-G 5.724 10.75 21.13 32.03 42.80 53.84 64.87 75.77

δ = 1, α = 8 10 20 40 60 80 100 120 140

(δ, α)-S-S 5.199 8.511 14.56 20.69 26.57 32.53 38.80 44.85
δ-B-G 5.660 10.52 21.28 31.69 42.55 53.19 64.20 74.36

δ = 2, α = 4 10 20 40 60 80 100 120 140

(δ, α)-S-S 5.336 8.580 14.73 20.86 26.72 32.73 38.84 44.85
δ-B-G 5.832 11.00 22.67 33.34 44.80 55.99 67.29 78.56

δ = 2, α = 8 10 20 40 60 80 100 120 140

(δ, α)-S-S 5.914 9.395 15.41 21.54 27.46 33.48 39.68 45.68
δ-B-G 5.827 10.98 22.67 33.36 44.79 56.03 67.12 78.44

δ = 4, α = 4 10 20 40 60 80 100 120 140

(δ, α)-S-S 6.347 9.717 15.75 21.87 27.84 33.94 40.01 46.03
δ-B-G 6.258 11.76 24.02 35.79 47.41 59.89 71.23 83.55

δ = 4, α = 8 10 20 40 60 80 100 120 140

(δ, α)-S-S 8.135 12.67 19.14 25.36 31.20 37.34 43.54 49.67
δ-B-G 6.259 11.99 24.18 35.75 47.78 59.82 71.33 83.35

Experimental results with σ = 120

δ = 1, α = 4 10 20 40 60 80 100 120 140

(δ, α)-S-S 4.916 8.044 14.10 20.26 26.17 32.21 38.25 44.37
δ-B-G 5.529 10.37 20.48 30.49 41.06 51.37 61.80 71.87

δ = 1, α = 8 10 20 40 60 80 100 120 140

(δ, α)-S-S 4.931 8.129 14.24 20.33 26.20 32.15 38.48 44.47
δ-B-G 5.406 10.16 21.18 30.81 41.74 51.55 62.58 72.42

δ = 2, α = 4 10 20 40 60 80 100 120 140

(δ, α)-S-S 5.006 8.143 14.19 20.34 26.35 32.31 38.39 44.44
δ-B-G 5.861 10.96 21.24 31.59 42.06 52.53 63.12 73.72

δ = 2, α = 8 10 20 40 60 80 100 120 140

(δ, α)-S-S 5.100 8.372 14.40 20.54 26.50 32.41 38.68 44.73
δ-B-G 5.772 10.83 21.34 31.86 42.62 53.41 63.82 74.57

δ = 4, α = 4 10 20 40 60 80 100 120 140

(δ, α)-S-S 5.242 8.481 14.50 20.67 26.67 32.67 38.75 44.76
δ-B-G 5.788 10.92 22.48 33.18 44.47 55.49 66.51 77.72

δ = 4, α = 8 10 20 40 60 80 100 120 140

(δ, α)-S-S 5.696 9.093 15.15 21.32 27.18 33.23 39.40 45.51
δ-B-G 5.960 11.14 21.51 32.00 42.93 53.87 64.97 75.95

Experimental results with σ = 180

δ = 1, α = 4 10 20 40 60 80 100 120 140

(δ, α)-S-S 4.911 8.019 14.06 20.24 26.17 32.16 38.24 44.34
δ-B-G 5.406 10.16 21.05 30.82 41.77 51.52 62.43 72.31

δ = 1, α = 8 10 20 40 60 80 100 120 140

(δ, α)-S-S 4.886 8.055 14.11 20.22 26.08 32.00 38.31 44.35
δ-B-G 5.913 11.07 21.36 31.65 41.96 52.30 62.51 72.95

δ = 2, α = 4 10 20 40 60 80 100 120 140

(δ, α)-S-S 4.941 8.057 14.09 20.26 26.16 32.17 38.21 44.29
δ-B-G 5.605 10.47 20.72 31.07 41.68 52.04 62.69 73.13

δ = 2, α = 8 10 20 40 60 80 100 120 140

(δ, α)-S-S 4.954 8.164 14.19 20.33 26.18 32.13 38.42 44.46
δ-B-G 5.635 10.58 21.38 31.61 42.75 53.41 64.64 75.68

δ = 4, α = 4 10 20 40 60 80 100 120 140

(δ, α)-S-S 5.045 8.230 14.44 20.51 26.40 32.45 38.47 44.53
δ-B-G 5.786 10.84 21.18 31.76 42.37 53.54 65.46 76.52

δ = 4, α = 8 10 20 40 60 80 100 120 140

(δ, α)-S-S 5.201 8.476 14.55 20.72 26.56 32.57 38.81 44.84
δ-B-G 5.724 10.74 21.89 32.40 43.40 54.07 65.01 75.85

Experimental results on a Real Music problem with σ = 101

δ = 1, α = 4 10 20 40 60 80 100 120 140

(δ, α)-S-S 4.707 7.846 13.28 19.06 24.50 30.30 35.68 41.32
δ-B-G 5.138 9.639 19.62 29.14 38.90 48.60 58.61 68.15

