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Abstract

Recent empirical studies indicate that the topology of natural systems is much richer than
that of random graphs which traditionally have been used to describe complex systems. In
particular, it has emerged that the degree distribution of some real networks is a power-law.
In this paper we investigate and report a similar characterization on natural language texts.
More specifically, we propose a new distribution model that gives an accurate approximation
of the relative frequency of characters in natural language texts.
In the second part of the paper, as a case study, we briefly investigate the probabilistic
behavior of a string-matching algorithm, assuming the new proposed distribution model, and
we compare theoretical versus empirical results.
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1 Introduction

The emergence of order in natural systems is a constant source of inspiration for both physical,
biological, and computer sciences. Traditionally, complex systems have been described by the
theory of statistically homogeneous random graphs, with a Poisson degree distribution. In contrast,
recent empirical studies indicate that the topology of real systems is much richer than that of
random graphs (cf. Albert et al. (1999) and Albert et al. (2000)). In particular, the degree
distribution of real networks is a power-law, indicating a heterogeneous topology in which the
majority of the nodes have a small degree, but with a significant fraction of highly connected
nodes that play an important role in the connectivity of the network.

In this paper we investigate and report a similar characterization on natural language texts
and present a new distribution model that accurately approximates the relative frequency of
characters in natural language texts.

The knowledge of an exact distribution model that describes the relative frequency of char-
acters on texts can play an important role in the probabilistic analysis of text algorithms. It is
usually assumed that all characters are independent and equiprobable, i.e. they occur with the
same relative frequency 1/σ, where σ is the dimension of the alphabet. This is the case in several
complexity analyses of string-matching algorithms, where equiprobability and character indepen-
dence is assumed for both processed texts and patterns; see, for instance, Baeza-Yates (1987),
Baeza-Yates et al. (1990), Baeza-Yates and Régnier (1992), and Mahmoud et al. (1996).

However, most texts on which a text algorithm is usually applied present some definite
structure and particular features that cannot be led back to the equiprobability of letters.

The paper is organized as follows. After introducing in Section 2 the notations and terminology
used in the paper, we define in Section 3 the notion of power-law and present some of the most
common distributions used to approximate the relative frequency of characters and words in
natural language texts. Subsequently, in Section 4 we present a new distribution model that relates
frequencies of characters with their rank in a natural language text. Finally, in Section 5 we briefly
investigate the probabilistic behavior of a string-matching algorithm and compare theoretical
versus experimental results under the new distribution model.



2 Notations

In this section we present the notations and terminology used throughout the paper.
Given a finite alphabet Σ = {c1, . . . , cσ}, where σ = |Σ| is the size of Σ, a text T of length n

over Σ is represented as an array T [0 .. n−1], whose components Ti belong to Σ, for i = 0, . . . , n−1.
To maintain information on the relative frequencies of characters occurring in a text, we extend

the definition of alphabets as follows.

Definition 1 A radix Γ is a pair Γ ≡ (Σ, ρΓ), where Σ = {c1, . . . , cσ} is an alphabet of σ char-
acters and ρΓ : Σ → R is a probability distribution over Σ, called the frequency function of Γ,
satisfying the following properties:

(1) ρΓ(c) ≥ 0, for all c ∈ Σ;

(2)
∑

c∈Σ ρΓ(c) = 1.

Given a text T , a radix Γ ≡ (Σ, ρΓ) is said to be a T -radix if all characters in T are in the
alphabet Σ.

Definition 2 Let T be a text of length n and let ΣT be the collection of the distinct characters
occurring in T . For any character c ∈ ΣT , let nc denote the number of occurrences in T of c and
define the relative frequency function ρT as ρT (c) = nc

n , for c ∈ ΣT . Then the T -radix (ΣT , ρT )
is called the optimal T -radix of T .

Without loss of generality, in what follows we will always assume that the characters of the
alphabet Σ = {c1, . . . , cσ} of any radix Γ ≡ (Σ, ρΓ) are ordered in such a way that

ρΓ(ci) ≥ ρΓ(cj), for 1 ≤ i < j ≤ σ .

