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In the recent years the Boltzmann transport equation (BTE) has become a useful tool to
model different problems in the field of many-body systems. The knowledge, in the phase
space, of the evolution of the distribution function, as a selution of BTE, provides all the
necessary information to describe the nonequilibrium properties of the physical systems con-
sidered. In the case of highly nonlinear processes, that lead the physical system very far from
equilibrium, the determination of an analytical sclution for the BTE (non considering drastic
and reductive approximations), has proved to be still an unsolved mathematical problem.
Its resolution has urged the search for various numerical approaches capable of adequately
describing these physical features. These methods have turned out to be particularly suitable
for the analysis of transport properties of hot electrons in submicrometric devices when the
active regions are very small and the fields and electric gradients applied (E = 10°% V/cm,
|B|/}7 B} = 100 A) are very large.

In this paper we describe the transport properties of hot electrons in silicon, through a com-
pletely closed hydrodynamic model, without any free parameter. Starting from the maximum
entropy principle (MEP) we obtain an analytic expression for the nonequilibrium distribu-
tion function of carriers, determining the microstate corresponding to the given macroscopic
data. In this case the microscopic status is obtained from the solution of the variational
problem of maximizing the entropy of the system under the constraints corresponding to the
value of some mean quantities {density n, velocity v, energy density W, traceless momentum
flux density I;;, energy flux density Si) which define the macroscopic status. Given the
distribution function and considering the collisional interactions of carriers with phonons of
the acoustic and optical branches, we can determine a hydrodynamic model for the mean
quantities used as constraints, in which all the constitutive functions appearing in the fluxes
and collisional productions are explicitly calculated [1-2]. We note here that, unlike of this
model, hydrodynamic simulations have always suffered from questionable assumptions, such
as relaxation times and 'ad ho¢’ expressions for the transport coefficients. Moreover, these ex-
pressions contain free parameters (which have an unknown dependence on the geometry and
working conditions of the devices) that are usually fixed on the basis of Monte Carlo (MC)
simulations or experimental data. The MEP has been successfully used in a large number
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of missing-information problems in diverse fields {3-5] but, despite this success, has caused
widespread controversy, mainly focused on the choice of the constraints and on their effective
use in the characterization of dypamic systems [6]. In fact, the mere determination of the

distribution function of maximum entropy does not allow us to obtain any information on the
dynamical evolution of a system, nor such information can be introduced as further constraint
conditions. In this paper we obtain a dynamical description of the system by determining a
hierarchy of evolution equations for the macroscopic quantities used as constraints. Assuming
the set Fy = {n,nv;, W, Lyj, Si} as constraint, being the distribution function known and
calculating explicitly the corresponding collisional productions, we can adequately describe
the dynamical evolution of the system, thus including the kinetic details of the collisional
interactions in the evolution equations for the constraints.

We consider here a HD model for transport phenomena in silicon. Our main purpose in the
development of this model, has been to test how accurately our distribution function descri-
bes strong non-equilibrium conditions. Therefore we have used a simplified band structure.
As is well known, electrons contributing to transport are mainly those belonging to the six
equivalent X valleys which, up to an energy of about 0.5 eV, can be considered approximately
parabolic. Electrons can then be described by a density of states effective mass m® = 0.32m,
and a band energy (k) = A2k?/2m". In the same energy range, the main scattering phe-
nomena are due to electron-phonon interactions, which produce intervalley and intravalley
transitions {7). We will consider intervalley transitions caused both by f type and g type
phonons. The scattering probability per unit time for intervalley transitions of an electron
from state & to state &' can be expressed as

- r Al N, - -

withn = gy, 92, 93, f1, f2, fa. Here Z, is the number of possible final equivalent valleys (Z, = 1
for 7 = g1,92,93 and Z, = 4 for n = f1, f, f3}, O is the coupling constant, V is the crystal
volume, p is the Si density, w, is the phonon angular frequency, N, = 1/[exp (Aw,/KpTo) — 1}
is the phonon occupation number (with Ty the lattice temperature) while the upper and the
lower option in the expression corresponds to absorption and emission, respectively. For in-

“travalley transitions we will consider scattering with acoustic phonons, which will be regarded

as approximately elastic. We can express the sum of the intravalley transitions probabilities
as
27 KgTy E[ p

Thpor F) — <) (2)

Sac(k, k) =
being Kg the Boltzmann constant, U; the longitudinal sound velocity, E; the deformation
potential for longitudinal acoustic phonons. For the values of all the costants appearing
in the scattering terms (1),(2) we have used the parameters reported in {7]. We can pass
from the BTE to the hydrodynamic equations of the first thirteen moments considering the
following kinetic quantities 1,0,4(1:) {1, hk;/m*, ﬁzkz,/zm Alkeikjs/m*, R3k%k/2(m")?}.
Multiplying the BTE by #a(k) and integrating in k space we obtain the balance equations
for the moments of the distribution function F4. The generic balance equation is

OFs OFu

3t + 3zr = Rq+ Pa+ Py. (3)
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Where R4 denotes the production term due to the electric feld,

Fa= [wbFEnod Fu=t [y herinng

o

Pa=S / YalR) Qu(F)dE |, By = / a(R) Que(F) dF.
7

Fsi denotes the fluxes and { Py, f’,;} the collisional productions associated with the intravalley
and intervalley tranpsitions, with

QF) = {2:}3 { / dF SR, R) F(R, 7 ) - f dF S(F, ) f(s?,f,z}}
The set of balance equations (3} contains several unknown functions, i.e. the fuxes of the
equations for Z¢,;» and S;, and the collisional productions {Pa, Pa}. The system can
then be closed if the unknown constitutive functions Ha = {Pg4, By, Fii} can be expres.
sed by means of the fields F4. This problem can be solved with the help the variational
method known as entropy mazimum principle [8] which allows the determination of the Hon~
equilibrium distribution function of hot carriers and consequently permits to find a closu-
re for.the constitutive functions. We start from the known expression of entropy density
h = ~C [ F log(F)dk (where C is a constant) assuming that F(k,7,t) depends on 7 and
t only through the fields Fy (7,t) and then we determine the distribution function, of the
form F(F, k, t) = F[F4(, t), k| that maximizes A under the constraints that the moments
F4 are expressed by the relations (4);. Following this procedure; we maximize the functional

W=h-50 A, [ [ palk) F(7, k, ) dk — FA} imposing k' = 0. The quantities A, are
the Lagrange multipliers associated with the constraint equations (4);. As is well known, the
distribution function obtained with this procedure {9] assumes the following form

13
F =exp(-I), E=3Y" gaha. (5)

A==l

To obtain an explicit expression of F we have yet to express the multipliers A4 as function
of the constraints, i.e. the moments F4. By inserting Eq. (5) into the definition of felds (41
we have Fy = F4{Ap), and so, to determine F, we must invert this latter relations obtaining
A4 = Aa(Fg). This inversion is extremely diffcult and can be obtained only by numerical
integration or by a series expansion of F [2,9]. We have followed the latter approach, expan-
ding F around an equilibrium configuration defined by a local Maxwellian. In this way we
can express F as a strongly non-linear function of F4. The analytical closure so obtained has
been applied to the case of some n*nn* submicron silicon devices, with results comparable
to similar MC simulations [1,2,10]. Computation times are of order of few seconds for a

picosecound of simulation on a workstation.
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