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1 Introduction

The Bénard system is historically the first example of convection to be studied,
and for its many geophysical and industrial applications, it is still of great
relevance. The essential feature of the phenomenon is as follows. A horizontal
layer of fluid in the rest state is heated from below in such a way that an
adverse temperature gradient is maintained. The fluid at the bottom expands
as it becomes hotter and, when the temperature gradient reaches a critical
value (see [19]), the buoyancy overcomes viscosity, and the fluid gives rise to a
regular cellular pattern of motion. This phenomenon is called Bénard convection
after the experiments of Bénard [2], (see also [12, 13, 16, 21]). The linear
stability of this problem has been studied in Chandrasekhar [4], by means of
classical normal modes, for perfectly conducting boundaries, and rigid or stress-
free boundaries. The nonlinear energy stability has been shown in Joseph [9, 10],
(see also [12, 23]).

More general problems include new effects such as a rotation field or a mag-
netic field. For fixed boundary temperatures, the linear stability theories predict
the stabilizing effect of rotation, while the nonlinear L2-norm stability proves
that the rotation about a vertical axis has only a non-destabilizing character
(see Rionero [20]). In Mulone and Rionero [14], and Mulone [15], the coinci-
dence of critical linear and nonlinear stability parameters has been proved. In
[15] the reduction method has been applied to prove the coincidence of critical
linear and nonlinear stability parameters.

In this work we consider mixed, or Newton-Robin, thermal boundary condi-
tions, which involve both the temperature field, and its normal derivative at the
boundaries. The mixed boundary conditions have several physical justifications,
that originate from a more accurate description of heat transfer phenomena in
the media surrounding the fluid [22, 5, 18, 6]. It should be noted also that
the usual “thermostatic” boundary conditions are not justified physically, since
they imply an infinite conductivity inside the thermostat. An interesting, both
physically and mathematically, limit case is that of fixed heat fluxes (also known
as “insulating” boundary conditions) [3, 17].
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2 The Equations

We consider an infinite layer Ωd = R
2 × (−d/2, d/2) of thickness d > 0 filled

with an incompressible homogeneous newtonian fluid F , subject to the action
of a vertical gravity field g. We also assume that the fluid is uniformly rotating
about the vertical axis z with an angular velocity Ω̂k, and denote by Oxyz the
cartesian frame of reference (with unit vectors i, j, k) rotating about z with the

same angular velocity Ω̂.
The equations of the fluid in the Bussinesq approximation are given by (see

Chandrasekhar [4]):




vt + v · ∇v = −∇

p⋆

ρ0

+ [1 − α(T − T0)]g − 2 Ω̂k × v + ν∆v

∇·v = 0, Tt + v · ∇T = k∆T
(1)

where v, T , p⋆ are the velocity, temperature and pressure fields, respectively,
and the p⋆ field includes the centrifugal force term. Further ρ0, α, ν and k are
positive constants which represent the density of the fluid at some reference
temperature T0, the coefficient of volume expansion, the kinematic viscosity
and the thermometric conductivity, ∇ and ∆ are the gradient and the Laplacian
operators, respectively, and the suffix “t” denotes the partial time derivative.
For the velocity field, we assume that the boundaries are either rigid (R) or
stress free (F),

v = 0, on R boundaries,
k · v = ∂z(i · v) = ∂z(j · v) = 0, on F boundaries.

(2)

For the temperature field we assume the following boundary condi-
tions

αH(Tz + β)d + (1 − αH)(TH − T ) = 0, on z = −d/2
αL(Tz + β)d + (1 − αL)(T − TL) = 0, on z = d/2,

(3)

where αH , αL ∈ [0, 1], β > 0, and TH = T0 + βd/2, TL = T0 − βd/2 are
respectively an higher (TH) and lower (TL) temperature.

For α ∈ (0, 1) these conditions are equivalent to the many Newton-Robin
boundary conditions used in the literature (eg. [7]), but (3) have the property
to preserve the basic solution. In fact, all the motionless solutions of problem
(1), with the boundary conditions (2)-(3) and any choice of αH and αL, can be
expressed as

v = 0, T̂ (x, y, z) = −βz + T0. (4)

Expression (4) implies also T̂ (x, y,−d/2) = TH , T̂ (x, y, d/2) = TL.
Following Chandrasekhar [4], the evolution equations of a nondimensional

disturbance of the motionless solution of (1) in the rotating frame of reference
(see [11], [23]), are given by






∆wt = R∆∗θ − T ζz + ∆∆w + N1

ζt = T wz + ∆ζ + N2

Prθt = Rw + ∆θ + N3,
(5)

in R
2 × (−1/2, 1/2) × (0,∞), where u = (u, v, w) and θ are the perturbations of

the velocity and temperature, ζ = k · ∇×u is the z component of the vorticity
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Figure 1: Values of ac as a function of the parameter L for selected values of T 2

and R-R boundary conditions. Notice that for L → 0 the curves corresponding
to T 2 ≤ 1850 tend to zero, while the curves for T 2 ≥ 1900 tend to finite values.