Then, we say that character ci has rank equal to i and inverse rank equal to σ − i + 1 (in the
implicit ordering of Σ via ρΓ).

Next, let Γ ≡ (Σ, ρ) and Γ̃ ≡ (Σ, ρ̃) be two radices over the same alphabet Σ, where Γ̃ is
supposed to approximate Γ. Then, we define the approximation error E of Γ̃ w.r.t. Γ as follows:

E =
1
σ

(
σ∑

i=1

|ρ(ci) − ρ̃(ci)|
)

.

Remark 1 All the above definitions can be generalized to the case in which Σ is any event space
and ρΓ is a relative frequency function over Σ.

3 Uniform distributions and power-laws

In this section we briefly discuss two of the most common probability distributions used to ap-
proximate the relative frequency of characters in natural language texts: the uniform distribution
and the Zipf ’s law distribution.

A very natural simplifying hypothesis which is commonly assumed in the analysis of text
algorithms is that given a text T over the alphabet Σ, all characters of Σ occurs in T with the
same probability. Plainly, such an assumption simplifies the analysis and leads to more compact
expressions. A radix with a uniform distribution is called a constant radix. More formally we have
the following definition:

Definition 3 A radix Γ ≡ (Σ, ρΓ), where Σ = {c1, . . . , cσ} is an ordered set of characters, is
called a constant radix if its relative frequency function ρΓ satisfies

ρΓ(ci) =
1
σ

, for i = 1, . . . , σ . (1)
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Figure 1: The relative frequencies of words in the English text “Hamlet” by William Shakespeare
approximated with the Zipf’s law: linear plot on the left and log-log plot on the right.

On the other hand, the relative frequencies of characters in natural languages texts vary over
a quite large range. For instance, in the English language the letter e occurs with a relative
frequency of about 12.75%, whereas letters such as j and z occur with a much smaller relative
frequency of about 0.25%. Thus, when a more precise analysis is needed, one has to use probability
distributions which better approximate the relative frequencies in the natural language texts of
interest.

It turns out that a large number of naturally occurring phenomena, including word frequencies
in texts (cf. Zipf (1932)), distribution of city sizes (cf. Zipf (1949)), the number of visits to an
internet site (cf. Huberman and Adamic (2000)), the number of pages within a site (cf. Huberman
and Adamic (1999)), the number of links to a page (cf. Albert et al. (1999)), etc., obey a power-
law distribution. According to a power-law, the relative frequency f of occurrence of some event,
expressed as a function of the rank r of the event itself in the collection of all events, has the form

f(r) � r−γ ,

with the exponent γ close to unity.
Zipf’s law (cf. Zipf (1932)), named after the Harvard linguistic professor George Kingsley Zipf

(1902-1950), is one of the most interesting applications of the power-law to natural languages.
In particular, Zipf’s law connects the rank of a word in a natural language text with its relative
frequency on the text itself as follows: given a text T , Zipf’s law states that, with a very good
approximation, the relative frequency of a word is inversely proportional to the word rank. More
formally if R is the number of different words in T , then the relative frequency f(r) of a word
with rank r in T is approximated by the following expression:

f(r) � 1
r ln(1.78R)

.

Figure 1 shows the graph of the relative frequency function of words in the English text “Hamlet”
by William Shakespeare in a linear plot and in a log-log plot. In the linear plot, the distribution
is so extreme that the curve seems to have a perfect L-shape. In the log-log scale plot, the same
distribution assumes a rectilinear shape, which is the characteristic signature of a power-law.

It turns out that though the Zipf’s law has been formulated to describe the relation between
ranks and relative frequencies of words in texts, it can also be used to describe with a good
approximation also the relation between ranks and relative frequencies of characters in natural
language texts. This can be done by simply considering each character of the alphabet as a
one-letter word. More formally we have the following definition.
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Figure 2: The relative frequency of characters in the English text “Hamlet” by William Shakespeare
approximated with the Zipf’s law. The approximation error is E = 0.0064: linear plot on the left and
log-log plot on the right.

