Università degli Studi di Catania, A.A. 2024-2025

Corso di Laurea in Ingegneria Industriale Compito di Fisica Matematica - 11 Novembre 2025

Non è ammesso l'uso di appunti e dispositivi elettronici. Non è permesso allontanarsi dall'aula prima di avere consegnato il compito. Esibire documento d'identità. Tempo per lo svolgimento: 2h30m.

Parte A

1. Elencare le singolarità e determinare l'ordine dei poli della funzione

$$f(z) = \frac{2z - 1}{1 - \sin(\pi z)}.$$

Valutare l'integrale $\oint_{\gamma} f(z) dz$, dove γ è la curva di equazione |z-1|=1.

2. Tramite le trasformate di Laplace, risolvere il seguente problema di Cauchy:

$$\left\{ \begin{array}{l} y''''-y=e^{-t} \\ \\ y(0)=y'(0)=y''(0)=y'''(0)=0. \end{array} \right.$$

Parte B

Un sistema materiale vincolato a muoversi su un piano verticale è costituito da un disco omogeneo di raggio R e massa m, vincolato nel suo centro con una cerniera liscia a un punto O del piano. Allo stesso punto O è vincolata con una cerniera liscia un'asta OA di lunghezza 2R e massa m. Oltre alla forza peso sul sistema agisce una molla ideale di costante elastica h>0 che collega A a un punto B del bordo del disco, e una seconda molla di costante elastica $k=\frac{mg}{2R}$ che collega A alla sua proiezione \bar{A} sull'asse orizzontale passante per O.

Si scelga il sistema di riferimento in figura, e si indichi con ϑ l'angolo formato dal

 $\begin{array}{c} y \\ A \\ \theta \\ 0 \\ A \end{array}$

vettore $\hat{\imath}$ (versore dell'asse x) e il vettore OA, e con φ l'angolo formato da $\hat{\imath}$ e il vettore OB. Quindi:

- 1. Determinare le coordinate dei punti rilevanti del sistema in funzione delle variabili lagrangiane ϑ, φ .
- 2. Calcolare il potenziale (o l'energia potenziale) totale.
- 3. Determinare tutte le configurazioni di equilibrio e rappresentare quelle aventi $\vartheta = -\pi/2$.
- 4. Studiare la stabilità delle configurazioni di equilibrio aventi $\vartheta = -\pi/6$.
- 5. Calcolare l'energia cinetica associata a un atto di moto del sistema. Nota: il momento d'inerzia di un disco omogeneo di massa M e raggio r rispetto al suo asse è pari a $I = \frac{1}{2}Mr^2$.

Table of Laplace Transforms

Table of Laplace Transforms					
	$f(t) = \mathfrak{L}^{-1}\left\{F(s)\right\}$	$F(s) = \mathcal{L}\{f(t)\}\$			$\frac{F(s) = \mathfrak{L}\{f(t)\}}{1}$
1.	1	$\frac{1}{s}$	2.	\mathbf{e}^{at}	$\frac{1}{s-a}$
3.	t^n , $n=1,2,3,$	$\frac{n!}{s^{n+1}}$	4.	$t^p, p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}$
5.	\sqrt{t}	$\frac{\sqrt{\pi}}{2s^{\frac{3}{2}}}$	6.	$t^{n-\frac{1}{2}}, n=1,2,3,\ldots$	$\frac{1\cdot 3\cdot 5\cdots (2n-1)\sqrt{\pi}}{2^n s^{n+\frac{1}{2}}}$
7.	sin(at)	$\frac{a}{s^2 + a^2}$	8.	$\cos(at)$	$\frac{s}{s^2 + a^2}$
9.	$t\sin(at)$	$\frac{2as}{\left(s^2+a^2\right)^2}$	10.	$t\cos(at)$	$\frac{s^2 - a^2}{\left(s^2 + a^2\right)^2}$
11.	$\sin(at) - at\cos(at)$	$\frac{2a^3}{\left(s^2+a^2\right)^2}$	12.	$\sin(at) + at\cos(at)$	$\frac{2as^2}{\left(s^2+a^2\right)^2}$
13.	$\cos(at) - at\sin(at)$	$\frac{s\left(s^2-a^2\right)}{\left(s^2+a^2\right)^2}$	14.	$\cos(at) + at\sin(at)$	$\frac{s\left(s^2+3a^2\right)}{\left(s^2+a^2\right)^2}$
15.	$\sin(at+b)$	$\frac{s\sin(b) + a\cos(b)}{s^2 + a^2}$	16.	$\cos(at+b)$	$\frac{s\cos(b) - a\sin(b)}{s^2 + a^2}$
17.	sinh(at)	$\frac{a}{s^2 - a^2}$	18.	$\cosh(at)$	$\frac{s}{s^2 - a^2}$
19.	$\mathbf{e}^{at}\sin(bt)$	$\frac{b}{\left(s-a\right)^2+b^2}$	20.	$\mathbf{e}^{at}\cos(bt)$	$\frac{s-a}{\left(s-a\right)^2+b^2}$
21.	$e^{at}\sinh(bt)$	$\frac{b}{\left(s-a\right)^2-b^2}$	22.	$\mathbf{e}^{at}\cosh(bt)$	$\frac{s-a}{\left(s-a\right)^2-b^2}$
23.	$t^n \mathbf{e}^{at}, n = 1, 2, 3, \dots$	$\frac{n!}{\left(s-a\right)^{n+1}}$	24.	f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right)$
25.	$u_c(t) = u(t-c)$ <u>Heaviside Function</u>	$\frac{\mathbf{e}^{-cs}}{s}$	26.	$\delta(t-c)$ Dirac Delta Function	\mathbf{e}^{-cs}
27.	$u_c(t) f(t-c)$	$e^{-cs}F(s)$	28.	$u_c(t)g(t)$	$e^{-cs} \mathcal{L}\left\{g\left(t+c\right)\right\}$
29.	$\mathbf{e}^{ct}f(t)$	F(s-c)	30.	$t^n f(t), n = 1, 2, 3, \dots$	$(-1)^n F^{(n)}(s)$
31.	$\frac{1}{t}f(t)$	$\int_{s}^{\infty} F(u) du$			$\frac{F(s)}{s}$
33.	$\int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)	34.	f(t+T) = f(t)	$\frac{\int_0^T \mathbf{e}^{-st} f(t) dt}{1 - \mathbf{e}^{-sT}}$ $s^2 F(s) - sf(0) - f'(0)$
35.	f'(t)	sF(s)-f(0)	36.	f''(t)	$s^2F(s)-sf(0)-f'(0)$
	$f^{(n)}(t)$	$s^n F(s) - s$	$f^{n-1}f($	$0)-s^{n-2}f'(0)\cdots-sf^{(n-2)}$	$f(0) - f^{(n-1)}(0)$