field, ∆∗ = ∂2

∂x2 + ∂2

∂y2 . The quantities R2, T 2, and Pr are the standard Rayleigh,

Taylor and Prandtl numbers, respectively [4]. N1, N2, N3 are nonlinear terms.
Following the standard analysis in normal modes of the system, we search then
solutions of the linearized system (5) in the form






w = W (z) exp{ i (axx + ayy) + p t}
ζ = Z(z) exp{ i (axx + ayy) + p t}
θ = Θ(z) exp{ i (axx + ayy) + p t}

(6)

where p = σ + iτ is a complex constant, with Re(p) = σ and Im(p) = τ .
Substituting expressions (6) into the linearized system (5) we obtain






(D2 − a2)2W − T DZ −Ra2 Θ = p (D2 − a2)W
(D2 − a2)Z + T DW = pZ
(D2 − a2)Θ + RW = pPr Θ,

(7)

where “D” represents the operator of derivation along the z axis. System (7),
with its boundary conditions,

on a rigid surface W = DW = Z = 0,
on a stress-free surface W = D2W = DZ = 0,
on z = −1/2 αHDΘ − (1 − αH)Θ = 0,
on z = 1/2 αLDΘ + (1 − αL)Θ = 0,

(8)

is an eigenvalue problem with eigenvalue p, depending on the parameters T ,
R, a, Pr, αH , αL. From expression (6) we see that the perturbations decay,
and then (linear) stability is achieved, if σ < 0 for all eigenvalues obtained for
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Figure 2: Values of ac as a function of T 2 for selected values of L ranging from
L = ∞ (fixed temperatures) to L = 0 (fixed heat fluxes), and R-R boundary
conditions.

a certain set of values of the parameters. Criticality is then obtained when the
eigenvalue with the largest real part has σ = 0. If at the criticality it is τ = 0,
we say that the principle of exchange of stabilities (PES) holds, and a simplified
form of (7) can be studied [4]. By fixing all parameters except R and a we get
a locus of critical states R(a). The onset of instability is then expected at the
minimum value Rc of R along the curve, corresponding to a cellular motion of
wave number ac.

Nonlinear stability

By using the classical energy E(t) = 1/2(||u||
2

+ Pr ||θ||
2
) we obtain global

nonlinear stability whenever R2 < R2

c(0), where R2

c(0) is the critical Rayleigh
value for T = 0. In order to prove the stabilizing effect of rotation in the
nonlinear context we can use the reduction method [15].

3 Results

We solved problem (7)-(8), (and that obtained when PES holds) with a Cheby-
shev Tau method, using up to 35 polynomials per unknown function. The
accuracy of the method has been checked by evaluation of the tau coefficients,
by comparison with known or analytical results, and, when PES holds, compar-
ing the solutions of PES and non-PES problems. All of the results presented
here satisfy PES, at least for sufficiently large values of Pr.

In figures (1)-(2) we use symmetric boundary conditions, with α = αH = αL,
and denote by L the quantity (1−α)/α (for a direct comparison with [22, 17]).

The approximate threshold values of T 2

a at which ac becomes positive are
given in the following table. The numerical computation of these values presents
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Figure 3: Critical wave number as a function of T 2 for fixed heat fluxes at both
boundaries. The critical wave number is equal to zero up to a certain threshold
in all three cases.

some difficulties since the derivative dac/dT 2 is singular for T 2 ≈ T 2

a .

R-R F-F R-F
T 2

a ≈ 1880 ≈ 181 ≈ 75

The integer values of R2

c for T = 0, remarked in fig. 4 (120, 320, 720), are
know in the literature [8, 3], and can be computed analytically.

4 Conclusions

For fixed heat fluxes, we find that the critical wave number is asymp-
totically equal to zero up to a given threshold of rotation speed, de-
pendent on the boundary conditions on the velocity field. This appears to be
a new result. This behavior is consistent with the results obtained for Newton-
Robin boundary conditions. From an physical point of view, this implies that
up to some threshold of rotation speed, the convection cells would probably be
the largest allowed by the experimental setup. Preliminary results show
the same qualitative dependency of the wave number (for fixed heat
fluxes) on concentrations, magnetic field and diffusivity, in mixed flu-
ids, electrically conducting fluids, and porous media, respectively. The study of
these systems, detailed overstability analysis, the nonlinear stability, and study
of analogous problems for compressible fluids (see eg. [1]), will be the object of
future works.
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Figure 4: Critical Rayleigh number as a function of the Taylor number T 2 for
fixed heat fluxes at both boundaries.
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