Definition 4 A radix Γ ≡ (Σ, ρΓ), where Σ = {c1, . . . , cσ} is an ordered set of characters, is
called a Zipfian radix if its frequency function ρΓ is a Zipf’s law of the type

ρΓ(ci) =
1

i ln(1.78σ)
, for i = 1, . . . , σ .

Figure 2 shows how Zipf’s law approximates the characters frequency function for the English text
“Hamlet”, both with a linear scale plot and with a log-log plot. In particular, from the log-log plot
it is evident that the real frequency function does not have a rectilinear shape. This fact suggests
that there might be other distributions which give better approximations of the relative frequency
function than Zipf’s law.

4 A new character distribution: the inverse-rank power-law

We present a new distribution model that gives a very good approximation of the relative frequency
function of characters in terms of their rank both in natural language dictionaries and texts. Such a
model is based on the following inverse-rank power-law of degree k, which states that if a collection
E of events with cardinality R, then the relative frequency f(r) of an event with rank r in E is
approximated by the expression

f(r) � (R − r + 1)∑R
j=1 jk

.

Formally, the dictionary of a finite language L consists in the alphabetically ordered sequence
of all the distinct words of the language. To comply with the most common conventions, we
assume that each letter of a dictionary entry is in lower case, except for the first letter, which is
in upper case. The main difference between natural languages dictionaries and texts is that the
latter contain occurrences of the blank character, which, due to its very high relative frequency,
needs to be treated separately.

We first state the version of the inverse-rank power-law for dictionaries of natural languages
(namely for the cases in which we do not have to deal with the blank character anomaly).

Definition 5 A radix Γ ≡ (Σ, ρΓ), where Σ = {c1, . . . , cσ} is an ordered set of characters, is
called a dictionary radix if its frequency function ρΓ is an inverse-rank power-law, namely

ρΓ(ci) =
(σ − i + 1)k∑σ

j=1 jk
, for i = 1, . . . , σ ,

where k is a constant, named degree of the radix, and σ is the dimension of the alphabet Σ.
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Figure 3: (A) Approximation of the frequency function of the English dictionary, containing 151, 160
different words: the NLT-radix with degree k = 4.9 gives an approximation error E = 0.0023; the
Zipfian radix gives an approximation error E = 0.0123. (B) Approximation of the frequency function
of the Italian dictionary, containing 277, 313 different words: the NLT-radix with degree k = 5.1 gives
an approximation error E = 0.0023; the Zipfian radix gives an approximation error E = 0.009. (C)
Approximation of the frequency function of the German dictionary, containing 155, 457 different words:
the NLT-radix with degree k = 6.1 gives an approximation error E = 0.0014; the Zipfian radix gives an
approximation error E = 0.0079. (D) Approximation of the frequency function of the French dictionary,
containing 136, 595 different words: the NLT-radix with degree k = 5.1 gives an approximation error
E = 0.0037; the Zipfian radix gives an approximation error E = 0.0089.

Experimental results carried out on natural language dictionaries show that optimal T -radices of
dictionaries can be approximated very well by dictionary radices, for suitable values of the degree
k.

More formally if T is a natural language dictionary and Γ ≡ (Σ, ρΓ) is its optimal T -radix,
where |Σ| = σ, then we have that

ρΓ(ci) � (σ − i + 1)k∑σ
j=1 jk

, for i = 1, . . . , σ , (2)

for a degree k ∈ R whose value can be determined experimentally. Usually k ranges in the interval
[3..10].

Figure 3 shows the approximation of English, German, French, and Italian dictionaries with
both the Zipf’s law and the inverse-rank law. It turns out from experimental results that, in all
cases, the inverse-rank law has a smaller approximation error than the Zipf’s law.