δ = 1, α = 8 10 20 40 60 80 100 120 140

(δ, α)-S-S 4.885 8.404 13.57 19.62 24.84 30.70 35.92 41.61
δ-B-G 5.121 9.579 19.80 29.15 39.10 48.58 58.74 68.20

δ = 2, α = 4 10 20 40 60 80 100 120 140

(δ, α)-S-S 5.063 8.779 13.57 19.92 25.13 31.12 36.12 42.13
δ-B-G 5.246 9.823 20.39 29.96 40.48 49.99 60.77 70.26

δ = 2, α = 8 10 20 40 60 80 100 120 140

(δ, α)-S-S 5.306 8.531 14.11 20.50 25.60 31.66 36.85 42.60
δ-B-G 5.351 9.985 20.04 30.25 40.23 50.07 60.42 70.47

δ = 4, α = 4 10 20 40 60 80 100 120 140

(δ, α)-S-S 5.610 9.077 14.59 21.10 26.31 32.26 37.41 43.32
δ-B-G 5.677 10.49 21.26 31.68 42.39 52.75 63.52 73.72

δ = 4, α = 8 10 20 40 60 80 100 120 140

(δ, α)-S-S 5.864 9.838 15.56 23.04 27.65 34.13 39.12 45.27
δ-B-G 5.581 10.33 21.28 31.66 42.42 52.92 63.75 73.94

Experimental results show that most of the times our newly presented al-
gorithm is faster than the one by Crochemore et al. Its superiority is more
noticeable as the size of the pattern increases.

7 Conclusions

We have presented a new efficient O(mn)-time algorithm for the δ-approximate
string matching problem with α-bounded gaps. Extensive experimentation has
shown that in most of the cases our algorithm is faster than the one by Crochemore
et al., which to our knowledge is the only solution present in literature for the
same matching problem. The performances of our algorithm become more re-
markable as the size of the pattern increases. In addition, our algorithm uses
only O(mα)-space, rather than O(n)-space, and it also computes the number of
all distinct approximate matchings of the pattern at each position of the text.

We plan to reach a further speed-up of our algorithm by appropriate tuning.
We also intend to generalize it to other variants of the approximate matching
problem with gaps.

References

[CCF04] D. Cantone, S. Cristofaro, and S. Faro. Efficient algorithms for the δ-
approximate string matching problem in musical sequences. pages 69–82,
Czech Technical University, Prague, Czech Republic, 2004. Proc. of the
Prague Stringology Conference ’04.

[CCI+99] E. Cambouropoulos, M. Crochemore, C. S. Iliopoulos, L. Mouchard, and
Y. J. Pinzon. Algorithms for computing approximate repetitions in mu-
sical sequences. In R. Raman and J. Simpson, editors, Proceedings of the

10th Australasian Workshop On Combinatorial Algorithms, pages 129–144,
Perth, WA, Australia, 1999.

[CF03a] D. Cantone and S. Faro. Fast-Search: a new variant of the Boyer-Moore
string matching algorithm. In J.D.P. Rolim (Eds.) M. Margraf, M. Mas-
trolli, editor, LNCS 2647, pages 47–58, 2003. Proc. of WEA 2003.

[CF03b] D. Cantone and S. Faro. Forward-Fast-Search: another fast variant of the
Boyer-Moore string matching algorithm. pages 69–82, Czech Technical Uni-
versity, Prague, Czech Republic, 2003. Proc. of the Prague Stringology
Conference ’03.

[CIL+02] M. Crochemore, C. S. Iliopoulos, T. Lecroq, W. Plandowski, and W. Ryt-
ter. Three heuristics for δ-matching: δ-BM algorithms. In A. Apostolico and
M. Takeda, editors, Proceedings of the 13th Annual Symposium on Com-

binatorial Pattern Matching, number 2373 in Lecture Notes in Computer
Science, pages 178–189, Fukuoka, Japan, 2002. Springer-Verlag, Berlin.

[CILP01] M. Crochemore, C. S. Iliopoulos, T. Lecroq, and Y. J. Pinzon. Approximate
string matching in musical sequences. In M. Baĺık and M. Šimánek, editors,
Proceedings of the Prague Stringology Conference’01, pages 26–36, Prague,
Czech Republic, 2001. Annual Report DC–2001–06.

[CIM+02] M. Crochemore, C. Iliopoulos, C. Makris, W. Rytter, A. Tsakalidis, and
K. Tsichlas. Approximate string matching with gaps, 2002.

[CIR98] T. Crawford, C. Iliopoulos, and R. Raman. String matching techniques
for musical similarity and melodic recognition. Computing in Musicology,
11:71–100, 1998.

[KMGL88] S. Karlin, M. Morris, G. Ghandour, and M. Y. Leung. Efficient algorithms
for molecular sequence analysis. Proceedings of the National Academy of

Science, 85:841–845, 1988.

[KPR00] J. Karhumäki, W. Plandowski, and W. Rytter. Pattern-matching prob-
lems for two-dimensional images described by finite automata. Nordic J.

Comput., 7(1):1–13, 2000.