Generic natural language texts present a different structure than dictionaries. A first difference
is that the rank of a character in a natural language text may be different from its rank in the
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(B) ‘La Divina Commedia’ by Dante Aligheri

real data
inverse−rank law

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

10 20 30 40 50 60

ch
ar

ac
te

r 
fr

eq
ue

nc
y

character rank

(C) ‘Don Quijote’ by Cervantes
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Figure 4: The frequency functions of four natural language texts approximated with NLT-radices
according to equation (3). (A) The drama “Hamlet”, by William Shakespeare, has been approximated
with a NLT-radix with degree k = 4.7 and approximation error E = 0.0012. (B) The poem “La Divina
Commedia”, by Dante Alighieri, has been approximated with a NLT-radix with degree k = 5.9 and
approximation error E = 0.0013. (C) “Don Quijote”, by Cervantes, has been approximated with a
NLT-radix with degree k = 9.8 and approximation error E = 0.0010. (D) “De la Terre à la Lune”, by
Jules Verne, has been approximated with a NLT-radix with degree k = 9.0 and approximation error
E = 0.0017.

corresponding dictionary. Consider for instance the letter h in the English language. Though
the h occurs in a comparatively small number of English words, it appears in several of the most
commonly used words, such as “the”, “then”, “there”, and “that”.

Another difference is that the alphabet of a natural language text is usually bigger than the
alphabet of the corresponding dictionary, since the former contains punctuation marks, numbers,
blanks, etc. Moreover, in natural language texts the blank character is far more frequent than the
remaining characters.

Much the same law defined above may be used also to approximate the optimal radices of
natural language texts. We only need to take care of the blank problem.

Suppose that lw is the average length of a word in a natural language text and that nb is the
number of occurrences of the blank character. Then since a blank character is simply a separator
between two different words, we count nb + 1 words in the text and the expected number of
occurrences of the blank character, E[nb], in a natural language text of length n is approximatively
given by

E[nb] =
n − lw
lw − 1

.

Thus for natural language texts we have the following definition.



Definition 6 A radix Γ ≡ (Σ, ρΓ), where Σ = {c1, . . . , cσ} is an ordered set of characters of
size σ, is called a natural language text radix, NLT-radix for short, if its frequency function ρΓ

satisfies

ρΓ(ci) =

{
(σ−i+1)k

γ
∑ σ

j=2 jk if i ∈ {2, . . . , σ}
E[nb] if i = 1

where k is a constant, named degree of the radix, and γ is a normalization constant given by

γ =
E[nb]∑σ

i=2 ik
+ 1.

Experimental results show that in a natural language text the average length of a word is ap-
proximatively of 5 letters and so the percentage of blank characters in a natural language text is
expected to be about 16%. Thus if T is a natural language text and Γ ≡ (Σ, ρΓ) is the optimal
T -radix, where |Σ| = σ, then we have that

ρΓ(ci) �
{

(σ−i+1)k

1.19
∑ σ

j=2 jk if i ∈ {2, . . . , σ}
0.16 if i = 1 .

(3)

As in the case of dictionaries, the value of the degree k must be determined experimentally. Its
value usually ranges in the interval [3..10].

Figure 4 shows the frequency functions of four natural language texts approximated with the
inverse-rank law, according to equation (3). In all cases, t turns out that the approximation error
is very low. Moreover in Figure 5 we report the results of a more extensive set of experiments
performed on a set of natural language texts. For each test we have reported the approximation
errors obtained by the inverse-rank law distribution, EIR, and by the Zipf’s law distribution, EZipf .

A tool for testing the inverse-rank and the Zipf’s laws on natural language texts is available
at the URL:

http://www.dmi.unict.it/∼faro/index.php?sec=nlptrj

5 A case study: the analysis of a string matching algorithm

In this section we briefly investigate the probabilistic behavior of the Boyer-Moore-Horspool string-
matching algorithm (cf. Horspool (1980)), used for searching all occurrences of a pattern P of
length m in a text T of length n. We suppose that both patterns and texts are written over the
same radix Γ and assume the independence of alphabet characters. Our short investigation covers
the two cases when the radix itself has an homogeneous distribution of characters or follows an
inverse-rank law distribution as described in the previous section. Our main aim is to compare the
theoretical results obtained by assuming a constant and an NLT-radix, with experimental results
obtained by testing the Boyer-Moore-Horspool string-matching algorithm on natural language
texts.

5.1 The Boyer-Moore-Horspool heuristics

The Boyer-Moore-Horspool Horspool (1980) is an efficient string-matching algorithm. Its heuris-
tics is a slight modification of the original Boyer-Moore bad-character rule (see Boyer and Moore
(1977)). It has been empirically shown that, in practical cases, the Boyer-Moore-Horspool algo-
rithm leads to better performance though it has a O(nm) worst-case time. In this section we
describe the algorithm and introduce the basic terminology.

Let T be a text of length n and let P be a pattern of length m. When the character P [0] is
aligned with the character T [s] of the text we say that the pattern P has shift s in T . In this case
the substring T [s .. s + m− 1] is called the current window of the text. If T [s .. s + m− 1] = P , we



Title (Author) Language Length σ k EIR EZipf %

Hamlet (Shakespeare) English 174073 65 4.7 .0014 .0064 78%

Othello (Shakespeare) English 175493 74 4.2 .0033 .0044 25%

The rime of the mariner (Coleridge) English 20392 63 4.5 .0020 .0061 67%

Romeo and Juliet (Shakespeare) English 155532 74 5.4 .0030 .0049 38%

The importance of being earnest (Wilde) English 119468 71 4.3 .0018 .0048 62%

De la Terre à la Lune (Verne) French 347405 86 9.0 .0017 .0056 69%

La machine d’arithmètique (Pascal) French 34142 74 7.7 .0021 .0063 66%

L’Avare (Molière) French 124671 76 5.0 .0024 .0048 50%

L’origine des espèces (Darwin) French 1388707 82 9.2 .0018 .0065 72%

Les Rèvoltès de la Bounty (Verne) French 44827 83 8.7 .0017 .0054 68%

Manifeste du Parti Communiste (Marx) French 117708 81 8.9 .0019 .0065 70%

Cos̀ı è se vi pare (Pirandello) Italian 100270 60 4.5 .0026 .0052 50%

Gerusalemme liberata (Tasso) Italian 687644 69 5.9 .0034 .0065 47%

I Malavoglia (Verga) Italian 501172 68 7.5 .0011 .0068 83%

Il fu Mattia Pascal (Pirandello) Italian 454113 81 8.8 .0009 .0062 85%

La Divina Commedia (Alighieri) Italian 548159 62 5.9 .0010 .0078 87%

Mastro Don Gesualdo (Verga) Italian 655719 64 6.3 .0011 .0070 84%

Ultime lettere di Jacopo Ortis (Foscolo) Italian 284831 70 7.7 .0011 .0071 84%

Don Quijote (Cervantes) Spanish 2106143 89 9.8 .0010 .0057 82%

Figure 5: Experimental results on various of natural language texts

say that the shift s is valid. Moreover, if the pattern P has shift s in T , we say that the character
T [s + m − 1] is the current head of the text.

The Boyer-Moore-Horspool algorithm works as follows. First, during a preprocessing phase,
the algorithm calculates the mapping hbcP , called the Horspool bad-character function, which
later is accessed to determine nontrivial shift advancements. Next, starting with shift s = 0, it
looks for all valid shifts, by executing a matching phase, which checks whether the shift s is valid
and computes a positive shift increment hbcP (T [s + m − 1]). Such increment is used to produce
the new shift s + hbcP (T [s + m − 1]) to be fed to the subsequent matching phase. The algorithm
stops when the shift s exceeds position n − m of the text.

For each value of the shift s the algorithm compares the pattern and the current window of
the text by checking if P [i] is equal to T [s + i] for all values i = 0, . . . , m − 1, proceeding from
right to left, until a mismatch occurs or an occurrence of the pattern is found.

For any given pattern P , the preprocessing phase determines for each letter a ∈ Σ the shift
distance hbcP (a). When the current window of the text, for a given shift s, is to be abandoned the
current head of the text determines the shift. Suppose that the last occurrence of the character
T [s + m − 1] in P [0 ..m − 2] is at position j. Thus, we should shift the pattern to the right so
that the character P [j] corresponds to the character T [s + m − 1] of the text. If T [s + m − 1]
does not occur in P [0 ..m− 2] then we have to shift the window m position to the right, just past
position s + m− 1 of the text. More formally, at the end of each matching phase we have to shift
the window of the text by hbcP (T [s + m − 1]) positions to the right, where

hbcP (c) = min({1 ≤ k < m|P [m − 1 − k] = c} ∪ {m}), for all c ∈ Σ.

It turns out that the resulting algorithm performs well in practice and can be immediately
translated into programming code. Figure 6 shows the code of the Boyer-Moore-Horspool algo-
rithm. See Baeza-Yates and Régnier (1992) for a simple implementation of the algorithm in the
C programming language.

5.2 Average number of comparisons for the stationary problem

The average complexity of the Boyer-Moore-Horspool heuristic has been studied in depth (cf.
Baeza-Yates et al. (1990), Baeza-Yates and Régnier (1992) and Mahmoud et al. (1996)).



Boyer-Moore-Horspool(P , T )
1. n = length(T )
2. m = length(P )
Preprocessing:
3. for all c ∈ Σ do hbcP (c) = m
4. for i = 0 to m − 1 do hbcP (P [i]) = m − i − 1
Searching:
5. s = 0
6. while s ≤ n − m do
7. j = m − 1
8. while j ≥ 0 and P [j] = T ′[s + j] do j = j − 1
9. if j < 0 then print(s)
10. s = s + hbcP (T [s + m − 1])

Figure 6: The Boyer-Moore-Horspool algorithm.

In this subsection we briefly summarize the analysis of Boyer-Moore-Horspool algorithm
following Mahmoud et al. (1996), where the problem is reduced to the stationary case in which
the pattern is fixed. Then, in the next subsection, we generalize this result to the case in which
the pattern is random, by reducing the problem to a word enumeration problem. Finally, we
approximate the results in order to obtain a more manageable expressions.

One common characteristic of the Boyer-Moore type string-matching algorithms is their
dependency on history: the number of comparisons made on a given character depends on the
result of comparisons on neighbors. Hence, the first attempts to derive asymptotics used Markov
chains Baeza-Yates (1989), Barth (1984). Unfortunately, the use of Markov chains quickly leads
to a combinatorial explosion, when the size of the pattern increases.

Here we shall assume that the letters of the text are all independent and chosen from the
alphabet with a probability distribution {ρ(a)}a∈Σ.

Theorem 1 (Baeza-Yates et al. (1990)) Let P = P ′.x be a pattern of length m. There exist
a unique sequence 〈ci1 , . . . , cij

〉 of characters of Σ and a unique sequence 〈w1, . . . , wj〉 of words
such that

P = wj . . . w1x and
wh ∈ {ci1 , . . . , cih

}∗.{cih
}, for h = 1, . . . , j .

We denote |wi| by ki and identify the sequence of characters 〈ci1 , . . . , cij
〉 with the sequence of

indices I = 〈i1, . . . , ij〉. Similarly, we identify the sequence of words 〈w1, . . . , wj〉 with the sequence
K = 〈k1, . . . , kj〉 of their lengths. Observe moreover that each given pattern P is associated with
a unique pair of sequences (K, I) and the shift function hbcP can be rewritten as follows

hbcP (cih
) =

{
1 if h = 1
kh−1 + . . . + k1 + 1 if 2 ≤ h ≤ j .

For instance, the pattern P = accbbaba, over the alphabet Σ = {a, b, c} has associated the
sequences: I = 〈2, 1, 3〉 and K = 〈1, 3, 3〉. In particular, P can be seen as the concatenation
P = w3.w2.w1.a = acc.bba.b.a, where |w1| = 1, |w2| = 3, and |w3| = 3. Moreover, we
have w1 ∈ {b}∗.{b}, w2 ∈ {b, a}∗.{a} and w3 ∈ {b, a, c}∗.{c}. The Boyer-Moore-Horspool
bad-character rule can be obtained as described above: hbcP (b) = 1, hbcP (a) = 1 + 1 = 2, and



hbcP (c) = 1 + 1 + 3 = 5.

With any given pattern P , we associate a shift generating function, fP (z), defined as follows

fP (z) =
σ∑

i=1

ρ(ci)zhbcP (ci).

Observe that fP (z) must be a polynomial of the form

fP (z) = ρ(ci1)z + ρ(ci2)z
k1+1 + . . . + ρ(cij

)zkj−1+...+k1+1 + (1 − ρ(ci1) − ρ(ci2) − . . . − ρ(cij
))zm ,

where j is the number of distinct letters appearing among the first m − 1 letters of the pattern.
We have the following result concerning the number of heads for a stationary problem:

Theorem 2 (Mahmoud et al. (1996)) For the stationary problem of a given pattern P of
length m and a random text T of length n, the expected number of heads E[H [P ]

n ] converges asymp-
totically to nμP , where

μP =
1

f ′
P (1)

.

We observe that

f ′
P (1) =

σ∑
i=1

ρ(ci)hbcP (ci)

is the average shift for pattern P .
As in the above example, if P = accbbaba is a pattern over the alphabet Σ = {a, b, c}, then

the shift generating function is fP (z) = ρ(b)z + ρ(a)z2 + ρ(c)z5. The average shift of P is given
by expression f ′

P (1) = ρ(b) + 2ρ(a) + 5ρ(c). Assuming equiprobability of characters, we have that
ρ(c) = 1/3, for c ∈ Σ, and the average shift for P has value f ′

P = 1/3 + 2/3 + 5/3 � 2.66.

Given a fixed pattern P , it is reasonable to expect that at each head position a certain number of
comparisons is made by the algorithm, and thus, on average, the expected number of comparisons
E[C [P ]

n ] is proportional to the expected number of heads, which converges asymptotically to nμP .
This is indeed the case and the proportionality factor is a complicated function of the pattern, as
stated by the following theorem.

Theorem 3 (Mahmoud et al. (1996)) Let E[C [P ]
n ] be the expected number of text-pattern com-

parisons for a given pattern P of length m and a random text T of length n. Then

E
[C

[P ]
n

n

]
→ μP SP ,

where

SP = 1 +
m∑

j=1

tj(j − 1) −
∑
a∈Σ

⎛
⎝ρ(a) ·

m∑
j=hbcP (a)+2

tj(j − 1 − hbcP (a))

⎞
⎠

is the average number of comparisons between two shifts and

tj =
{

1 if j = 1
ρ(P [m − 1]) . . . ρ(P [m − j + 1]) if 2 ≤ j ≤ m − 1 .



5.3 Averaging over random patterns

Theorem 3 gives the average number of text-pattern comparison performed by the Boyer-Moore-
Horspool algorithm in the case in which the pattern is fixed and the text is random. We now
extend this result to the general case in which the pattern is random too. A slight change of
notation will allow to present the result in a more compact form.

We can observe that all fixed patterns associated with the same pair of sequences (K, I) have
the same shift generating function f(z) and thus the same probabilistic behavior concerning the
average number of heads. Thus μP is therefore characterized by (K, I), and we shall simply use
the notation μ(K,I) for all patterns sharing the same pair of sequences (K, I).

As an example, suppose that the length of the pattern is m = 10 and that the alphabet is
Σ = {a, b, c}. Then the sequences I = 〈2, 1, 3〉 and K = 〈1, 3, 3〉 are associated to both patterns
P1 = bbcaaabc and P2 = accbbaba.

By averaging the result of Theorem 3 over random patterns, we obtain the following theorem

Theorem 4 Let E[Cm
n ] be the expected number of text-pattern comparisons for a random pattern

P of length m and a random text T of length n. Then

E
[Cm

n

n

]
→

∑
K

∑
I

μ(K,I)S(K,I) , (4)

where

S(K,I) =
∑

P∈P(K,I)

(
m−1∏
i=0

ρ(P [i])

)
SP

with P(K,I) standing for the set of all patterns sharing the same pair of sequences (K, I).

Moreover, we observe that for a given pattern P ∈ P(K,I) of length m the value
∏m−1

i=0 ρ(P [i]) is
the probability that pattern P is chosen among all patterns of length m.

The value given by (4) reduces to a computationally difficult enumeration of words. In the
following we give a reasonable approximation of the results obtained in Theorem 4.

First we define the shift generating function for all pattern P of length m as follows

fm(z) =
σ∑

i=1

ρ(ci)zE[hbcm(ci)] ,

where

E[hbcm(ci)] =
m∑

j=1

jPr{hbcm(ci) = j} =
m−1∑
j=1

jρ(ci)(1 − ρ(ci))j−1 + m(1 − ρ(ci))m−1

is the expected shift when the character ci is a head and the length of the pattern is m. Thus the
expected shift for a random pattern of length m is given by

f ′
m(1) =

σ∑
i=1

ρ(ci)E[hbcm(ci)] =
σ∑

i=1

⎛
⎝m−1∑

j=1

jρ2(ci)(1 − ρ(ci))j−1 + mρ(ci)(1 − ρ(ci))m−1

⎞
⎠ .

We can obtain an approximation for the expected number of heads in the case in which the pattern
is random. This value, denoted by μm, is asymptotically 1/f ′

m(1).
The average number of comparisons performed between two shift for all patterns of length m

can be efficiently approximated, according to Baeza-Yates et al. (1990), with the value

Sm = 1 + γ + . . . + γm =
γm+1 − 1

γ − 1
,



where γ =
∑σ

i=1 ρ(ci)2. However the above approximation assumes no knowledge on left neighbors:
comparisons are random. However, if the last head position is attained in backward reading, a
match certainly occurs and the left neighbor will also be read. Hence, a second approximation is
given, according to Baeza-Yates and Régnier (1992), by the value

Sm = 1 + γ + . . . + γshift + γshift + . . . + γm−1 =
γm − 1
γ − 1

+ γshift .

Thus, the expected number of character comparisons, in the case of random pattern and random
text, can be approximated by

E
[Cm

n

n

]
� μmSm . (5)

5.4 Theoretical versus experimental results

In this section we compare experimental and theoretical results relative searching a set of pat-
terns on four natural language texts. In particular, theoretical results are computed according to
equation (5), assuming a constant radix and an NLT-radix.

For random texts under uniform distribution, the frequency function ρΓ is of the type defined
by (1). So, for each text character, the average number of comparisons performed by the Boyer-
Moore-Horspool algorithm is a function ψc(m,σ), whose value depends on m and σ.

In the case of natural language texts, by using equation (3), for each text character, the
average number of comparisons performed by the Boyer-Moore-Horspool algorithm is a function
ψe(m,σ, k), whose value depends on m, σ, and k.

Figure 7 allows to compare theoretical results with experimental results for four distinct natural
language texts. Experiments on each text consisted in searching 2000 patterns. Each pattern P
has been obtained by randomly selecting a value k in the range [0 .. n−m], where n is the length
of the text T and m is the length of the pattern. Then P is the substring T [k .. k + m − 1].

It turns out from experimental results that the theoretical values obtained by assuming an
inverse-rank law are very close to empirical results. Moreover, in all cases the values obtained
under a uniform distribution were always smaller than empirical results.

6 Conclusion

We have presented a variation of the power-law, called inverse-rank power-law, which models very
well the relative frequency distribution of characters in natural language dictionaries and texts.

Experimental results show that our proposed distribution achieves better results than the
standard power-law distributions. In particular we have compared the inverse-rank law against
the uniform distribution and the Zipf’s law.

We have also discussed an application of the inverse-rank law to the probabilistic analysis of a
string matching algorithm, by computing the average number of comparisons for random patterns
and random texts. It turns out that the theoretical values computed by assuming an inverse-rank
law distribution perfectly agree with empirical results.
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Figure 7: Theoretical vs. experimental results relative to four natural language texts. Symbols ψe and
ψu denote respectively the values of functions ψe(m,σ, k) (inverse-rank law) and ψu(m,σ) (uniform
distribution), whereas Ψ denotes the average number of comparisons calculated experimentally (real
data).
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